Essential Amino Acid (EAA)

- It cant be synthesized in the body and therefore need to be supplied through diet
- Proper growth and maintenance of the individual
- Ex. Arginine, Valine, Histidine, Isoleucine, leucine, lysine, Methionine, Phenylalanine, Threonine, Tryphtophan
- **Mnemonics** : AV hill, MP TT
- Semi-essential amino acid: Adults can synthesize 2 amino acid and not by growing children. Ex: Arginine and histidine
- So in all 8 are essential and 2 semi essential

PEPTIDES

- Two AA covalently joined through a substituted amide linkage – peptide bond
- Dehydration removal of H₂O
 - OH⁻ Carboxyl group of one AA
 - H⁺ from amino group of another AA
- Example of a condensation reaction – common biological reactions

POLYPEPTIDES

- Two AA reacts to form dipeptides, Three AA can be joined by two peptide bonds to form a tripeptide and so on.
- **Oligopeptide:** When a few AA are joined by various peptide linkage
- When many amino acids are joined, the product is called a polypeptide.
- Proteins may have thousands of amino acid residues

Tetrapeptide

Structures of Protein

- Proteins catalyze metabolic reactions, power cellular motion, and forms structural integrity to hair, bones, tendons and teeth
- Human proteins therefore reflects the sophistication and diversity of their biologic roles
- Therefore maturation of a newly synthesized polypeptide into a biologically functional protein
 - Requires folding into a specific three-dimensional arrangement, or conformation

Structures of Protein

- During maturation, posttranslational modifications may add new chemical groups or remove it transiently
- Genetic or nutritional deficiencies that impede protein maturation are deleterious to health.
- Ex: Creutzfeldt Jakob disease, Scrapie, Alzheimer's disease, and bovine spongiform encephalopathy
- **Scurvy** nutritional deficiency that impairs protein maturation.

FOUR ORDERS OF PROTEIN STRUCTURE

- The modular nature of protein synthesis and folding are embodied in the concept of orders of protein structure:
 - Primary structure: linking amino acid residues in a polypeptide chain
 - Secondary structure: stable arrangements of amino acid residues giving rise to recurring structural patterns into geometrically ordered units; twisting resulting in α-helix or pleated
 - Tertiary structure: the three-dimensional assembly of secondary structural units to form larger functional units
 - Quaternary structure: It's the arrangement in space of protein having two or more polypeptide subunits

FOUR ORDERS OF PROTEIN STRUCTURE

PRIMARY STRUCTURE

- Primary (1°) structure
- Each protein has a distinctive number and sequence of amino acid residues
- These determines how it folds up into a unique three-dimensional structure
- This in turn determines the function of the protein

Bovine Pancreatic Ribonuclease A

SECONDARY STRUCTURE

2° structures

- Polypeptide chain can arrange itself into characteristic helical or pleated segments
 - Given by Pauling and Corey
 - hydrogen bonding interactions between adjacent amino acid residues
- Free rotation is possible about only two of the three covalent bonds of the polypeptide backbone
 - α-carbon (Cα) to the carbonyl carbon (Co) bond
 - Cα to nitrogen bond

SECONDARY STRUCTURE : Alpha Helix

- α helix is twisted by an equal amount about each αcarbon
- With a phi angle of approx. -57⁰ and a psi angle of approx - 47⁰
- Complete turn of the helix contains an average of 3.6 aminoacyl residues
- Distance it rises per turn (pitch) is
 0.54 nm
- R groups of each aminoacyl residue in an α helix face outward

View down the axis of an α helix

www.facebook.com/notesdental

SECONDARY STRUCTURE : Alpha Helix

- Stability of an α helix arises primarily from hydrogen bonds
- Between the oxygen of carbonyl and the hydrogen atom of nitrogen of the 4th residue down the polypeptide chain
- Supplemented by van der Waals interactions

SECONDARY STRUCTURE : Beta Sheet

- Extended conformation of polypeptide chains
- Viewed edge-on, form a zigzag or pleated pattern in which the R groups of adjacent residues point in opposite directions
- Stability from hydrogen bonds between the carbonyl oxygens and amide hydrogens of peptide bonds - adjacent segments of β sheet

SECONDARY STRUCTURE : Beta Sheet

- **Parallel:**polypeptide chain proceed in the same direction amino to carboxyl
- Antiparallel: they proceed in opposite directions

Loops & Bends

- Short segments of amino acids that join two units of secondary structure – 3-4 units
- Globular proteins compact folded structure
- Nearly one-third of the amino acid residues are in turns or loops where the polypeptide chain reverses direction
- The structure is a 180[°] turn involving four amino acid residues

Loops & Bends

- Carbonyl oxygen of the first residue forms a hydrogen bond with the amino-group hydrogen of the fourth residue
- The peptide groups of the central two residues do not participate in any hydrogen bonding
- Gly (small and flexible) and Pro (readily assume the cis configuration) residues often occur in turns

Loops & Bends

- Generally found on the surface of a protein
- y -turn less common is the, a three residue turn with a hydrogen bond between the first and third residues.

Tertiary Structure

- Entire 3-dimensional conformation of a polypeptide
- Beside H bond, sulfide bond (-S-S), ionic interaction and hydrophobic bond
- Consists of helices, sheets, bends, turns, and loops— assemble to form **domains**
- Domain is a section of protein structure perform a particular chemical or physical task
 - binding of a substrate or other ligand
 - anchor a protein to a membrane
 - interact with a regulatory molecules

Single domain:triose phosphate isomerase

- Enzyme triose phosphate isomerase complexed with the substrate analog 2-phosphoglycerate (red)
- Elegant and symmetrical arrangement of alternating β sheets (light blue) and a helices (green), with the β sheets forming a β-barrel core surrounded by the helices

Tertiary Structure

- Single domain triose phosphate isomerase, myoglobin
- **Two domains** lactate dehydrogenase, quinone oxidoreductase
- A polypeptides with 200 amino acids normally consists of two or more domains

Tetrameric enzyme lactate dehydrogenase with the substrates NaDh (red) and pyruvate (blue) bound

Quaternary Structures

- Majority of proteins are composed of single polypeptide chains
- Some of protein consists of 2 or more polypeptide chain which may be identical or different
- Such protein are termed as **oligomers** and poses quaternary structures.
- When it consists of 2 polypeptides dimers
- Homodimers contain two copies of the same polypeptide chain, while in a heterodimer the polypeptides differ