3.3 Roots of an equation

In physics, we often encounter situations 1n which we need to find the possible
value of x that ensures the equation f(x) = 0. where f(x) can either be an explicit
or an implicit function of x. If such & value exists, we call it a root or zero of the
equation. In this section, we will discuss only single-vanable problems and leave
the discussion of multivanable cases to Chapter 5, after we have gained some
basic knowledge of matrix operations.

Bisection method

If we know that there 1s a root x = xr m the region [a, b] for f(x) = 0, we can
use the bisection method to find 1t within a required accuracy. The bisection
method is the most intuitive method, and the 1dea 1s very simple. Because there is
a root in the region, f(a) f(b) < (1. We can divide the region into two equal parts
with xy = (a + £)/2. Then we have erther f(a) fixg) < 0 or fixg)f(b) < (.
If fla)f(xy) <0, the next trial value is x; = (@ + xp)/2; otherwise, x; =
(xg + b)/2. This procedure 1s repeated until the improvement on x; or | f{xy)] 1s
less than the given tolerance 4.

Let us take f(x) = " Inx — x* as an example to illustrate how the biscc-
tion method works. We know that when x = 1, f(x) = —| and when x = 2.
fix)=¢e’In2 — 4 = |. So there 1s at least one value x, € [1, 2] that would make
f(x;} = 0. In the neighborhood of x,, we have f(x; + 4) = Oand f(x; — 3) < (.



The Newton method

This method 1s based on lincar approximation of & smooth function around its
root. We can formally expand the function f{x;) = 0 the neighborhood of the
root x; through the Taylor expansion

)= fxy+x, - x)(x)+--- =0, (3.47)

where x can be viewed as a tnal value for the root of x; at the kth step and the
approximate value of the next step xy,; can be denved from

Flxin) = flxe) + (ier — xa) () =0, (3.48)

that is
Xa =X+ A =x— ], (3.49)
with £ =0.1,.... Here we have used the notation fi = f(xx). The above

iterative scheme 1s known as the Newton method. It is also referred to as the
Newton-Raphson method m the Iterature. The above equation is equivalent to
approximating the root by drawing a tangent to the curve at the point x; and taking
X} ;1 as the tangent’s intercept on the x axis. This step 1s repeated toward the root,
as illustrated in Fig. 3.1. To see how this method works m a program, we again
take the function f(x) = ¢ Inx — x? as an example. The following program is
an mplementation of the Newton method.



Secant method

In many cases. especially when ((x) has an implicit dependence on x, an analytic
expression for the first-order denivative needed in the Newton method may not
exist or may be very difficult to obtain. We have to find an alternative scheme to
achieve a similar algorithm. One way to do this is to replace /] in Eq. (3.49) wath
the two-point formula for the first-order denvative, which gives

Xpa =% — 0 X VAN S - i) (3.50)

This nterative scheme is commonly known as the secant method, or the discrete
Newton method. The disadvantage of the method s that we need two points m
order to start the search process. The advantage of the method 1s that f{x) can now
be implicitly given without the need for the first-order denvative. We can still use
the function fix) = ¢* Inx — x* as an example, in order to make a comparison.



3.4 Extremes of a function

An associated problem to finding the root of an equation 1s finding the maxima
and/or minima of a function. Examples of such situations i physics occur when
considering the equilibrium position of an object. the potential surface of a ficld
and the optimized structures of molecules and small clusters. Here we consider
mainly a function of a single varable, g = g(x). and just touch on the mult-
vanable case of g = g(x;, x3,.... x1) with the steepest-descent method. Other
schemes for the multivaniable cases are left to later chapters.

Knowing the solution of a nonlinear equation f(x) = 0, we can develop nu-
mencal schemes to obtain minima or maxima of a function g(x). We know that
an extreme of g{x) occurs at the point with
dg(x)

dx
which is a minmmum (maximum) if /7(x) = g"(x) 1s greater (Jess) than zero. So
all the root-search schemes discussed so far can be generalized here to search for
the extremes of a single-variable function.

However, at cach step of updating the value of x, we need to make a judgment as
to whether g{x;, ;) 1s mcreasing (decreasing ) if we are scarching for a maximum
(minimum ) of the function. If it 1s, we accept the update. 1f it is not, we reverse
the update; that is, instead of using x; ., = xp + Axg, we use X, = Xz — AXg.
With the Newton method, the increment 1s Axg = — f3//f]. and with the sccant
method. the increment is Axg = —(xx — xi-1) i/ (i — fi1).

Let us illustrate these 1deas with a ssmple example of finding the bond length of
the diatomic molecule NaCl from the interaction potential between the two 1ons
(Na*® and C1" m this casc). Assuming that the mteraction potential is V(r) when
the two ions arc separated by a distance », the bond length ry 1s the equilibrium
distance when V(r) 1s at #ts mmmum. We can mode! the interaction potential
between Na® and Cl -~ as

fix)= 0. (3.51)

Vir)y= 2 e

+ Voerin, (3.52)
et

where ¢ 15 the charge of a proton, &, 1s the electne permuttivaty of vacuum, and
¥, and r, are parameters of this effective interaction. The first term in Eq. (3.532)
comes from the Coulomb interaction between the two 10ns, but the second term



15 the result of the electron distribution i the system. We will use Vo = 1.090 «
107 eV, which is taken from the experimental value for solid NaCl (Kittel, 1993),
and r, = 0.330 A, which is a little larger than the corresponding parameter for
solid NaCl (7 = 0.321 A), because there 1s less charge screening in an isolated
molecule. At equilibrium, the foree between the two 1ons,

dvir) & Vs

fry=——f ~ S A (3.53)

15 zero. Therefore, we scarch for the root of f(x) = dgi(x)/dx = 0, with g(x) =
—Vix). We will force the algonithm to move toward the mmimum of ¥(r). The
followmg program is an implementation of the algorithm with the secant method
to find the bond length of NaCl.



The bond length obuipod from the above program is ry = 2.36 A. We have
used & /4me, = 14.4 AcV for convenience. The method for searching for the
minmimum 1s modified shightly from the secant method used 10 the preceding
section m order to force the search to move toward the minimum of g{x). We will
still obtain the same result as with the secant method used in the earlier example
for this ssmple problem. because there is only one mimimum of ¥(x) around the
point where we start the search. The other minimum of ¥(x) 1sat x = 0 which s
also a singulanity. For a more general g(x ), modifications introduced in the above
PrOZram are Necessary,

Another relevant issue 1s that in many cases we do not have the explicit function
Six) = g'(x) if g(x) is not an explicit function of x. However. we can construct
the first-order and second-order denvatives numerically from the two-point or
three-point formulas, for example.

In the example program above, the search process 1s forced to move along the
direction of descending the function g(x ) when looking for a mmimum. In other
words, for x¢.1 = X% + Axi. the increment Ax; has the sign opposite to g'(xz )
Based on this observation, an update scheme can be formulated as

Xis1 = Xi + Axp = X3 — ag'(x). (1.54)

with @ being a positive, small, and adjustable parameter. This scheme can be
generalized to the multivariable case as

Xist = N+ Axi = —aVelx)/[Va(x )|, (3.55)

where x = (x;, x5, ... x;) and Veg(x) = (3g/ix;. dg/ox;. . ... dg/ax;).

Note that step Ax; here 1s scaled by | Vg(xy )| and 1s forced to move toward the
direction of the steepest descent. This is why this method s known as the stegpest-
descent method. The following program is an implementation of such a scheme to
search for the minimum of the function g(x, ¥} = (x — 1 e 4 p(y +2)e "
aroundx = 0.l and y = —1.



