# MULTIPLE TIME SCALE 

Nonlinear Physics
MS PHYSICS LECTURE 2:

- Dr. Zeba Israr

Lahore College for Women University, Lahore.

## Contents

- Problem 2. Van der Pol Oscillator


## Problem 2

## - Van der Pol Oscillator

- The simple equation for this oscillator in $2^{\text {nd }}$ order differential form is given by

$$
\ddot{u}+u=\epsilon\left(1-u^{2}\right) \ddot{u} \longrightarrow \text { Eq. } 1
$$

This equation is called Van der Pol Oscillator. It has more nonlinear effect and damping cannot take place in a specified ratio. The time scales for this relation involves three solutions and $T_{0}=t, T_{1}=\epsilon t, T_{2}=\epsilon^{2} t$. The roots for these time scale involve the relation
And its roots are

$$
\mathbf{u}=u\left(T_{0}, T_{1}, T_{2}, \epsilon\right)
$$

$$
\begin{array}{r}
u=u_{0}\left(T_{0}, T_{1}, T_{2}\right)+\epsilon u_{1}\left(T_{0}, T_{1}, T_{2}\right)+\epsilon^{2} u_{2}\left(T_{0}, T_{1}, T_{2}\right) \\
u=u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}
\end{array}
$$

Now by applying the chain rule.

$$
\frac{d}{d t}=\frac{d}{d T_{0}} \frac{d T_{0}}{d t}+\frac{d}{d T_{1}} \frac{d T_{1}}{d t}+\frac{d}{d T_{2}} \frac{d T_{2}}{d t}
$$

The solution for $\frac{d T_{0}}{d t}=0, \frac{d T_{1}}{d t}=\in, \frac{d T_{2}}{d t}=\epsilon^{2}$.

## Problem 2

- By replacing the values

$$
\frac{d}{d t}=\frac{d}{d T_{0}}+\frac{\epsilon d}{d T_{1}}+\frac{\epsilon^{2} d}{d T_{2}}
$$

- For $2^{\text {nd }}$ order differential values and by ignoring the higher orders than 2

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}=\left(\frac{d^{2}}{d T_{0}^{2}}+\frac{\epsilon d^{2}}{d T_{0} d T_{1}}+\frac{\epsilon^{2} d^{2}}{d T_{0} d T_{2}}\right)+ \\
\left(\frac{\epsilon d^{2}}{d T_{1} d T_{0}}+\frac{\epsilon^{2} d^{2}}{d T_{1}^{2}}+\frac{\epsilon^{3} d^{2}}{d T_{1} d T_{2}}\right)+\left(\frac{\epsilon^{2} d^{2}}{d T_{2} T_{0}}+\frac{\epsilon^{3} d^{2}}{d T_{2} d T_{1}}+\frac{\epsilon^{4} d^{2}}{d T_{2}^{2}}\right)
\end{gathered}
$$

- By placing the values in Eq. 1
$\left[\left(\frac{d^{2}}{d T_{0}^{2}}+\frac{\epsilon d^{2}}{d T_{0} d T_{1}}+\frac{\epsilon^{2} d^{2}}{d T_{0} T_{2}}\right)+\left(\frac{\epsilon d^{2}}{d T_{1} d T_{0}}+\frac{\epsilon^{2} d^{2}}{d T_{1}^{2}}+\frac{\epsilon^{3} d^{2}}{d T_{1} T_{2}}\right)+\left(\frac{\epsilon^{2} d^{2}}{d T_{d} d T_{0}}+\frac{\epsilon^{3} d{ }^{2}}{d T_{2} d T_{1}}+\frac{\epsilon^{4} d d^{2}}{d T_{2}^{2}}\right)\right]$
$\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}\right)+\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}\right)=\epsilon\left[1-\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}\right)^{2}\right]\left(u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2}\right)$
Now by solving the whole relation up to $2^{\text {nd }}$ order and ignoring the higher orders.


## Problem 2

$$
\begin{gathered}
\frac{d^{2}}{d T_{0}^{2}} u_{0}+\epsilon \frac{d^{2}}{d T_{0}^{2}} u_{1}+\epsilon^{2} \frac{d^{2}}{d T_{0}^{2}} u_{2}+\epsilon \frac{d^{2}}{d T_{0} d T_{1}} u_{0} \\
\hline+\epsilon^{2} \frac{d^{2}}{d T_{0} d T_{1}} u_{1}+\epsilon^{2} \frac{d^{2}}{d T_{0} d T_{2}} u_{0}+\epsilon \frac{d^{2}}{d T_{1} d T_{0}} u_{0}+\epsilon^{2} \frac{d^{2}}{d T_{1} d T_{0}} u_{1} \\
\hline+\epsilon^{2} \frac{d^{2}}{d T_{1}^{2}} u_{0}+\epsilon^{2} \frac{d^{2}}{d T_{2} d T_{0}} u_{0}+u_{0}+\epsilon u_{1}+\epsilon^{2} u_{2} \\
\hline=\epsilon \frac{d}{d T_{0}} u_{0}+\epsilon^{2} \frac{d}{d T_{0}} u_{1}+\epsilon^{2} \frac{d}{d T_{1}} u_{0}-\epsilon \frac{u_{0}^{2} d}{d T_{0}} u_{0} \\
\hline-\epsilon^{2} \frac{u_{0}^{2} d}{d T_{0}} u_{1}-\epsilon^{2} \frac{u_{0}^{2} d}{d T_{1}} u_{0}-\epsilon^{2} 2 \frac{u_{0} u_{1} d}{d T_{0}} u_{0} \\
\hline
\end{gathered}
$$

- By arranging the orders

$$
\begin{array}{|l}
\epsilon^{0} \Rightarrow \frac{d^{2}}{d T_{0}^{2}} u_{0}+u_{0}=0 \\
\epsilon^{1} \Rightarrow \frac{d^{2}}{d T_{0}^{2}} u_{1}+\frac{d^{2}}{d T_{0} d T_{1}} u_{0}+\frac{d^{2}}{d T_{1} d T_{0}} u_{0}+u_{1}=\frac{d}{d T_{0}} u_{0}-\frac{u_{0}^{2} d}{d T_{0}} u_{0} \\
\hline \epsilon^{2} \Rightarrow \frac{d^{2}}{d T_{0}^{2}} u_{2}+\frac{d^{2}}{d T_{0} d T_{1}} u_{1}+\frac{d^{2}}{d T_{0} d T_{2}} u_{0}+\frac{d^{2}}{d T_{1} d T_{0}} u_{1}+\frac{d^{2}}{d T_{1}^{2}} u_{0}+ \\
\frac{\frac{d^{2}}{d T_{2} d T_{0}} u_{0}+u_{2}=\frac{d}{d T_{0}} u_{1}+\frac{d}{d T_{1}} u_{0}-\frac{u_{0}^{2} d}{d T_{0}} u_{1}-\frac{u_{0}^{2} d}{d T_{1}} u_{0}-2 \frac{u_{0} u_{1} d}{d T_{0}} u_{0}}{}
\end{array}
$$

## Problem 2

- We only need to deal with order zero and one because we have $2^{\text {nd }}$ order differential equation.

$$
\begin{array}{|l|}
\hline \epsilon^{0} \Rightarrow \frac{d^{2}}{d T_{0}^{2}} u_{0}+u_{0}=0 \\
\hline \epsilon^{1} \Rightarrow \frac{d^{2}}{d T_{0}^{2}} u_{1}+\frac{2 d^{2}}{d T_{0} d T_{1}} u_{0}+u_{1}=\frac{d}{d T_{0}} u_{0}\left(1-u_{0}^{2}\right) \\
\hline
\end{array}
$$

So we can state that general solution for Eq. 1 includes complex and Vander Wall relations.

Also

$$
\begin{aligned}
& u_{0}=A\left(T_{1}, T_{2}\right) \exp \left(i T_{0}\right)+\bar{A}\left(T_{1}, T_{2}\right) \exp \left(-i T_{0}\right) \\
& u_{0}=A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)
\end{aligned}
$$

$$
\text { The integral solution } u_{0}=A \exp \left(i T_{0}\right)+\text { constant }
$$

Similarly the general solution for $1^{\text {st }}$ order relation can be found by replacing the value of $u_{0}$ in its equation.

$$
\frac{\frac{d^{2}}{d T_{0}^{2}} u_{1}+\frac{2 d^{2}}{d T_{0} d T_{1}}\left(A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right)+u_{1}=\frac{d}{d T_{0}}}{\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]\left[1-\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]^{2}\right]}
$$

By separating the terms of $u_{0}$ and $u_{1}$ and than solving the relation w.r.t its derivative.

## Problem 2

## - We find the following relations.

$$
\begin{gathered}
\frac{d^{2}}{d T_{0}} u_{1}+u_{1}=-\frac{2 d^{2}}{d T_{0} T_{1}}\left(A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right) \\
+\left[1-\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]^{2}\right] \frac{d}{d T_{0}}\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-\frac{2 d}{d T_{0}}\left[A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+\bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right)\right] \\
+\left[1-\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]^{2}\right] \frac{d}{d T_{0}}\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
\frac{d^{2}}{d T_{0}} u_{1}+u_{1}=-2\left[A \frac{d}{d T_{1}} \frac{d}{d T_{0}} \exp \left(i T_{0}\right)+\bar{A} \frac{d}{d T_{1}} \frac{d}{d T_{0}} \exp \left(-i T_{0}\right)\right] \\
+\left[1-\left[A \exp \left(i T_{0}\right)+\bar{A} \exp \left(-i T_{0}\right)\right]^{2}\right]\left[A \frac{d}{d T_{0}} \exp \left(i T_{0}\right)+\bar{A} \frac{d}{d T_{0}} \exp \left(-i T_{0}\right)\right]
\end{gathered}
$$

$$
\begin{array}{|c|}
\hline \frac{d^{2}}{d T_{1}} u_{1}+u_{1}=-2\left[A \frac{d}{d T_{1}} \exp \left(i T_{0}\right) \cdot(i)+\bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right) \cdot(-i)\right] \\
+\left[1-\left[\left(A \exp \left(i T_{0}\right)\right)^{2}+\left(\bar{A} \exp \left(-i T_{0}\right)\right)^{2}+2 A \exp \left(i T_{0}\right) A \exp \left(-i T_{0}\right)\right]\right]\left[A \exp \left(i T_{0}\right)(i)+\bar{A} \exp \left(-i T_{0}\right)(-i)\right] \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-2 i A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+2 i \bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right) \\
& +\left[1-\left(A \exp \left(i T_{0}\right)\right)^{2}-\left(\bar{A} \exp \left(-i T_{0}\right)\right)^{2}-2 A \bar{A}\right]\left[i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)\right]
\end{aligned}
$$

## Problem 2

$$
\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-2 i A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+2 i \bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right)
$$

$$
+\left[\frac{1\left[i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)\right]-\left(A \exp \left(i T_{0}\right)\right)^{2}\left[i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)\right]}{-\left(\bar{A} \exp \left(-i T_{0}\right)\right)^{2}\left[i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)\right]-2 A \bar{A}\left[i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)\right]}\right]
$$

$$
\begin{gathered}
\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-2 i A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+2 i \bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right) \\
+i A \exp \left(i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)-i A^{3} \exp \left(3 i T_{0}\right)+i A^{2} \bar{A} \exp \left(i T_{0}\right) \\
-i A \bar{A}^{2} \exp \left(-i T_{0}\right)+i \bar{A}^{3} \exp \left(-3 i T_{0}\right)-2 i A^{2} \bar{A} \exp \left(i T_{0}\right)+2 i A \bar{A}^{2} \exp \left(-i T_{0}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-2 i A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+i A \exp \left(i T_{0}\right)-i A^{3} \exp \left(3 i T_{0}\right)+i A^{2} \bar{A} \exp \left(i T_{0}\right)-2 i A^{2} \bar{A} \exp \left(i T_{0}\right) \\
& \quad+2 i \bar{A} \frac{d}{d T_{1}} \exp \left(-i T_{0}\right)-i \bar{A} \exp \left(-i T_{0}\right)-i A \bar{A}^{2} \exp \left(-i T_{0}\right)+i \bar{A}^{3} \exp \left(-3 i T_{0}\right)+2 i A \bar{A}^{2} \exp \left(-i T_{0}\right)
\end{aligned}
$$

$\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-2 i A \frac{d}{d T_{1}} \exp \left(i T_{0}\right)+i A \exp \left(i T_{0}\right)-i A^{3} \exp \left(3 i T_{0}\right)+i A^{2} \bar{A} \exp \left(i T_{0}\right)-2 i A^{2} \bar{A} \exp \left(i T_{0}\right)+$ constant

$$
\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-i \exp \left(i T_{0}\right)\left[2 A \frac{d}{d T_{1}}-A-A^{2} \bar{A}+2 A^{2} \bar{A}\right]-i A^{3} \exp \left(3 i T_{0}\right)+\text { constant }
$$

$$
\frac{d^{2}}{d T_{0}^{2}} u_{1}+u_{1}=-i \exp \left(i T_{0}\right)\left[2 A \frac{d}{d T_{1}}-A+A^{2} \bar{A}\right]-i A^{3} \exp \left(3 i T_{0}\right)+\text { constant }
$$

## Problem 2

- In order to solve the differential equation from above solution, we apply the approximations

$$
2 \frac{d A}{d T_{1}}-A+A^{2} \bar{A}=0
$$

Eq. 3

- Here $\bar{A}$ is the comblex coniuaate of A . The comolex auantity A can be replaced by

$$
A=\frac{1}{2} a \exp (i \phi) \text { or } A=\frac{1}{2} a \exp (-i \phi)
$$

Where

$$
a=a\left(T_{1}, T_{2}\right) \text { and } \phi=\phi\left(T_{1}, T_{2}\right)
$$

The relations by replacing values in Eq. 3

$$
\begin{gathered}
2 \frac{d}{d T_{1}}\left(\frac{1}{2} a \exp (i \phi)\right)-\left(\frac{1}{2} a \exp (i \phi)\right)+\left(\frac{1}{2} a \exp (i \phi)\right)^{2}\left(\frac{1}{2} a \exp (-i \phi)\right)=0 \\
\frac{d}{d T_{1}}(a \exp (i \phi))-\left(\frac{1}{2} a \exp (i \phi)\right)+\left(\frac{1}{4} a^{2} \exp (i 2 \phi)\right)\left(\frac{1}{2} a \exp (-i \phi)\right)=0
\end{gathered}
$$

By product rule

$$
\exp (i \phi) \frac{d a}{d T_{1}}+a i \frac{d \phi}{d T_{1}} \exp (i \phi)-\left(\frac{1}{2} a \exp (i \phi)\right)+\left(\frac{1}{8} a^{3} \exp (i \phi)\right)=0
$$

Taking exponent common

$$
\left[\frac{d a}{d T_{1}}+a i \frac{d \phi}{d T_{1}}-\frac{1}{2} a+\frac{1}{8} a^{3}\right] \exp (i \phi)=0
$$

## Problem 2

Real Part

$$
\frac{d a}{d T_{1}}-\frac{1}{2} a+\frac{1}{8} a^{3}+a i \frac{d \phi}{d T_{1}}=0
$$

$$
\begin{equation*}
\frac{d a}{d T_{1}}-\frac{1}{2} a+\frac{1}{8} a^{3}=0 \tag{Eq. 4}
\end{equation*}
$$

Imaginary part

By solving the real part only.

By taking integral at both sides

$$
\begin{aligned}
& \iint \frac{1}{\frac{1}{2} a\left(1-\frac{1}{4} a^{2}\right)} d a=\int d T_{1} \\
& \int \frac{1}{\frac{1}{2} a\left(1+\frac{1}{2} a\right)\left(1-\frac{1}{2} a\right)} d a=T_{1}+\text { constant }
\end{aligned}
$$

Solution for integral
In order to solve L.H.S we use the partial fraction method.
Eq. $5 \longleftarrow \frac{1}{\frac{1}{2} a\left(1+\frac{1}{2} a\right)\left(1-\frac{1}{2} a\right)}=\frac{8}{a(2+a)(2-a)}=\frac{A}{a}+\frac{B}{(2+a)}+\frac{C}{(2-a)}$
Multiplying both sides by $\mathrm{a}(\mathrm{a}+2)(\mathrm{a}-2) \quad 8=A(2+a)(2-a)+B a(2-a)+C a(2+a) \quad$ Eq. 6

## Problem 2

By replacing a=2 in Eq. 6 By replacing $a=-2$ in Eq. 6
By replacing a=0 in Eq. 6

$$
C=1
$$

$$
B=-1
$$

$$
A=2
$$

Now by replacing the values of $\mathrm{A}, \mathrm{B}$ and C in Eq. 5

$$
\int \frac{2}{a} \cdot-\frac{1}{(2+a)} \cdot+\frac{1}{(2-a)} d a=T_{1}+\text { constant }_{1}
$$

Solving integral

$$
2 \ln a-\ln (2+a)-\ln (2-a)=T_{1}+\text { constant }_{2}
$$

Dividing by 2

$$
\ln a-\frac{1}{2} \ln (2+a)-\frac{1}{2} \ln (2-a)=\frac{T_{1}}{2}+\text { constant }_{2}
$$

$$
\ln a+\ln (2+a)^{-\frac{1}{2}}+\ln (2-a)^{-\frac{1}{2}}=\frac{T_{1}}{2}+\text { constant }_{2}
$$

$$
\ln a \cdot(2+a)^{-\frac{1}{2}} \cdot(2-a)^{-\frac{1}{2}}=\frac{T_{1}}{2}+\text { constant }_{2}
$$

$$
a(2+a)^{-\frac{1}{2}}(2-a)^{-\frac{1}{2}}=\exp \left(\frac{T_{1}}{2}\right) \cdot \text { constant }_{2}
$$

Taking square at B.S

$$
a^{2}(2+a)^{-1}(2-a)^{-1}=\exp \left(T_{1}\right) \cdot \text { constant }_{2}
$$

## Problem 2

- By simplifying the whole term

$$
\begin{aligned}
& \frac{a^{2}}{(2+a)(2-a)}=\exp \left(T_{1}\right) \cdot \text { constant }_{2} \\
& \hline \frac{a^{2}}{\left(4-a^{2}\right)}=\exp \left(T_{1}\right) \cdot \text { constant }_{2} \\
& \frac{1}{\left(\frac{4}{a^{2}}-\frac{a^{2}}{a^{2}}\right)}=\exp \left(T_{1}\right) \cdot \text { constant }_{2} \\
& \frac{1}{\left(\frac{4}{a^{2}}-1\right)}=\exp \left(T_{1}\right) \cdot \text { constant }_{2} \\
& 1=\exp \left(T_{1}\right) \cdot \text { constant }_{2}\left(\frac{4}{a^{2}}-1\right) \\
& \exp \left(-T_{1}\right) \cdot \text { constant }_{2}=\left(\frac{4}{a^{2}}-1\right) \\
& \exp \left(-T_{1}\right) \cdot \text { constant }_{2}+1=\frac{4}{a^{2}}
\end{aligned}
$$

## Problem 2

$$
\frac{1}{1+\exp \left(-T_{1}\right) \cdot \text { constant }} 2=\frac{a^{2}}{4}
$$

$$
\frac{4}{1+\exp \left(-T_{1}\right) \cdot \text { constant }_{2}}=a^{2}
$$

$\frac{2}{\sqrt{1+\exp \left(-T_{1}\right) \text {.constant }} 2}=a$

$$
A=\frac{1}{2} a \exp (i \phi)
$$

- Since
- W.R.T $T_{1}$

$$
A=\frac{1}{2} a \exp \left[i \phi\left(T_{1}\right)\right]
$$

- By placing the value of "a"

$$
\frac{1}{2} \frac{2}{\sqrt{1+T_{1} \exp \left(-T_{1}\right) \cdot \text { constant }_{2}}} \cdot \exp \left[i \phi\left(T_{2}\right)\right]
$$

$$
u_{0}=A \exp \left(i T_{0}\right)+\text { constant } \Rightarrow \frac{1}{2} \cdot \frac{2 \exp (i \phi) \exp \left(i T_{0}\right)}{\sqrt{1+T_{2} \exp \left(-T_{1}\right) \text { constant }}}+\text { constant }
$$

## Problem 2

$$
u=\frac{4}{1+\operatorname{constant}\left(T_{2}\right) \exp \left(-T_{1}\right)} \cos t=0(\epsilon)
$$

Which shows the initial condition $u(0)=a$, and $u(0)=0(\epsilon)$, so for the smaller scale $\epsilon^{2} t \mid$ has not been reflected in above solution.

