CHAPTER 30

CAPACITANCE
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n many applications of electric circuits, the goal is to

siore elecirical charge or energy in an electrostatic field. A device that stores charge is called a capacitor,
and the property that determines how much charge it can sitore is its capaciltance. We shall see that the ca-
pacitance depends on the geometrical properties of the device and not on the electric field or the potential.

In this chapter we define capacitance and show how to calculate the capacitance of a few simple de-
vices and of combinations of capacitors. We study the energy stored in capacitors and show how it is re-
lated 1o the strength of the electric field. Finally, we investigate how the presence of a dielectric in a capaci-

ic - enhances its ability to store electric charge.

30-1 CAPACITORS

A capacitor® is a device that slores energy in an electrosta-
tic field. A flashbulb, for example, requires a short burst of
electric energy that exceeds what a battery can generally
provide. A capacitor can draw energy relatively slowly
(over several seconds) from the battery, and it then can re-
lease the energy rapidly (within milliseconds) through the
bulb. Much larger capacitors are used to produce short laser
pulses in attempts to induce thermonuclear fusion in tiny
pellets of hydrogen. In this case the power level during the
pulse is about 10" W, about 200 times the entire electrical
generating capacity of the United States, but the pulses typ-
ically last only for 1077 s.

Capacitors are also used to produce electric fields, such
as the parallel-plate device that gives the very nearly uni-
form electric field that deflects beams of electrons in a TV
or oscilloscope tube.

In circuits, capacitors are often used to smooth out the
sudden variations in line voltage that can damage computer
memories. In another application, the tuning of a radio or

*See “Capacitors,” by Donald M. Trotter, Jr., Scientific American, July
1988, p. 86,
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TV receiver is usually done by varying the capacitance of
the circuit.

30-2 CAPACITANCE

Figure 30-1 shows a generalized capacitor, consisting of
two conductors a and & of arbitrary shape. No matter what
their geometry, these conductors are called plares. We as-
sumc that they are totally isolated from their surroundings.
We further assume, for the time being, that the conductors
cxist in a vacuum.,

A capacitor is said to be charged if its plates carry equal
and opposite charges +g and —g. Note that q is not the net
charge on the capacitor, which is zero. In our discussion of
capacitors, we let ¢ represent the absolute value of the
charge on either plate; that is, ¢ represents a magnitude only,
and the sign of the charge on a given plate must be specified.

We can “charge” a capacitor by connecting one of its
plates to the positive terminal of a battery and the other
plate to the negative terminal, as shown in Fig. 30-2. As we
discuss in the next chapter, the flow of charge in an electri-
cal circuit is analogous to the flow fluid, and the battery
serves as a “pump” for electric charge. When we connect
a battery to the capacitor (by closing the switch in the
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FIGURE 30-1. Two conductors, isolated from one another and
from their surroundings, form a capacitor. When the capacitor is
charged. the condhctors carry equal but opposite charges of mag-
nitude g. The two conductors are called plates no matter what
their shape.
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circuit), the battery “pumps" electrons tiom the (previously
uncharged) positive plate of the capacitor to the negative
plate. After the battery moves a quantity of charge of mag-
nitude g, the charge on the positive plate is +q and the
charge on the negative plate is —gq.

An ideal battery maintains a constant potential differ-
ence between its terminals. The positive plate and the wire
connecting it to the positive terminal of the battery are con-
ductors, and so (under electrostatic conditions) they must
be at the same polential V, as the positive terminal of the
battery. The negative plate and the wire connecting it to the
negative terminal of the battery are also conductors, and so
(when the switch is closed) they must be at the same poten-
tial V_ as the negative terminal of the battery. The potential
difference AV = V, — V_ between the battery terminals is
the same potential difference that appears between the ca-
pacitor plates when the switch is closed. We usually de-
scribe this as the potential difference “across” the capacitor,
meaning the potential difference between its plates.

Figure 30-3 shows the circuit for charging a capacitor
by a battery that maintains a constant potential difference

| ' Switch

|  Fraure 30-2. When the switch is closed, the capacitor be-
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FIGURE 30-3. A schematic circuit diagram equivalent to Fig.
30-2, showing the capacitor C, switch S, and constant potential dif-
ference AV (supplied by a bartery that is not shown in the diagram). -

AV =V, = V_ between its terminals. In a circuit, a capac-
itor is represented by the symbol 4+, in which the two par-
allel lines sugz=-t the two plates of the capacitor.

When we charge a capacitor, we find that the charge g
that appears on the capacitor plates is always directly pro-
portional to the potential difference AV between the plates:
g x AV. The capacitance C is the constant of proportional-
ity necessary to make this relationship into an equation:

g =CAV, (30-1)

The capacitance is a geometrical factor that depends on the
size, shape, and separation of the plates and on the material
that occupies the space between the plates (which for now
we assume is a vacuum). The capacitance of a capacitor
does not depend on AV or q. -

The S1 unit of capacitance that follows from Eq. 30-1is
the coulomb/volt, which is given the name farad (abbrevia-
tion F):

'l farad = | coulomb/volt.

The unit is named in honor of Michael Faraday who,
among his other contributions, developed the concept of ca-
pacitance. The submultiples of the farad, the microfarad .
(1 uF = 107*F) and the picofarad (1 pF = 101 F), are
more convenient units in practice. Figure 30-4 shows some
capacitors in the microfarad or picofarad range that might
be found in electronic or computing equipment.
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30-3 CALCULATING THE CAPACITALCE
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SAMPLE PROBLEM 30-1. A storage cepacitor on & ran-
dom access memory (RAM) chip has a capacitance of 0.055 pF. If
it is charged 10 5.3 V, how many excess electrons are there on its

negative plate?

Solation If the negative plate has N excess electrons, it carries a
net charge of magnitude ¢ = Ne. Using Eq. 30-1, we obtain

v 4o CAV _ (0055 % 10"FXS3V)
¢ ¢ 1.60 X 10~ C

= |.8 X 107 electrons.

For electrons, this is a very small number. A speck of household
dust, 3o tiny that it essentially never settles, contains about 107
electrons (and the same number of protons).

Analogy with Fluid Flow (Optional)

In situations involving electric circuits, it is often useful to
draw analogies between the movement of electric charge
and the movement of material particles such as occurs in
fluid flow. In the case of a capacitor, an analogy can be
made between a capacitor carrying a charge ¢ and a rigid
container of volume v (we use v rather than V for volume so
as not to confuse it with potential difference) containing n
moles of an ideal gas. The gas pressure p is directly propor-
tional to n for a fixed temperature, according (o the ideal

gas law (Eq. 21-13)
"E\rr )"

For the capacitor (Eq. 30-1)
g = CAV.

Comparison shows that the capacitance C of the capacitor
is analogous to the volume v of the conlainer, assuming a
fixed temperature for the gas. In fact, the word “capacitor”
brings to mind the word “capacity,” in the same sensc that
the volume of a container for gas has a centain “capacity.”

We can force more gas into the container by imposing a
higher pressure, just as we can force more charge into the
capacitor by imposing a higher voliage. Note that any
amount of charge can be put on the capacitor, and any mass
of gas can be put in the container; up to certain limits.
These correspond to electrical breakdown (“arcing over™)

for the capacitor and to rupture of the walls for the con-
tainer. B
30-3 CALCULATING THE

CAPACITANCE

Our goal in this section is to calculate the capacitance of a
capacitor from its geometry. We do this using the following

_ procedure. (1) We first find the electric field in the region

between the plates, using methods such as those described

A1 -

in Section 264, (2) We then use Eq. 2815 to find the po-
tential difference hetween the positive and negative '
by integrating the electric field along "ny crnvenisr
connecting the plates:

AV=V, - V_=—I E-di’ﬂj_ﬁ'di. (3t-2)

(3) The outcome of Eq. 30-2 will involve the magn’tude of
the charge ¢ on the right-hand side, Using Eq. 30-1, ve can
then find C = g/AV.

As we have defined it, AV is a posili ¢ number. Since ¢
is an absolute magnitude, the capacitance C will always be
positive.

We now illustrate this method with several examples.

A Parallel-Plate Capacitor

Figurc 30-5 shows a capacitor in which the two fat plates
are very large and very close together; thal is, the separa-
tion 4 is much smaller than the length or width of the
plates. We can neglect the “fringing™ of the electric field
that occurs near the edges of the plates and assume that the
clectric field has the same magnitude and direstion every-
where in the volume between the plates.

We obtained the electric field for a single latge uni-
formly charged disk at points near ils center in Section
26-4: E = 0/2¢€,. If the capacitor plates are very large,
their shape is not important, and we car assume that the
clectric field due to each plate has this magnitude. The net
electric field is the sum of the fields due to the two plates:
E =E, + E_. As Fig. 30-5 shows, the fields due to the
positive and negative plates have the same direction, so we
can wrile

E=E¢ +E_=Un€u+ﬂn(n=dfg.

Using o = g/A, where A is the surface arca of each plate,
and substituting Eq. 30-3 into Eq. 30-2, we obtain

av:'[adm 9 f.ﬁc—"d—.
rJe €A Js €A

where we have chosen an integration path along one of the

(30-4)

lines of the electric field, so that E and ds are parallel (see

Fig. 30-5).
Wl"' + -ﬂv“dr-_-of.f + <]
E_
Y Y *Fé d
-E.. y
-
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FIGURE 30-5. A panliel-plate capacitor. The path of integra-
tion for evaluating Eq. 304 is IHO:WI'I-. .
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The capacitance is then obtained from Eq. 30-1: C =
g/AV, or

(Y,
¢ d

(parallel-plate capacitor).  (30-5)
You can see from this equation why we say that the capaci-
tance depends on geometrical factors, in this case the plate
scparation d and area A. The capacilance does not depend
on the voliage difference between the plates or the charge
carried by the plates.

- Note that the right-hand side of Eq. 30-5 has the form of
€, limes a quantity with the dimension of length (A/d). We
will find that all expressions for capacitance have essen-
tially this same form, wkich suggests that the units of €,
can be expressed as capacitance divided by length:

€, = 8.85 X 107" F/m = B.85 pF/m.

These units for € are often more uscful for calculations of
capacitance than our previous (and equivalent) units of
CYN-m?

A Spherical Capacitor

Figure 30-6 shows a cross section of a spherical capacilor,
in which the inner conductor is a solid sphere of radius a,
and the outer conductor is a hollow spherical shell of inner
radius b. We assume that the inner sphere camries a charge
+g and that the outer sphere has a charge ~—¢. From our
analysis of conduclors using Gauss' law (see Seclion 27-6),
we know that the charge on the inner conductor resides on
its surface and that the charge on the outer conduclor re-
sides on its inner surface. (Draw a spherical Gaussian sur-
face of radius slightly larger than b; the surface lies entirely
within the outer conductor, so E = 0 everywhere on the
surface and the flux through the surface is zero. Therefore
the surface encloses no net charge, as Fig. 30-6 shows.)

In the region @ < r < b, we can use Gauss® law lo de-
termine thal, in the region between the conductors, Lhe elec-
tric field depends only on the charge on the inner sphere,

FiouRrE 30-6. A cross section through a spherical or a cylin-
drical capacitor. The electric ficld al any point P in the interior is
due only to the inner conductor. The path of integration for evalu-
ating Eq. 30-7 or Eq. 30-10 is shown.

and that this field is the same as that of a point charge at its
center (recall the shell theorems discussed in Section 27-
We therefore have -

a<r<h. (3

Substituting this expression for the electric field into Eg.
30-2 and integrating along the path shown in Fig. 30-6 from
the positive plate to the ncgalivc plate, we obtain

sl F-ak(e-d)

g b-a
dmey, ab
Because the path of integration is in the radial direction, we
have E+ds = Edsand ds = dr.
Using C = g/AV, we now find

41-rcor

(30-7)

ab ) :
C = dme, b_? (spherical capacitor). (30-8)
Note that the capacitance again has the form of ¢, times i

quantity with the dimension of length.

A Cylindrical Capacitor

Figure 30-6 can also represent the cross section of a cylin-
drical capacitor, in which the inner conductor is a solid rod
of radius a carrying a charge +¢ uniformly distributed over
its surface, and the outer conductor is a coaxial cylindrical |
shell of inner radius b carrying a charge of —g uniformly |
distributed over its inner surface. The capacitor has length-
L, a.ndwcnssunn!..‘»bmﬂul.:swaslhccmw%dn
parallel-plate capacilor, we can neglect the “fringing” field
at the ends of the capacitor.

Just as we used Gauss® law in the spherical geometry to
obtain the two shell thecorems, we can obtain two similar re- {
sults in the cylindrical geometry. If only the uniformly:
charged outer cylindrical conductor were present, we could
construct a Gaussian surface in the shape of a long cylinder I
of radius r < b having the same axis as the outer cylinder.
This surface encloses no net charge, so we conclude that |
E = 0 everywhere on the Gaussian surface. As in the case

|

of the spherical shell, a uniformly charged cylindrical shell
produces no electric field in its interior. Using a cylindrical "
Gaussian surface with r > a, we can deduce that the inner ||
cylinder behaves just like a uniform line of charge, for |
which the field points radially outward from the llil'j
and has a magnitude that we calculated in Section 26-4
(Eq. 26-17): ,
-
E 2me Lr
where we have replaced the lincar charge density A with
¢/L and the distance y with the radial coordinate r. Equation /
30-2 now gives |

- a<r<b, (309

|
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