


Ordinary differential equations

Most problems m physics and engineening appear in the form of differen-
tial equations. For example, the motion of a classical particle 1s described by
Newton’s equation, which is a second-order ordinary differential equation n-
volving at least & second-order derrvative in tme, and the motion of a quantum
particle is described by the Schrédinger equation, which is a partial differential
equation mvolving a first-order partial denivative in time and second-order partial
denvatives in coordinates. The dynamics and statics of bulk matenals such as
fluids and solids are all described by differential equations.

In this chapter, we mtroduce some basic numerical methods for solving
ordinary differential equations. We will discuss the corresponding schemes for
partial differential equations 1n Chapter 7 and some more advanced techniques
for the many-particle Newton equation and the many-body Schrodinger equation
in Chapters 8 and 10. Hydrodynamics and magnetohydrodynamics are treated m
Chapter 9.

In gencral, we can classify ordinary differential equations mto three major
calegornies:

(1) initial-value problems, which involve time-dependent equations with given initial
conditions;

(2) boundary-value problems, which involve differential equations with specified bound-
ary conditions;

(3) eigenvalue problems. which mvolve solutions for selected parameters (eigenvalues)

m the equations.

In reality, a problem may mvolve more than just one of the categones listed
above. A common situation is that we have to separate several variables by intro-
ducing multipliers so that the mitial-value problem 1s 1solated from the boundary-
value or cigenvalue problem. We can then solve the boundary-value or eigenvalue
problem first to determine the multipbiers, which m turn are used to solve the re-
lated initial-value problem. We will cover separation of variables in Chapter 7. In
this chapter, we concentrate on the basic numerical methods for all the three cat-
egonies histed above and illustrate how to use these techniques to solve problems
encountered in physics and other related ficlds.



Typically, mitial-value problems involve dynamical systems, for example, the
motion of the Moon, Earth, and the Sun, the dynamics of a rocket. or the propa-
gation of ocean waves. The behavior of a dynamical system can be descnibed by
a set of first-order differential equations,
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where
Yy=0.5%--- » (42)
15 the dynamical vanable vector, and
giy. 1) = [a(y. 1), g:(y. 1), . -.. 2iy. 0] (43)

15 the generalized velocity vector, a term borrowed from the definition of the
velocity vir, 1) = dr/dt for a particle at position r and time ¢. Here [ 1s the total
number of dynamical vanables. In principle, we can always obtain the solution of
the sbove equation set if the initial condition ¥(f = () = v, 1s given and a solution
exiasts. For the case of the partxcle moving n one dimension under an elastic force
discussed in Chapter 1, the dynamics 1s governed by Newton's equation

fF=ma, (44)

where @ and m are the acceleration and mass of the particle, respectively, and [
15 the force exerted on the particle. This equation can be viewed as a special case
of Eq. (4.1)with/ =2: thatis, y, =xand y, = v=dx/dt,and g, = v =y,
and g, = f/m = —kx/m = —ky,/m. Then we can rewrite Newton's equation
mn the form of Eq. (4.1}
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If the imitial position ¥,(0) and the nital velocity v,(0) = v(0) are given, we can
solve the probiem numernically as demonstrated in Chapter 1.

In fact, most higher-order differential equations can be transformed into a set
of coupled first-order differential equations in the form of Eq. (4.1). The higher-
order denvatives are usually redefined into new dynamical vanables duning the
transformation. The velocity in Newton's equation discussed above is such an
example.



4.4 The Runge-Kutta method

|The accuracy of the methods that we have discussed so far can be mmproved
pnly by including more starting points, which 1s not always practical, because
a problem associated with a dynamical system usually has only the first point.
namely, the imtial condition, given. A more practical method that requires only
phe first pomnt in order to start or to improve the algonthm is the Runge-Kuita
method, which is derived from two different Taylor expansions of the dynamical
panables and their denvatives defined m Eq. (4.1).

| Formally, we can expand y(f + 7) interms of the quantities at 1 with the Taylor
expansion

T’ r
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=y g+ (@ +88)+ — (0 + 208, + 200 + 08, H28) £
4.22)
where the subscript indices denote partial denvatives for example, g, =
2%g/ayat. We can also formally write the solution at £ 4 1 as

Vit + 1) = V) + 00 + 030 + -~ + CuCy, (4.23)
with

o = 1glv.1),

=1V + v+ vnT).

3 = 1g(y + mic1 + e ! + vt + vnT), (4.24)

=-| m-1
Cq = IR (_v+ Zv.,c,,t+t zv.,).

where ay (withi =1.2.... ,m)and vy (withi =2.3,....m and j < i) arc
parameters to be determined. We can expand Eq. (4.23) mnto a power series of 7
by carrying out Taylor expansions for all ¢, with: = 1. 2..... m. Then we can
compare the resulting expression of (1 + 1) from Eq. (4.23) with the expansion
in Eq. (4.22) term by term. A set of equations for a; and v, is obtamed by keeping
the coefficients for the terms wath the same power of T on both sides equal. By
truncating the expansion to the term O(1r™), we obtain m equations but with
m + m{m — 1)/2 parameters (o and vy;) to be determined. Thus, there are sull
optioas left 1n choosing these parameters,
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only the terms up to O(1?) are kept in Eq. (4.22), we have
£
Yi+r)=y+12+ T(gc + 22,) (4.25)

We can obtain an expansion up to the same order by truncating Eq. (4.23) at
m=2,

Vi +1)= ¥+ e + oy, (4.26)

with
a = . 1). (4.27)
=y + oL + vt (4.28)

Now if we perform the Taylor expansion for ¢z up to the term O(1?), we have
€ =1g-+vnt (g +o2,) (4.29)
Substituting ¢, and the expansion of ¢, above back into Eq. (4.26) yiclds
Vi 4+ T) = pit) + (e + @2)Tg + et unig, +28,). (4.30)
If we compare this expression with Eq. (4.25) term by term, we have

om+ar=1, (431)

oy = % (4.32)

As pointed out carlier, there are only m (2 in this case) equations available but
there are m + m{m — 1)/2 (3 n this case) parameters to be determined. We do not
have a unique solution for all the parameters; thus we have flexibility in assigning
their values as long as they satisfy the m equations. We could choose o =
ar=1/2and vy = |, oray = 1/3, a2 = 2/3, and vy = 3/4. The flexibility
in choosing the parameters provides one more way to mcrease the numerical
accuracy in practice. We can adjust the parameters according to the specific
problems mvolved.

The most commonly known and widely used Runge-Kutta method is the one
with Eqgs. (4.22) and (4.23) truncated at the terms of O{r?). We will give the
result here and leave the derivation as an exercise to the reader. This well-known
fourth-order Runge-Kutta algonthm 1s given by

1
W+T)=y)+ g(m + 20 + 203 + ¢a), (4.33)
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Fig. 4.3 Asketchofa Ir\
driven pandulum under d
damping: fs is the driving
force and £ is the
resistive force.
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with

o = te(r. 1), 4.34)
a=te(r+ %‘.: +%) (4.35)
e} =rg(y+§—’.:+-§). (4.36)
g =12(y +C3. 0+ T) (4.37)

We can casily show that the above sckection of parameters does satisfy the required
equations. As pointed out carlier. this selection 1s not unique and can be modified
according to the problem under study.



