3.1 Numerical differentiation

One basic tool that we will often use in this book is the Taylor expansion of a
function f{x) around a pomt xy:
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The above expansion can be gencralized to describe a multivanable function
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where the subscript indices denote partial denvatives, for example, fiy =
3% f/oxav.

The first-order derivative of a single-vanable function f(x) around a poimnt x,
is defined from the limit

&+ Ax) - f(x)
f’(-rn, = Al'ugo Ax

if it exists. Now 1f we divide the space into discrete points x; with evenly spaced
mtervals x; . ; — x; = h and label the function at the lattice points as f; = f(x;),
we obtain the simplest expression for the first-order denvative

= f'"h' f: + O(h). (34)

We have used the notatson (k) for a term on the order of k. Similar notation
will be used throughout this book. The above formula is referred to as the rwo-
point formula for the first-order dernivative and can casily be derived by taking the
Taylor expansion of f;,; around x,. The accuracy can be improved if we expand
Jfi:1and f;_; around x; and take the difference

(3.3)

Soor = Sy =201 + OWR’). (3.5)
After a simpke rearrangement, we have
= f“—'zzﬁ + O(*). (3.6)

which 1s commonly known as the three-point formula for the first-order denivative.
The accuracy of the expression increases to a higher order in & 1f more points are
used. For example, a five-point formula can be derived by including the expan-

sions of f;,; and f,_; around x,. If we use the combinations

for = fa =207+ "711}’7' + O(h") (3.7)
and
fuz—fia=%f+ ST";L"’ +O() as)
to cancel the !;(3) terms, we have
fi= %(f-z —Bfi-1 +8fia1 — fisz) + O(h*) (3.9)

We can, of course, make the accuracy even higher by including more pomts, but
in many cases this is not good practice. For real problems, the derivatives at points
close to the boundanes are important and need to be calculated accurately. The
errors in the denvatives of the boundary points will sccumulate m other points
when the scheme is used to integrite an equation. The more points involved 1n
the expressions of the derivatives, the more difficultics we encounter in obtaining
accurate derivatives at the boundarics. Another way to increase the accuracy is
by decreasmg the mnterval k. This 1s very practical on vector computers. The
algonithms for first-order or second-order derivatives are usually fully vectonzed,
50 a vector processor can calculate manv points in 1ust one computer clock cvele.



Approximate expressions for the second-order denvative can be obtained with
different combinations of f). The three-point formula for the second-order deriva-
tive 1s given by the combination

fiar =2fi + fior =R ST + Oy, (3.10)

with the Taylor expansions of fi+ sround x;. Note that the third-order term with
e  vanishes because of the cancellation m the combination. The sbove equation
gives the second-order denvative as

fr=dia= i{ L 4 oy, 3.11)

Similarly, we can combme the expansions of fi:3 and fi+) around x; and f; to
cancel the f], i) ,".andjfs) terms: then we have

== %("ﬁa + 1611 =30 + 16121 — fiz2)+ O(K") (3.12)

as the five-point formula for the second-order dervative. The difficulty m dealing
with the points around the boundaries still remains. We can use the mterpolation
formulas that we developed in the Chapter 2 to extrapolate the derivatives to the



Table 3.1. Derivatives obtained in the example

x r Af #* Af

0 0999959 —0.000041 0.000 004 0.000 004
x/10 0951017 ~0.000039 —0).309 087 ~0.000070
x/5 0.808 985 ~0.000032 —0.587 736 0.000 049
3n/10 0.587 762 —0.000023 —0.809 013 0.000 004
2n/5 0309003 ~0.000014 —{.951 055 0.000 001
x/2 —0.000 004 —0.000 004 ~{).999 980 0.000020

We have taken a stmple function f{x) = sinx, given at [0] discrete points with
evenly spaced mtervals in the region [0, 7/2]. The Lagrange iterpolation is
applied to extrapolate the derivatives at the boundary points. The numencal
results are summanzed in Table 3.1, together with their errors. Note that the
extrapolated data are of the same order of accuracy as other calculated values
for /" and /™ at both x = 0 and x = x/2 because the three-point Lagrange
interpolation scheme 1s accurate to a quadratic behavior. The functions sinx
and cosx are well approximated by s lincar or a quadratic curve at those two
points.

In practice. we may encounter two problems with the formulas used above.
The first problem is that we may not have the data given at uniform data points.
One solution to such a problem 15 to perform an mterpolation of the data first
and then apply the above formulas to the function at the uniform data points
gencrated from the interpolation. This approach can be tedious und has errors
from two sources, the mterpolation and the formulas above. The easiest solution
to the problem is to adopt formulas that are suitable for nonuniform data pomnts,
If we use the Taylor expansion

1
Slxa) = i)+ (xa —3) 1 (x)+ F(nﬂ —x ¥ rix)+ Oh’) (3.13)

and a combination of f, ,, ;. and [, to cancel the sccond-order terms, we
obtain

s fi+ (6] — b _y) fi — W fia
h.h(-l(hn + hl—l)

where hy = x¢41 — x; and & is the larger of |k, | and |A¢|. This is the three-
point formula for the first-order denvative m the case of nonuniform data points.
Note that the accuracy here 1s the same as for the uniform data points. This
15 a better choice than mferpolating the data first because the formula can
be mplemented n almost the same manner as 1n the case of the uniform
data pomts. The following method returns the first-order dervative for such a
situation.

fi= + O(%), (3.14)






