Feeding & Food Processing

1. Structure (review)

2. Function (behavior, physiology)

3. Nutritional needs

4. Digestive efficiency

Food capture

Mouth and pharyngeal cavity

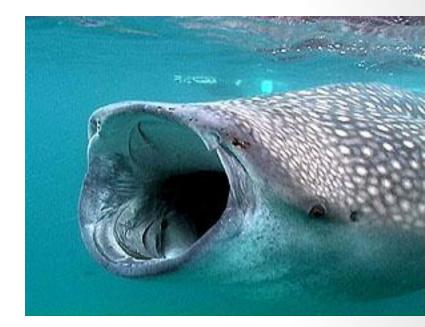
Jaws

• Teeth - jaw, mouth, pharyngeal

• Gill rakers

Fish Feeding - function

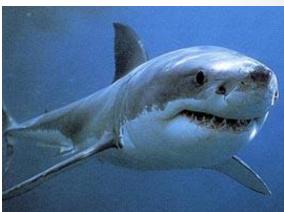
- Herbivores
 - < 5% of all bony fishes, no cartilaginous fishes</p>
 - browsers selective eat only the plant
 - grazers less selective include sediments
- Detritivores
 - 5 10% of all species
 - feed on decomposing organic matter



Fish Feeding – function

Carnivores
zooplanktivores
suction feeding
ram feeding
benthic invertebrate feeders

- graspers
- pickers
- sorters
- crushers



Fish Feeding – function

- More Carnivores
 - fish feeders
 - active pursuit
 - stalking
 - ambushing
 - Iuring

Fish feeding behavior

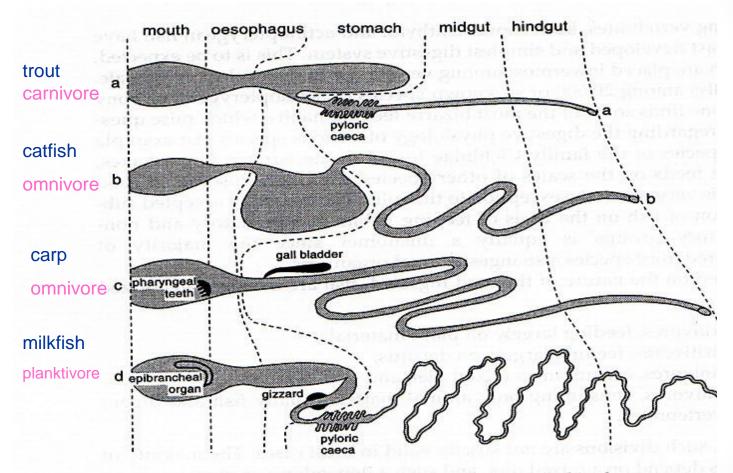
 Fish feeding behavior integrates morphology with perception to obtain food:

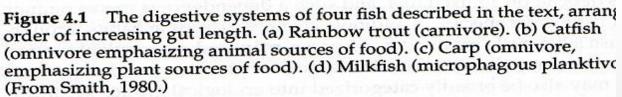
 Search --> Detection --> Pursuit --> Capture --> Ingestion Feeding behavior

- Fish show versatility in prey choice and ingestion
- Behavior tightly linked to morphology (co-evolution)

Fish feeding behavior

- Behavior tends to be optimizing when choices are available
 - Optimal = maximize benefit:cost ratio
 - More for less!
 - Select the prey that yields the greatest energetic or nutrient "return" on the energy invested in search, pursuit, capture, and ingestion




Fish digestive physiology

- After ingestion of food, gut is responsible for:
 - Digestion breaking down food into small, simple molecules
 - involves use of acids, enzymes
 - Absorption taking molecules into blood
 - diffusion into mucosal cells
 - phagocytosis/pinocytosis by mucosal cells
 - active transport via carrier molecules

Digestive Apparati

Fish Digestion

- Two major groups: w/stomach, w/out
- w/out stomach: cyprinids (carps)
- w/stomach: cold-water salmonids, warm-water catfish, tilapia, eels, grouper
- note: all "pure" predators have a stomach and teeth
- relative gut length (RGL): gut:body length
- high RGL = species consuming detritus, algae (high proportion of indigestible matter)

Relative Gut Length

Species	Feeding	RGL
Labeo horie	Algae, detritus	15.5
Garra dembensis	Algae, inverts	4.5
Barbus sharpei	Plants	2.8-3.1
Chelethiops elongatus	Zooplankton	0.7
Chela bacaila	Carnivorous	0.9

Fish Digestive Morphology: Major Divisions

- Mouth
- Esophagus
- Pharynx
- Stomach
- Intestine
- Rectum

- Secretory glands (liver and pancreas)
- often difficult to distinguish

Gastrointestinal Tract

- Esophagus
- Stomach
 - large in carnivores, small in herbivores/omnivo res
 - **Pyloric caeca**
- Intestine
 - short in carnivores, long in herbivoresomnivores
- Anus separate from urogenital pore

CI Tract- Secretory Glands • Liver • produces bile (lipolysis)

stores glycogen
 stores lipids

digestive enzymes • proteases - protein breakdown

- amylases starch breakdown
- chitinases chitin breakdown
- lipases lipid breakdown

Digestive Anatomy: Mouth/Esophagus

- Channel catfish: large mouth/esophagus, capture prey, slightly predaceous, mouth has no teeth, no gizzard/cardiac sphincter
- *Common carp:* small mouth for bottom feeding, pharyngeal teeth, grinds food
- *Tilapia:* combination of bottom feeder, predator, efficient plankton feeder, uses gill rakers, pharyngeal mucous

Digestive Anatomy: Stomach

- Channel catfish: have true stomach that secretes HCl and pepsinogen (enzyme)
- Common carp: no stomach; however, "bulb" at anterior end of digestive tract, bile and pancreatic secretions empty into intestine posterior to cardiac sphincter, no secretion of gastrin (low pH)
- Tilapia: modified stomach, secretes HCl, well-defined pocket, pH varies w/digestal flow, has pyloric sphincter

Fish Nutritional Needs

- High protein diet:
 - Carnivores 40 55% protein needed
 - Omnivores 28 35% protein needed
 - Birds & mammals 12 25% protein needed
 - 10 essential amino acids (PVT. TIM HALL)

Fish Nutritional Needs

• High protein diet

- Why so high?
 - Proteins needed for growth of new tissue
 - Proteins moderately energy-dense (don't need dense source - ectotherms, low gravity)
 - Few side-effects ease of NH₄⁺ excretion

Nutritional efficiency in fishes

- Fish more efficient than other vertebrates:
 - Conversion factor = kg feed required to produce 1 kg growth in fish flesh
 - Fishes: 1.7 5.0
 - Birds & mammals: 5.0 15.0

Nutritional efficiency in fishes

- Fish more efficient than other vertebrates
- Why?
 - Ectothermy vs. endothermy
 - Energy/matter required to counterbalance gravity
 - Bias of a high-protein diet

Nutritional efficiency

- Maintenance ration (MR) = the amount of food needed to remain alive, with no growth or reproduction (% body wt./day)
- MR is temperature-dependent
 - MR increases as temperature increases
- MR is size-dependent
 - MR decreases as size increases