

ANIMAL-LIKE PROTISTS THE PROTOZOA

Classification Of Protozoa

► There are 7 phylums in Sub-Kingdom Protozoa:

Phylum Sarcomastigophora

INSHA ISLAM

PHYLUM SARCOMASTIGOPHORA

General Characteristics:

- ▶ Possesses flagella, pseudopodia or both for locomotion.
- Largest protozoan phylum.
- ▶ 18000 described species.
- ► Unicellular or colonial.
- ▶ Autotrophic, saprozoic or heterotrophic mode of nutrition.
- ► Single type of nucleus.
- ► Asexual and sexual reproduction but sexual reproduction is common

Classification Of Phylum Sarcomastigophora

Sub-Phylum	Sub-Phylum	Sub-Phylum
Mastigophora	Sarcodina	Opalinata
ClassPhytomastigophoraClass Zoomastigophora	Superclass RhizopodaSuperclass Actinopoda	

Sub-Phylum Mastigophora

- ▶ Flagellar locomotion.
- ► Two-dimensional whiplike or helical movements.
- ► Push or pull the protozoan through aquatic medium.

Class phytomastigophora

- ▶ Flagellated plant-like protists.
- ▶ Possesses chloroplasts.
- ► Autotrophic or heterotrophic.
- ► Type Examples:
- Dinoflagellates.
- * Euglena.
- Volvox.

Dinoflagellates

- Two flagellum; one is transverse and the other is trailing flagellum.
- ► Second largest producers.
- ➤ Xanthophyll in addition to chlorophyll pigment.
- ► Red tides(water blooms).

Euglena

- Chloroplast having pyrenoid
- ► Autotrophic in light
- ► Heterotrophic in dark
- ► Photoreceptor (stigma)
- ► Reproduction by asexually

Volvox

- ► Colonial flagellate.
- ▶ Reproduction.
- i. Asexual.
- ii. Sexual(microgametes and macrogametes).

Class zoomastigophora

MUSSARAT FAREED

Class zoomastigophora

- ► Lack chloroplast
- ► Heterotrophic
- Parasites of humans
- Colorless flagellates protozoans
- ► Type examples: Trypanosoma

Trypanosoma brucei subspecies

T.B gambiense

T.B. brucei

Life cycle of trypanosoma

Trypanosoma brucei life cycle

- Cause sleeping sickness in African
- ► Tsetse fly bite infacted human
- ► Took trypanosoma parasite
- ► Asexually multiply in gut of fly
- ► For 10 days
- ► Transform salivery gland
- ▶ Bite vertebrate host
- Multiply asexually in new host
- Causes serious symptoms
- ► Again tsetse fly bite

Sub-phylum sarcodina

- ► Pseudopodia and Amoeboid locomotion.
- Locomotion and feeding by pseudopodia
- ▶ False feet

Types of pseudopodia

- a) Lobopodia
- b) Filopodia
- c) Reticulopodia
- d) Axopodia

Types of Pseudopodia

Lobopodia

Pocesses ectoplasm and endoploasm

Filopodia

► Containing ectoplasm only

Feeding by conveyor belt fashion

Types of Pseudopodia

Reticulopodia

- ▶ Branched & rejoin.
- ▶ Net_ like extensions.

Axopodia

- ► Supported by central axis.
- ▶ Adhesive & moveable.

Superclass Rhizopodia Class Lobosea

Amoeba

- ► Naked.
- ▶ Feeding by phagocytosis.
- ▶ Binary fission.

Entamoeba histolytica

- ► Causes dysentery.
- ▶ inflammation & ulceration.
- ► In lower intestine

Phylum Apicomplexa

NIMRA SALEEM

PHYLUM APICOMPLEXA

- ▶ Parasitic mode of nutrition.
- ► Apical complex for penetrating the host cells.
- ► Single type of nucleus.
- ▶ No cilia or flagella; except in certain reproductive stages.
- ► Life cycle involves ASEXUAL (Schizogony, sporogony) and SEXUAL (Gametogony) phases.

Class Sporozoea

- Class name derived from a resistant spore or oocyst.
- ► Mostly intracellular parasites.
- ► Cause a variety of diseases in domestic animals and humans.
- ► Involves sexual reproduction.
- ► Type Examples:
- Plasmodium
- Coccidian
- Cryptosporidium
- Toxoplasma

Generalized Life Cycle Of Apicomplexans

Plasmodium

- Causes malaria in humans (Anopheles mosquito as vector)
- ► Possesses long history during crusades period.
- Life cycle involves vertebrates and mosquito as the hosts.

Common Species of Plasmodium

P.vivax

P.falciparum

P.malariae

P.ovale

Life Cycle of Plasmodium

Coccideans

- ► Parasites in poultry, sheep, cattle and rabbits.
- Two genera; Isospora and Eimeria are particularly poultry parasites.
- ► US poultry suffered a loss of \$35 million.
- Cryptosporidium cause chronic diarrhea in AIDS patients.

Toxoplasma

- ► Causes disease in mammals.
- ► Sexual reproduction occurred in cats.
- Infections occur when oocysts are ingested from cats feces or poorly cooked meat.
- ► Congenital toxoplasmosis; major cause of stillbirths and spontaneous abortions.
- ► Preventive measures: staying away from pet's sandboxes and don't eat poorly cooked pork.

Some other phylum of animal-like protists

PHYLUM LABYRINTHOMORPHA

- ► Smallest phylum.
- ▶ Spindle shaped, non-amoeboid, vegetative cells.
- ▶ Use gliding motion in mucous tracks.
- ▶ Most of them are marine.
- ▶ Saprozoic or parasitic in mode of nutrition.
- Feed on algae and sea grasses.
- ► Type Example:

Labyrinthula

Labyrinthula

- ► Killed most of "eel grass" on Atlantic coast.
- Starving many ducks that feed on grass.
- Mostly parasitic, commensalistics or mutualistics.
- ► Absorb nutrients with endoplasmic membrane and network of filaments.

PHULUM MICROSPORA

- Commonly called microsporidia.
- ► Small obligatory intracellular parasites.
- ► Some species parasitize beneficial insects.
- ► Have extremely reduced cell structure.
- Biological control agents.
- Form polar tubes or polar filaments.
- ► Type example:

Nosema bombicus and N.apis

Type examples:

Nosema bombicus

- ► Microsporidian.
- ▶ Parasitize silkworms.
- ► Cause disease called **pebrine**.

N.apis

- ▶ Microsporidian.
- ► Cause dysentery in honey bees.
- ▶ Disease called **nosemosis**.

PHYLUM ACETOSPORA

- ▶ Relatively small phylum.
- ▶ Obligate extracellular parasites.
- Lack polar caps or polar filaments.
- ▶ Parasite both in vertebrates or invertebrates.
- ► Spores are unicellular / multicellular.
- ▶ Spores are within sporoplasm.
- ► Type example:

Haplosporidium nelsoni

- ▶ Pathogen of oyster.
- ► Cause **MSX**(multinuclear sphere X).
- ► MSX cause high mortality in past.
- ► Moratality rates higher in summer.
- ► MSX reduced feeding rate of infected oyster.

PHULUM MYXOZOA

- ► Commonly called myxosporeans.
- ► Most abundant parasite in nature.
- ▶ Obligatory extracellular parasites.
- ▶ Found in fresh water and marine.
- Parasites of amphibians and reptiles.
- ► Spores with one to six pollar filaments.
- ► Type example:

Myxosoma cerebralis

Myxosoma cerebralis

- Cause whirling and trumbling disease in trout and salmon.
- ► Infect nervous system and auditory organs.
- ► Have two-host life cycle.
- ► Spores are within polar filaments.

Phylum ciliophora

Phylum Ciliophora

- ▶ Relatively rigid pellicle and more or less fixed shape.
- ▶ Distinct cytostome.
- ► Cilia for locomotion and generation of feeding currents in water.
- ▶ Dimorphic nuclei typically a large macronuclus and one or more smaller micronuclei.
- ► Type example: paramecium.

Paramecium

- Cilia.
- ▶ Heterotrophic .
- cytostome for feeding.
- ► Two types of nucleus.
- Micronucleus and macronucleus.
- ► Reproduction(sexual & asexual).
- ▶ Asexually by budding.
- Sexually by conjugation

Cilia and other pellicular structure

- Cillia on surface.
- ► Locomotary organ.
- ▶ Basal bodies.
- ► Cilia join to form cirri.
- ► Trichocysts for protection.

Nutrition

- ► Ciliated oral groove.
- ► Food particles towards cytopharynx.
- ► Food vacule forms.
- Circulate in endoplasm.
- Prey upon other protists.
- ▶ Didinium feeds on paramecium.
- ► Suctorians are sessile.

Genetic control and reproduction

- ► Ciliates have two kind of nuclei.
- ► A large is macronuclei.
- ▶ Regulates metabolic activities.
- Micronuclei genetic material.
- Asexual reproduction by
- ▶ Budding & binary fission.
- Sexual by conjugation.

Conjugation in ciliates

- ▶ Bring mating types together.
- ► Meiosis.
- ▶ Four haploid pronuclei.
- ► Three degenerate.
- ▶ Mitosis &fusion of pronuclei.
- ► Conjugants separate.
- ▶ Nuclear division.
- ► Cytoplasmic division.

