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Summary
Proper functioning of the mammalian testis is dependent upon an array of hormonal

messengers acting through endocrine, paracrine, and autocrine pathways. Within the

testis, the primary messengers are the gonadotrophins, follicle stimulating hormone and

luteinizing hormone, and the androgens. Abundant evidence indicates that the role of

the gonadotrophins is to maintain proper functioning of testicular somatic cells. It is the

androgens, primarily testosterone, which act through the somatic cells to regulate germ

cell differentiation. Despite extensive research in this area, little is known about the cell-

specific requirements for androgens and even less is understood about the downstream

effectors of androgen signalling. However, recent work using cell-specific ablation of

androgen receptor function has demonstrated a clear requirement for androgen signalling

at multiple, discrete time points during spermatogenesis. These models also provide

useful tools for identifying the targets of androgen receptor activity. The purpose of this

review is to provide a brief overview of recent advances in our understanding of

hormonal regulation of spermatogenesis, with an emphasis on the role of testosterone

within the testis, and to pose important questions for future research in this field.
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Gonadotrophic regulation of
spermatogenesis

Spermatogenesis in mammals requires the actions of a

complex assortment of peptide and steroid hormones, each

of which plays an important role in the normal functioning

of the seminiferous epithelium (Fig. 1 and Table 1). These

hormonal messengers are critical not only for regulation of

male germ cell development, but also for the proliferation

and function of the somatic cell types required for proper

development of the testis (Sharpe, 1994; McLachlan et al.,

2002). These include the interstitial steroidogenic Leydig

cells, whose primary function appears to be production of

testosterone (Mendis-Handagama, 1997); the myoid cells

that surround the seminiferous tubules and provide physical

support and contractile motion to these structures (Maekawa

et al., 1996); and the Sertoli cells, whose direct contact with

proliferating and differentiating germ cells within the

seminiferous tubules makes them essential for providing

both physical and nutritional support for spermatogenesis

(Griswold, 1998). Each of these cell types is a direct target for

one or more of the hormones whose actions are essential for

unimpaired male fertility.

Follicle-stimulating hormone (FSH) and luteinizing hor-

mone (LH) are glycoprotein hormones secreted by the

anterior pituitary that act directly on the testis to stimulate

somatic cell function in support of spermatogenesis. These

hormones, part of the transforming growth factor (TGF) b
superfamily of secreted growth factors, share a common

a-subunit and are distinguished by their hormone-specific
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b-subunit (Pierce & Parsons, 1981). In males, FSH receptor

expression (FSH-R) is limited to the testicular Sertoli cells

(Rannikki et al., 1995), while LH receptors (LH-R) are

found primarily in the Leydig cells, although receptor

staining is also observed in spermatogenic cells (Eblen et al.,

2001; Lei et al., 2001).

Genetic and pharmacological studies in rodents indicate

that the primary role of FSH in spermatogenesis is

stimulation of Sertoli cell proliferation during prepubertal

development (Heckert & Griswold, 2002). Sertoli cell

number largely determines the number of germ cells (Sharpe,

1994). Targeted mutations in the murine FSH-R and FSHb
subunit genes lead to dramatically reduced testis weights and

epididymal sperm numbers, although males are fertile in

both cases (Kumar et al., 1997; Dierich et al., 1998). These

results are consistent with hormone depletion-replacement

studies in human males (Matsumoto & Bremner, 1985;

Matsumoto et al., 1986), although unlike in rodents, FSH

can also rescue spermatogenesis in gonadotrophin-suppressed

men independently of T (Matsumoto et al., 1983). How-

ever, the authors of this study suggest this effect is because of

increased FSH-induced Sertoli cell sensitivity to residual T

production within the testis.

Regulation of testosterone (T) synthesis seems to be the

only indispensable function of LH within the adult testis.

Treatment of LH-R knockout mice with exogenous T is

able to fully rescue spermatogenesis in the absence of LH-R

function (Lei et al., 2001). Testosterone treatment also

confers a qualitative recovery of spermatogenesis in hpg

mice, which lack both FSH and LH because of an

inactivating mutation at the GnRH locus (Singh et al.,

1995). In the absence of T replacement, spermatogenesis is

arrested during meiosis in hpg males (Cattanach et al., 1977).

It is also clear that this effect of T replacement is not

dependent upon stimulation of other Leydig cell products by

T or LH, as T alone completely rescues spermatogenesis in

rats treated with the Leydig cell-specific cytotoxin ethane

dimethane sulphonate (EDS) (Kerr et al., 1993).

Steroid function in spermatogenesis
Testosterone and its metabolites, dihydrotestosterone

(DHT) and estradiol (E2), are collectively referred to as

the sex hormones. This is because of their primary role in the

regulation of gonadal and germ cell development in both

males and females as well as in the sexual differentiation of

males. In the male, T assumes the lead role in both

morphological development and reproductive function,

although E2 and its receptor estrogen receptor (ER)a, but
not ERb, clearly play some role in the maintenance of male

fertility. However, these effects appear to be indirect and

secondary. Disruption of Erb has no apparent effect in males,

as XY animals are morphologically normal and fertile (Krege

et al., 1998). Initial observations of Era null male mice

suggested a primary role for this gene in regulating

spermatogenesis, as animals presented with reduced fertility

and dramatically decreased epididymal sperm counts (Lubahn

et al., 1993). However, it is now clear that the primary

function of ERa in the male reproductive tract is the

regulation of luminal fluid reabsorption in the rete testis and

efferent ducts linking the testis and epididymis (Hess et al.,

2000; Lee et al., 2000). As might be expected, males

homozygous for mutations in both Era and b have a similar

phenotype to Era)/) males (Couse et al., 1999).

Targeted disruption of Cyp19, whose gene product

converts T to E2, results in progressive loss of fertility and

disruption of spermatogenesis, although males are initially

fertile. It is unclear why loss of E2 synthesis via mutation of

Cyp19 has a less severe reproductive phenotype than disrup-

tion of Era. However, it is suggestive of the existence of an as

yet unidentifiedCyp19 paralog or an E2 independent function

of ER within the Cyp19)/) male. Surprisingly, despite the

complete absence of measurable aromatase activity from

Cyp19)/) ovaries, there appears to be no difference in serum

concentrations of E2 between wild-type and Cyp19 mutant

animals of either sex (Fisher et al., 1998).

In contrast to the role of estrogens in males, androgens

and androgen receptor (AR) function are essential for proper

sexual differentiation and the maintenance of normal

spermatogenesis. AR activity is regulated by T and DHT,

whose binding initiates nuclear translocation and the

Hypothalamus

Pituitary

Testis

Myoid

Leydig

Sertoli

FSH

LH

T

T

T

T

Inhibin

GnRH

T

Figure 1. Hormonal regulation of spermatogenesis Most hormones shown
can have both positive and negative effects, either at the level of receptor
activation/desensitization or through activation and repression of down-
stream targets. GnRH, gonadotrophin releasing hormone; LH, luteinizing
hormone; FSH, follicle stimulating hormone; T, testosterone.
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transcriptional regulatory function of AR (Lindzey et al.,

1994). In humans, DHT is crucial for the development of

the male reproductive tract, although DHT plays little or no

role in the development of male mice (Walsh et al., 1974;

Mahendroo et al., 2001). As discussed above, T production is

regulated by LH, whose release from the pituitary stimulates

the steroidogenic Leydig cells in the testis (Mendis-Handa-

gama, 1997). Not surprisingly, AR itself plays an important

role in the regulation of T levels through autocrine feedback

on the Leydig cells, via endocrine effects on GnRH

production, and through inhibition of LH synthesis and

secretion by the pituitary (Amory & Bremner, 2001).

In both humans and mice, males carrying a hemizygous

null mutation in the X chromosome-linked Ar gene exhibit

complete Androgen Insensitivity Syndrome (cAIS), char-

acterized by pseudohermaphroditism and sterility (Lyon &

Hawkes, 1970; Brown, 1995). This syndrome is recognized

by the presentation of XY individuals with a stereotypically

Table 1. Animal models of hormonal regulation of spermatogenesis

Model Organism Phenotype References

Gnrhhpg/hpg Mouse Loss of LH, FSH, and T secondary to GnRH deficiency; cryptorchid;
spermatogenic arrest at pachytene, rescued by LH and T

Cattanach et al. (1977),
Singh et al. (1995)

Fsh-r)/) Mouse Loss of FSH-R signalling in Sertoli cells; decreased testis weight and
sperm output because of reduced Sertoli cell proliferation; fertile

Dierich et al. (1998)

Fshb)/) Mouse Loss of FSH; decreased testis weight and sperm output as for
Fsh-r)/) ; fertile

Kumar et al. (1997)

Lh-r)/) Mouse T deficiency because of loss of LH-R function in Leydig cells; T still
detectable in serum; failure of postnatal male sexual development,
cryptorchid; spermatogenic arrest at round spermatid stage,
rescued by T

Lei et al. (2001)

Hypo-physectomy Rat Loss of LH, FSH, and T because of removal of pituitary; regression
of spermatogenesis to meiotic arrest, round and elongating
spermatids rare; phenotype enhanced by EDS, rescued
by LH and T

Elkington & Blackshaw (1974),
Russell & Clermont (1977),
Ghosh et al. (1991),
Kerr et al. (1992),
El Shennawy et al. (1998),
Franca et al. (1998)

EDS Rat T deficiency because of selective destruction of Leydig cells;
phenotype similar to hypophysectomy; rescued by T

Sharpe et al. (1990),
Kerr et al. (1993)

Cyp19)/) Mouse E2 deficiency because of lack of aromatase enzyme; abnormal
male sexual behaviour; progressive disruption of
spermatogenesis, although fertile for several months

Fisher et al. (1998),
Robertson et al., (1999),
Robertson et al., (2001)

Era)/) Mouse Indirect effect on spermatogenesis from loss of ERa signalling
in rete testis and efferent ducts; disrupted spermatogenesis
because of lack of luminal fluid reabsorption causing increased
pressure in seminiferous tubules

Lubahn et al. (1993),
Hess et al. (2000),
Lee et al. (2000)

Erb)/) Mouse No effect on spermatogenesis because of loss of ERb Krege et al. (1998)
ArTfm/Y Mouse Null allele of Ar; pseudohermaphroditism; cryptorchid;

meiotic arrest at pachytene
Lyon & Hawkes (1970)

Arflox(ex1)neo)/Y Mouse Hypomorphic Ar allele, reduced AR levels in all tissues;
significantly elevated LH, FSH, and T levels; spermiogenic
arrest during elongating steps

Holdcraft & Braun (2004)

Arflox(ex1)neo)/Y;
Amh-cre

Mouse Sertoli cell-specific ablation of AR function, hypomorphic for AR
in all other cell types; spermiogenic arrest at the transition
from round to elongating spermatids

Holdcraft & Braun (2004)

SCARKO Mouse Sertoli cell-specific ablation of AR function; meiosis is arrested
during pachytene with corresponding reduction in testis mass;
males otherwise indistinguishable from wild-type

De Gendt et al. (2004)

S-AR)/y Mouse Sertoli cell-specific ablation of AR function; decreased testis mass
with meiotic arrest at diplotene; hypotesteronemic with elevated
serum LH level

Chang et al. (2004)
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female external appearance, usually diagnosed at puberty in

connection with primary amenorrhoea (Brown, 1995). The

vagina is incompletely formed and ends abruptly, forming a

blunt-ended pouch. Small, abdominally positioned testes are

the only internal reproductive organs present with sperma-

togenesis blocked early in meiosis and some seminiferous

tubules having depletion of spermatogonia (Lyon & Hawkes,

1970; Vanha-Perttula et al., 1970).

While the phenotype of cAIS rodents and patients clearly

demonstrates the crucial requirement for AR in male

development, the suitability of AIS as a model for studying

the spermatogenic function of Ar is poor. Testicular descent

fails in mice with cAIS, and the spermatogenic phenotype

mimics that of cryptorchidism in an otherwise normal male,

namely early meiotic arrest (Lyon & Hawkes, 1970). Thus it

is impossible to discern the contribution to the phenotype of

loss of AR function separate from that because of the

abdominal positioning of the testes.

Mice homozygous for a mutation in the gonadotrophin

releasing hormone gene (Gnrhhpg/hpg), which have dramati-

cally lowered serum testosterone levels (Singh et al., 1995),

present a testicular phenotype similar to cAIS (Cattanach

et al., 1977). Spermatogenesis in these animals can be

qualitatively rescued by androgen replacement therapy

(Singh et al., 1995). This occurs in the absence of appreciable

levels of LH and FSH. Further, FSH alone fails to

significantly rescue spermatogenesis beyond the meiotic

stages (Singh & Handelsman, 1996; Haywood et al., 2003),

providing further support for the contention that T and/or

DHT is the major hormonal regulator of spermatogenesis.

Interestingly, one study has shown that oestrogen supple-

mentation in Gnrhhpg/hpg males may also rescue spermato-

genesis (Ebling et al., 2000). However, the mechanism by

which this might occur is unclear.

An absolute requirement for androgens in spermatogenesis

is further supported by classic hormone withdrawal experi-

ments in rats. Removal of androgens from adult rats by

hypophysectomy (Hx) leads to an acute, stage-specific

regression of the seminiferous epithelium (Russell &

Clermont, 1977; Ghosh et al., 1991). Elimination of T is

manifested initially as loss of mid-stage round spermatids and

mature, elongated spermatozoa, indicative of an affect of

androgens on spermiation and the transition from round to

elongating steps of spermiogenesis. Mid-stage meiotic sper-

matocytes also undergo an immediate and obvious regression.

After long term Hx and elimination of residual testosterone

activity by flutamide or EDS treatment, spermatogenesis

rarely proceeds beyond meiosis, with very few round

spermatids observed and elongated spermatids nearly non-

existent (Kerr et al., 1992; Franca et al., 1998). As with Gnrh

null mice, androgen or LH replacement leads to qualitative

recovery of spermatogenesis while FSH has little direct

stimulatory effect (Elkington & Blackshaw, 1974; Russell &

Clermont, 1977; El Shennawy et al., 1998). Similar results are

seen in response to suppression ofGnrh activity (Szende et al.,

1990), and destruction of Leydig cells with the Leydig-

specific cytotoxin EDS (Sharpe et al., 1990; Kerr et al., 1993).

While androgens have a positive regulatory influence on

differentiating germ cells, there is a well-established negative

effect of androgens on the differentiation of spermatogonial

stem cells. This observation stems from work aimed at

understanding the prolonged suppression of spermatogenesis

in men following radiation or chemotherapy treatment for

cancer (Meistrich, 1998). Following treatment, spermato-

gonia are present, but fail to proliferate or differentiate. It was

found that in irradiated rats, stimulation of spermatogenesis

occurred following treatment with GnRH agonist or T,

which both act to suppress intratesticular T concentration.

This work was later extended to show that a GnRH

antagonist stimulates spermatogonial proliferation and inhib-

its apoptosis following irradiation (Shuttlesworth et al.,

2000). In addition, recent studies have shown that this effect

is because of inhibition of androgen function, as the

androgen antagonist flutamide stimulates, while testosterone

inhibits, spermatogonial proliferation and differentiation

(Shetty et al., 2000, 2002). A similar effect has been

demonstrated in juvenile spermatogonial depletion ( jsd )

mice, whose germ cells regress to a spermatogonia-only

phenotype following the first wave of spermatogenesis.

Stimulation of spermatogonial proliferation and differenti-

ation, along with completion of spermatogenesis, is observed

in the testes of these animals following treatment with

GnRH antagonist or flutamide. The stimulatory action of

GnRH antagonist is prevented by co-administration of T,

while flutamide reverses the repressive effect of testosterone

(Shetty et al., 2001).

In the testis, AR protein is expressed in the somatic

Leydig, myoid, and Sertoli cells (Bremner et al., 1994;

Vornberger et al., 1994; Suarez-Quian et al., 1999; Zhou

et al., 2002). Some groups have reported the presence of AR

within mouse fetal and postnatal germ, human spermato-

gonia, and rat spermatids (Kimura et al., 1993; Vornberger

et al., 1994; Zhou et al., 2002). However, it is clear from

work with AR-null chimeric mice and from germ cell

transplantation experiments that AR is not required in male

germ cells for normal fertility (Lyon et al., 1975; Johnston

et al., 2001). While expression in Leydig and myoid cells is

continuous, Sertoli cell expression of AR occurs in a stage

dependent fashion. Although it is apparent that other factors

must be involved to confer stage-specific expression in the

complex environment of the testis, hormone withdrawal-

replacement experiments have shown that testosterone can

support stage-specific Sertoli cell AR expression (Bremner

et al., 1994; Zhu et al., 2000). In addition, a DHT responsive

promoter has been defined upstream of the Ar gene itself,

providing further support for androgen/AR auto-regulation

of testicular AR expression (Grossmann et al., 1994).

Interestingly, stages VII–VIII, during which AR expression

in Sertoli cells is highest, correspond directly with those most

acutely affected by androgen withdrawal (Russell &
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Clermont, 1977; Ghosh et al., 1991; Kerr et al., 1993). It is

also during these stages where androgens have been shown

to stimulate a stage-specific increase in overall protein

secretion by the seminiferous tubule, including the induction

of several specific androgen-regulated proteins (McKinnell &

Sharpe, 1992).

Sertoli cells are also the only somatic cell type in direct

contact with differentiating germ cells. They provide both

physical and nutritional support for spermatogenesis, which

occurs in the intercellular spaces between Sertoli cells

(Griswold, 1998). Adhesion between germ cells and Sertoli

cells may be androgen dependent, as testosterone withdrawal

leads not only to retention and phagocytosis of mature,

elongated spermatids, but also to the premature release of

round spermatids (Russell & Clermont, 1977; Kerr et al.,

1993; O’Donnell et al., 1996). Taken together, these

observations have led to the general belief that Sertoli cells

are the primary mediators of AR regulation of spermato-

genesis.

To examine the consequences of loss AR function

specifically in Sertoli cells, several groups have recently

created conditional alleles of the Ar gene, and used them to

generate Sertoli cell-specific ablation of Ar (Chang et al.,

2004; De Gendt et al., 2004; Holdcraft & Braun, 2004). The

results of theses studies suggest there are multiple AR-

dependent steps during spermatogenesis. In the first study, a

conditional allele of Ar was created by flanking exon 2 with

loxP sites (De Gendt et al., 2004). In the absence of Cre, the

allele has full wild-type AR function. However, when

crossed to mice expressing the Cre recombinase driven by

the Sertoli cell-specific anti-Müllerian hormone (Amh)

promoter, the germ cells undergo meiotic arrest, predom-

inantly during the pachytene stage, although some diplotene

spermatocytes, secondary spermatocytes, and round sperm-

atids are produced. Other than sterility, the males appear to

be normal with fully descended testes, and a grossly normal

appearance.

In a second study, a hypomorphic conditional allele of Ar

was created by introducing a neomycin-resistance gene

cassette in the first intron of Ar, and flanking the first exon of

Ar with inverted loxP sites (Holdcraft & Braun, 2004). The

hypomorphic allele, which results in reduced levels the wild-

type Ar mRNA in all AR-expressing cells, causes severe

oligospermia, despite fully descended testes, indicating

maximal sensitivity to loss of AR function during spermatid

elongation. The males also exhibit severe alterations in serum

hormone levels, with significant increases in LH, FSH, and T

concentrations. Crossing the allele to an Amh-Cre line causes

a more severe spermatogenic phenotype than hypomor-

phism alone. Although the males have no apparent defect in

meiosis, the germ cells are defective in making the transition

from round to elongating spermatids, as indicated by a

significant reduction in elongated spermatids, and the

continued presence of round spermatids in stage IX tubules.

The elevated hormone levels in mice carrying the hypo-

morphic allele may explain the apparently contradictory

results between the two studies, as elevated T and/or

intratesticular E2 levels may be suppressing meiotic arrest.

While serum E2 levels are normal in the males, it is possible

that elevated intratesticular E2 levels, because of increased

conversion of supraphysiological T levels, suppress the

meiotic arrest phenotype. In support of this possibility, one

previous study of Gnrh-null males has shown that E2 can

support qualitatively normal spermatogenesis in the absence

of testosterone (Ebling et al., 2000). Alternatively, lack of

meiotic arrest may be the result of residual AR activity in a

subset of Sertoli cells because of incomplete inversion of the

first exon. This latter hypothesis is consistent with the

phenotype of LHb mice (R. Kumar, personnel communi-

cation), and LH receptor-null mice (Lei et al., 2001), in

which a round spermatid arrest is observed as a consequence

of basal levels of androgen action in the absence of LH

signalling (Lei et al., 2001).

A third conditional Ar allele has recently been reported

that also has the second exon flanked by loxP sites (Chang

et al., 2004). Recombination-induced deletion of the allele

in Sertoli cells, again by crossing to Amh-Cre mice, also

causes azoospermia. In this model spermatogenesis is

primarily blocked at the diplotene spermatocytes stage,

instead of during pachytene (De Gendt et al., 2004). It is

unclear why the two alleles have different meiotic arrest

phenotypes, although it could be because of the genetic

backgrounds of the mice, the efficiency of recombination, or

changes in steroid levels. The mice also exhibit hypotestos-

teronemia, while at the same time displaying significantly

elevated serum LH levels. The authors suggest that the

decreased concentration of serum T is because of upregu-

lation of anti-Müllerian hormone expression by Sertoli cells,

a conclusion supported by their own observation of elevated

Amh mRNA in these animals, as well as by studies showing

lowered serum T, Leydig cell hypoplasia, and inhibition of

steroidogenesis, all induced by AMH (Behringer et al., 1990;

Lyet et al., 1995; Fynn-Thompson et al., 2003).

Taken together, the observations from these studies reveal

a differential requirement for AR activity in Sertoli cells for

at least three steps of spermatogenesis. AR is first required for

progression through meiosis I, again during the transition

from the round to elongating steps of spermatogenesis, and

finally during the terminal stages of spermiogenesis. Surpris-

ingly, it is the meiotic requirement for AR function that

appears to be least sensitive to absolute levels of AR activity,

as evidenced by the differential effects on meiosis observed

between these models of Sertoli cell AR ablation. Whether

AR function in Sertoli cells also affects steroidogenesis

remains an open question.

Future studies
Many important questions remain to be answered

regarding the androgenic regulation of male reproduction.
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As discussed above, little is known about the phenomenon of

stage-specific regulation of Sertoli cell AR expression

beyond a presumptive role for androgens and for AR itself.

Identification of potential co-activators or repressors that act

in conjunction with AR at these stages, or the discovery of

other transcription factors that regulate stage-specific AR

expression, would provide insight into the important

functional differences between Sertoli cells during the

different stages of spermatogenesis. It would also be of

interest to determine the role that the specific germ cell

complement of tubules at different stages plays in the

regulation of Sertoli cell function. Additionally, the discov-

ery of novel factors that regulate AR expression or unique

targets of AR transcriptional regulation within Sertoli cells

would provide intriguing candidates for future male contra-

ceptive design.

While androgens, acting through AR, are clearly essential

for normal spermatogenesis, the crucial downstream targets

of AR activation in the testis remain elusive. Androgens may

also mediate effects in Sertoli cells via a non-classical receptor

pathway, as androgens have been shown to activate signalling

cascades in multiple cell types independently of a direct

androgen-AR-DNA interaction (Walker, 2003). Few AR

responsive genes have been defined in the testis, and none of

these have been demonstrated to play a role in spermato-

genesis. The homeobox transcription factor PEM has been

shown to be positively regulated by androgens in Sertoli cells

specifically during the androgen-sensitive stages of sperma-

togenesis (Lindsey & Wilkinson, 1996). However, targeted

disruption of the Pem gene in the mouse produces no

discernible phenotype (Pitman et al., 1998). Overexpression

of PEM in Sertoli cells was shown to increase the frequency

of DNA strand breaks in adjacent germ cells, but again no

effect was observed on the reproductive fitness of these males

(Wayne et al., 2002). The advent of microarray technology

now allows for the rapid identification of androgen

responsive genes by comparing RNA levels from the testes

of appropriate mutant and control mice. One recent study

has validated this approach using androgen-replacement in

Gnrh-null males (Sadate-Ngatchou et al., 2004), suggesting

that AR is predominantly a suppressor rather than activator

of transcription. The generation of conditional Ar alleles

provides useful tools to further investigate this question.

These models will also be useful for investigating the

potential role of AR in Leydig and peritubular myoid cells.

The proximity of myoid cells to the spermatogonial stem

cells, presents the possibility that AR may regulate some

aspect of stem cell proliferation or differentiation via this cell

type. This is a particularly intriguing possibility in the

context of androgenic suppression of stem cell differentiation

and spermatogenic recovery in jsd males and following

chemotherapeutic insult. Similarly, conditional removal of

AR function if Leydig cells will allow dissection of the role

of AR in the maturation of Leydig cells during puberty

(O’Shaughnessy et al., 2002), and in feedback regulation of

steroidogenesis in the adult.

Finally, a long-term goal in the field should be the

delineation of AR function as having either an instructive,

supportive, or dual role in the differentiation and develop-

ment of male germ cells. To date, it is unclear whether the

ultimate outcome of AR function is to produce a healthy

environment within which germ cells can thrive, or whether

the downstream effect of AR activity is the generation of a

signal(s) that impinges directly upon germ cell migration,

differentiation and survival. The development of these new

genetic models of Ar regulation of spermatogenesis might

provide the tools necessary to answer this question and many

others in the fields of androgen and Ar biology.
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