# Solar Energy Presentation







# Recap/Agenda





### What is Solar Energy?

- Solar Energy is energy (light or heat) that comes from the sun
- Solar Energy Examples
  - What makes your car hot when it is parked in the sun?
  - What makes your solar calculator work?
  - What makes plants grow?
  - What makes the solar panels work on the roof of your school?





### Forms of Solar Energy

- There are two basic categories of Solar Energy:
  - 1) Solar Thermal- Using the sun's energy to heat things like your house, water, food, etc.



7) Solar Electric- Turning light from the sun directly into electricity, using solar panels.





### What is a Solar Panel?

- Solar Panels are commonly called Photovoltaic Panels (PV Panels)
- Photo means light and voltaic means electricity.
- Photovoltaic panels are made from Silicon which is the same material that makes up sand.
- Silicon is heated to extremely high temperatures at a factory, and then formed into very thin layers
- When the sunlight hits the PV panel, it moves around tiny particles of silicon called electrons.
- The silicon electrons travel though the wires that are built into the PV panel to create energy!



## Sunlight's Affect on the Earth

- The earth rotates on its axis which creates the change from day to night.
- •The earth's axis is at an angle of 23.5 degrees, this tilt creates seasons.







### Solar Collector Position

- So the optimal tilt angle for solar panel for a certain month/season is based on:
  - Season
  - The location (North/South) on the planet





## How do you conserve energy?











### Solar Thermal Design



- PV panel will collect the solar energy and convert it into electricity to be stored within the battery
- The battery will operate the pump device which will force liquid through the system
- The liquid runs through the solar collector, collecting heat from the sun and then flows through the worm bin transferring heat to the compost
- Thermostat will be used to control the temperature and keep the worm bin within the desired range

# Solar Thermal Design

#### **DESIGN POSITIVES**

- Simple Design
- Inexpensive

#### **DESIGN NEGATIVES**

- Complicated piping system
- Leakage may create overall energy losses, environmental

concerns, and even safety hazards

- Difficult to build
- May need to hire experts for help to build the system





### Solar Air Collector Design



- The collector portion will be attached to the roof
- Tubes or pipes will run down from the collector portion to the worm bin
- Two PV panels will be used to collect energy and power a fan
- The fan will circulate warm air flow to the worm bin



### Solar Air Collector Design

#### **DESIGN POSITIVES**

- Extremely Efficient!
- Only 2 PV panels required
- Inexpensive
- Materials are easily obtainable
- System can be built by the team

#### **DESIGN NEGATIVES**

- Design will not be able to run on cloudy days
- Design will only run for an average of three hours per day





### Final Design Choice: Solar Air Collector

This design is better than the other designs in the following categories: cost, operating cost, energy consumption, delivery date, weight, size, and quantity







# Design Process



# Questions?





## How do you conserve energy?









