

One Dimensional State Space

Lecture by: Dr. Zeba Israr

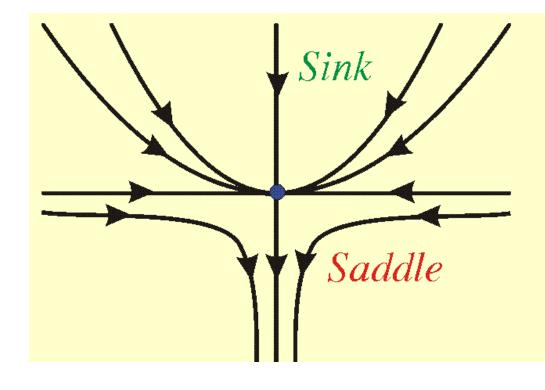
Lahore College For Women University, Lahore.

One Dimensional State Space

In one dimensional phase space there are three types of fixed points.

- 1. Nodes
- 2. Repellors
- 3. Saddle points

Nodes


Nodes are fixed points that attract trajectories.

Repellors

Repellors are fixed points that repels trajectories.

Saddle points

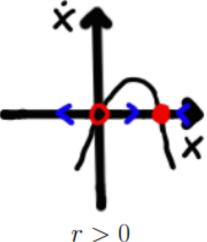
Saddle points are fixed points that attract the trajectories on one side and repel them on the other side.

Nodes (Attractors)

Let us consider a point x_0+x just right of fixed point x_0 as shown in the figure. x_0 is the point on which trajectory is cutting the x-axis. Since, x is +ive. Now if we move from left of the ' x_0 ' to ' x_0+x ' the trajectory becomes more and more -ive. Then the fixed point s known as attractor.

If $f(x_0+x)$ is -ive then 'x' is -ive that means derivative of $f(x_0+x)$ is -ive.

$$\frac{\mathrm{df}(\mathbf{x})}{\mathrm{dx}}\Big|_{x=x_0} = \lambda < 0$$

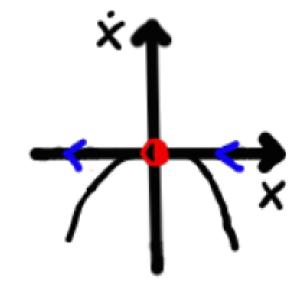

r < 0

The value of this derivative at fixed point is called the characteristics value or eigen value. So, $\lambda < 0$ for attractors.

Repellors

If $f(x_0+x)$ is +ive then 'x' is +ive that means if we move from left of the 'x₀' to 'x', the trajectory becomes more and more +ive. Then the fixed point s known as repellors. For a repellor, this can also be said that the values of the derivative of f(x) with respect to 'x' is +ive at just right of fixed point.

$$\frac{\mathrm{df}(\mathbf{x})}{\mathrm{dx}}\Big|_{x=x_0} = \lambda > 0$$



In figure the point where red circle is marked is known as **repellors**.

Saddle Points

A fixed points which attract the trajectory on one side and repel the trajectory on the other side, **then the fixed points is called Saddle points**.

$$\frac{\mathrm{df}(\mathbf{x})}{\mathrm{dx}}\Big|_{x=x_0} = \lambda = 0$$

Here, the Eigen value is zero.

In figure the point where red circle is marked is known as saddle points.