Parasitic and fungal diseases in Fish

Numerous types of parasites

- Protozoans
- Trematodes
- Nematodes
- Cestodes
- Crustaceans
- Leeches

Protozoa

Ciliates

 Large protozoa up to 2mm in length that have cilia (hair like organelles) covering their body at some point, if not all, of their life cycle

Flagellates

 Protozoa equipped with one or more whip-like flagella used for propulsion

Ciliates

- Largest group of protozoa
- Direct life cycle
- Common in pond-reared fish
- Easy to eliminate in aquarium due to controlled conditions
- Easily transmitted through nets, hoses or hands

Ciliates

- Symptoms include
 - Skin or gill irritation
 - Rubbing and abnormal breathing
- Species
 - Ichthyophthirius multifiliis
 - Tetrahymena
 - Apiosoma
 - Epistylis

Ichthyophthirius multifiliis

- Disease
 - Ich or white spot disease
 - Responsible for majority of fish fatalities
- Symptoms
 - Small lesions on body or fins
 - If gills only then no lesions but a thick mucus

Ichthyophthirius multifiliis cont.

- Identification
 - Horseshoe shaped macronucleus

- Possible misidentification
 - Immature forms may resemble Tetrahymena

Ichthyophthirius multifiliis

Ichthyophthirius multifiliis cont.

- Life cycle
 - Tomites infect fish t=0
 - Dig under scales or gills
 - Mature trophozoites leave fish t=~7days
 - Settle and secrete cyst
 - Cysts rapidly divides to produce hundreds of tomites
 - At maturity they leave cysts looking for host
 - Whole cycle =10 days to 4 weeks

Ich Treatment

- Life cycle is temp dependent
 - So raising the temp increases life cycle to days instead of weeks
- Formalin
- Copper sulfate
- Treat for >3days after last spot gone
- vaccum the floor of tank to get the cysts

Tetrahymena

- Living in organic debris
- Body surface of fish
- Treatment
 - Same as Ich

Apiosoma

- Location
 - Gills, skin, or fins
- shape
 - Vase like
 - Oral cilia
- Treatment
 - formaline, copper sulfate

Apiosoma

Epistylis

- Stalked ciliate very similar to apiosoma
- More dangerous than apiosoma
 - Greater concern than most due to proteolytic enzymes secreted by the organism
 - The enzyme breaks down proteins in the skin of the fish making the fish susceptible to bacterial infection

Epistylis

- Treatment
 - Salt
 - .02% salt solution for extended period
 - 3% salt dip
 - More than one treatment required

Flagellates

- External and internal
- species
 - Spironucleus
 - Ichthyobodo
 - Мухогоа
 - Microsporidia

Spironucleus

- Location
 - Intestinal tract
- Symptoms
 - Extreme weight loss
 - Distended abdomen
 - Yellow mucous build up in intestines

Spironucleus

- Diagnosis
 - Intestinal prep observed at 200-400x
- Treatment
 - Metronidazole bath
 - 5mg/L
 - Every other day for one week

Ichthyobodo

- External Flagellate
- Large amounts of mucus
 - Blue slime disease in catfish
- Location
 - Gills, skin and fins
- Diagnosis
 - Microscopic examination....
- Treatment
- formalin, copper sulfate

Myxozoa

- Widespread in native or pond reared fish
 - Most infections not bad
 - But some may be serious in young fish

Myxozoa

- Extremely abundant and diverse
- Speciation
 - Based on spore shape and size
- Examination technique
 - Preps of infected area
 - Histologic sections of tissue

Myxozoa

- Symptoms
 - Vary depending on the organ affected
 - Excess mucus productions
 - White or yellowish nodules on target organs
- Treatment
 - No remedies known
 - Spores can survive >1year
 - Disinfection necessary after removal of infected fish

Microsporidia

- Intracellular parasites
 - Require host tissue for reproduction
- Mode of transmission
 - Ingesting spores from infected fish or food
- Symptoms
 - Small tumors in various tissues
 - Enlargement of hosts cells cause tumor like masses

Microsporidia

- Clinical signs
 - Dependent on tissue infected
 - from no lesions to dead
 - In Serious cases, cysts enlarge to a point that organs no longer function correctly

Microsporidia

- Infections caused
 - Pleistophora
 - Infects skeletal muscle
 - Cysts are observed
- Treatments
 - None available
 - Spores tough
 - Can survive long periods
 - Most environmental conditions it can handle
 - Flushing of infected fish
 - Disinfect the environment

Class Oomycetes

- They produce a motile biflagellate spore (easy dispersal)
- Also produce a thick-walled zoospore by the fusion of two gametes
- usually identified as hyphae

- Four Orders, but most significant fish pathogens are within Family <u>Saprolegniaceae</u>
- It is typically external, affecting skin and gills, sometimes eggs

Saprolegniasis: hyphae

- the adult form is a mass of filaments known as hyphae
- the mass is called a mycelium (looks like cotton in the water)
- hyphae are unique in that they are nonseptate (no divisions)
- the asexual biflagellated zoospores are thought to initiate most infections

- ubiquitous, most surface fresh waters, limited to no greater than
 2.8 ppt salinity.
- Can live on dead or live matter, affect only fish which have been compromised in some way:
 - 1. suppression of immune system (unfavorable temps)
 - 2. injury to skin (trauma)
 - spawning or precocious sexual maturity (thickened epithelium = more mucus)
 - 4. no seasonal (temperature) restrictions to infections with eggs

- Signs
- gray-white lesions on skin
- lesions start small and circular: spread
- can damage internal organs
- All fish susceptible
- Unfertilized eggs can be attacked by hyphae (water hardening)

Treatment:

- Malachite green-topical (not approved)
- Bath: 1-2 mg malachite/litre (30 60 min.)
- Formalin: Bath: 0.15 to 0.25 mls/litre (60 min.) approved but as effective
- Salt bath
- Potassium Permanganate
- Chloramine T
- Methylene blue
- Acetic acid (as a dip at 5% up to 1 minute)

Fish eggs with Saprolegniasis

- This disease is commonly referred to as "gill rot"
- due to massive necrosis of gills
- Branchiomycosis sp. fungus invades gill blood vessels
- either B. sanguinis (only in gill blood vessels); carp, goldfish
- *B. demigrans* (grows from blood vessels to tissue); bass, pike, striped bass

- Signs: sudden on-set, rapid course, high mortality (within two days sometimes), overall mort's = 30-50%
- usually when temps above 20°C
- High organic loads, algae, high temps, high density
- **transmission**: horizontal from other necrotic gills (spores)

- Signs
- disease course so fast that fish are dead before any signs, become sluggish
- later: necrotic patches on gills (much clubbing, fusion of lamellae)
- hyperplasia of gill epithelium, fusion of lamellae, massive necrosis
- Control: treatment ineffective due to rapid on-set; strict hygiene, remove dead fish, don't overfeed, fertilize, crowd

Ichthyophoniasis (Zygomycotina)

- caused by Ichthyophonus hoferi
- thick, fungus-like resting spores
- found in most cold water marine fish populations
- disease transmitted orally
- it is an obligate fish pathogen.
- life history varies from host to host

Ichythophoniasis

Ichythophoniasis

- Life cycle complicated: produces large number of endospores and resting spores in most internal organs
- Signs: hyphae are not visible externally
- gray-white lesions of organ, organ atrophy
- Control: disease transmitted orally
- Don't feed infected fish to fish (feeding raw marine fish meal to hatchery fish)

Ichythophoniasis

Aspergillo mycosis

- Ubiquitous, involved in decay
- By products of degradation of feeds = aflatoxicosis
- mortalities of at least 20% of stock
- Signs: abdominal distension, darkening of color, lethargy
- hyphae in liver, spleen, kidney, intestine, swim bladder