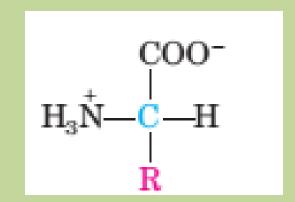
Introduction : Protein

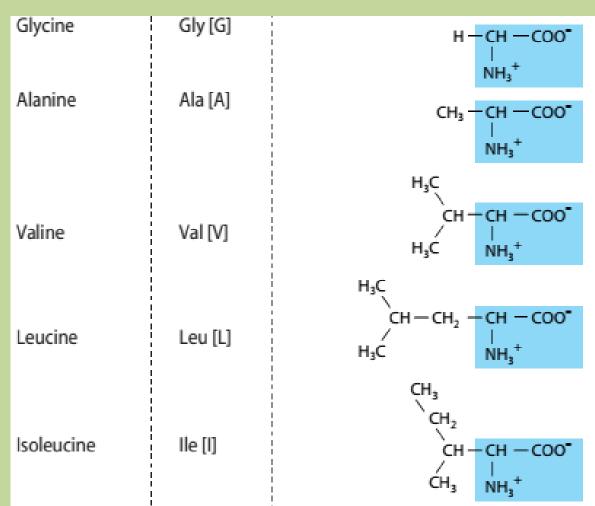

- Most abundant organic molecules of the living system
- Its fundamental basis of structures and function of life.
- 50 % of dry weight of every cell
- It's a polymer of L α -amino acids.
- 300 different amino acids occur in nature only 20 as standard amino acids.
- 21st amino acid added Selenocysteine

BIOMEDICAL IMPORTANCE

- Beside forming long chain polypeptide unit of protein, amino acids have additional functions
 - nerve transmission
 - biosynthesis of porphyrins, purines, pyrimidines, and urea
 - Short polymers of AA peptides
 - Neuroendocrine system hormones, hormone releasing factors, neuromodulators, or neurotransmitters
 - Microorganisms : D- and L- α -amino acids
 - Therapeutic value: antibiotics bacitracin and gramicidin A and the antitumor agent bleomycin
 - Some may be toxic

Amino Acid

- It's a group of organic compounds containing two functional groups – amino (-NH2) and carboxyl group (-COOH)
- Its also called Zwitter Ion– both acidic and basic functional group (dipolar ion)

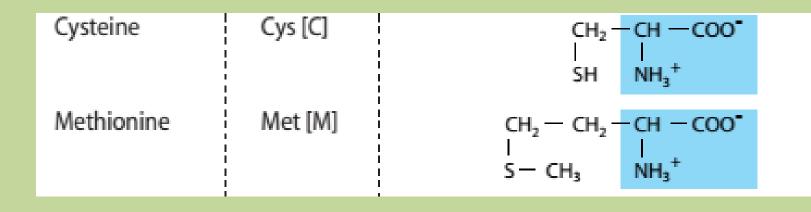

- This property is known as amphoteric and are often called ampholytes
- Neither humans nor any other higher animals can synthesize 10 of the 20 common amino acids – Essential Amino acids

Classification

- Amino acid has been classified under various ways
 - Structure
 - With side chain containing Aliphatic Side Chains
 - With Side Chains Containing Hydroxylic (OH) Groups
 - With Side Chains Containing Sulfur Atoms
 - With Side Chains Containing Acidic Groups or Their Amides
 - With Side Chains Containing **Basic Groups**
 - Containing Aromatic Rings
 - Imino Acid
 - Polarity
 - Non Polar
 - Polar
 - Nutritional
 - Essential and Non-essential

Side chain containing Aliphatic Side Chains

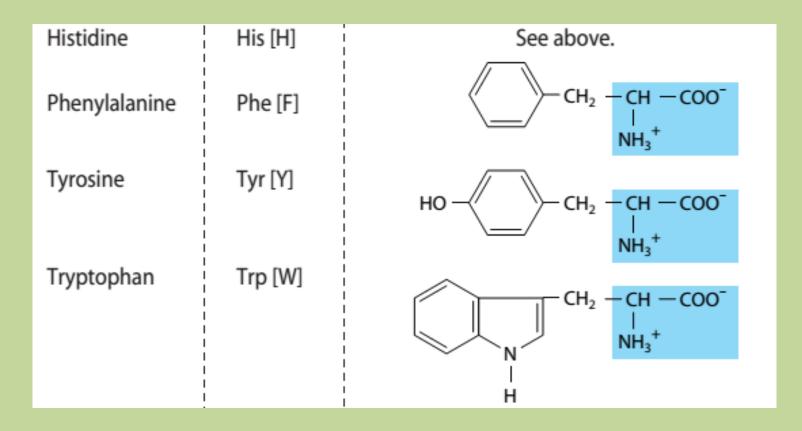
- Simplest amino acids
- Contains
 branched
 chain of
 hydrocarbons



www.facebook.com/notesdental

Side Chains Containing Hydroxylic (OH) Groups

Side Chains Containing Sulfur Atoms


Side Chains Containing Acidic Groups or Their Amides

Aspartic acid	Asp [D]	$OOC - CH_2 - CH - COO^{-1}$
Asparagine	Asn [N]	$\begin{array}{c} H_2 N - C - C H_2 - C H - C O O^{-} \\ H_2 & H_3^{+} \\ O & N H_3^{+} \end{array}$
Glutamic acid	Glu [E]	$^{-}OOC - CH_2 - CH_2 - CH - COO^{-}$
Glutamine	Gln [Q]	$\begin{array}{c} H_2 N - C - C H_2 - C H_2 - C H - C O O^{-} \\ H \\ O \\ N H_3^+ \end{array}$

Side Chains Containing Basic Groups

Arginine	Arg [R]	$H - N - CH_2 - CH_2 - CH_2 - CH_2 - CH - COO^{-1}$ $C = NH_2^{+}$ NH_3^{+}
	 	NH ₂
Lysine	Lys [K]	$\begin{array}{c} CH_2 - CH_2 - CH_2 - CH_2 - CH - COO^-\\ I\\ NH_3^+\\ NH_3^+ \\ \end{array}$
Histidine	His [H]	$HN N NH_3^+$

Containing Aromatic Rings

Imino Acid

Classification : Polarity

- Non-polar group : No charge on R group. Ex: Alanine, leucine. Isoleucine, valine, methionine, phenylalanine, tryptophan and proline
- Polar group
 - No charge on R : no charge on R but posses group such as hydroxyl, sulfhydryl and amide. Ex: *Glycine*, *serine*, *threonine*, *cysteine*, *glutamine*, *asparigine* and *tyrsoine*
 - Positive R- Lysine, arginine, and histidine
 - Negative R asparatic acid and glutamic acid