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Development of the Fourier Transform
Representation of an Aperiodic Signal

To gain some insight into the nature of the Fourier transform representation, we begin by
revisiting the Fourier series representation for the continuous-time periodic square wave
examined already . Specifically, over one period,

_ 1? M{TI
M) = [0, T, <|f| < T2

and periodically repeats with period 7', as shown in Figure 4.1.
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Figure 4.1 A continuous-time periodic square wave.
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As determined already the Fourier series coefficients a;, for this square wave
are

B 2 Sin(k(UﬂT[}

kwoT “.1)

Ak

where wy = 27rIT.

An alternative way of interpreting eq. (4.1) is as samples of an envelope function,
specifically,
2sinwT

Tay = — : (4.2)

w = -kl'.l.iu

That is, with @ thought of as a continuous variable, the function (2 sin wT)/w represents
the envelope of Tay, and the coefficients a; are simply equally spaced samples of this
envelope. Also, for fixed T, the envelope of T'ay is independent of T
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Figure 4.2 The Fourier series co-
efficients and their envelope for the
periodic square wave in Figure 4.1 for
several values of T (with T; fixed):
@ T =47, b)) T =87, (c) T =
167,.
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In Figure 4.2, we

again show the Fourier series coefficients for the periodic square wave, but this time as
samples of the envelope of Tay, as specified in eq. (4.2). From the figure, we see that as

T increases, or equivalently, as the fundamental frequency wy = 2#/T decreases, the
envelope i1s sampled with a closer and closer spacing. As 7" becomes arbitrarily large,
the original periodic square wave approaches a rectangular pulse (1.e., all that remains 1n
the time domain is an aperiodic signal corresponding to one period of the square wave).
Also, the Fourier series coefficients, multiplied by T, become more and more closely
spaced samples of the envelope, so that in some sense (which we will specify shortly)
the set of Fourier series coefficients approaches the envelope function as T — .

This example 1llustrates the basic idea behind Fourier’s development of a represen-
tation for aperiodic signals. Specifically, we think of an aperiodic signal as the limit of a
periodic signal as the pertod becomes arbitrarily large, and we examine the limiting be-
havior of the Fourier series representation for this signal.
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In particular, consider a signal
x(#) that is of finite duration. That is, for some number Ty, x(¥) = 0if || > T, as illus-
trated in Figure 4.3(a). From this aperiodic signal, we can construct a periodic signal X(r)
for which x(¢) is one period, as indicated in Figure 4.3(b). As we choose the period T to
be larger, () is identical to x(f) over a longer interval, and as T — o, %(¢) is equal to
x(1) for any finite value of ¢.

x(t)
r\—/\l
—T‘! T‘I t
(@)
x(t)
—2T —T —-T, 0 T4 T 27 t

(b)

Figure 4.3 (a) Aperiodic signal x(f); (b) periodic signal x(t), constructed
to be equal to x(t) over one period.
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Let us now examine the effect of this on the Fourier series representation of %(f)..
Forinterval —T/2 = t = T/2, we have

=+ G
)= > apelt, (4.3)
k=—m
T2
a; = lJ 7(t)e TR0t gy, (4.4)
T ) rp

where wg = 2m/T. Since %(t) = x(t) for |t| < T/2, and also, since x(t) = 0 outside this
interval, eq. (4.4) can be rewritten as

1 T2 ” 1 o .
a, = — x(r)e /*dr = —[ x(r)e /Mgy,
T J—m T

—OC

Therefore, defining the envelope X(jw) of Tay as

4o

X(jw) = J x(f)e /@' dr, (4.5)

—o
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Therefore, defining the envelope X(jw) of Tay as

4

X(jw) = J x(De J@'dr,

—a

ﬂ. — } w

Combining eqs. (4.6) and (4.3), we can express X(f) in terms of X(jw) as

+co

W0 = > 2 X(jkoge,
k=—o
or equivalently, since 27/T = wy,

+
) = % > X(jkwo)e! o wy.

k=—c

(4.5)

(4.6)

4.7)
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Figure 4.4 Graphical interpretation
of eq. (4.7).
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As T — =, X(t) approaches x(f), and consequently, in the limit eq. (4.7) becomes a rep-
resentation of x(7). Furthermore, wy — 0 as T — <, and the right-hand side of eq. (4.7)
passes to an integral. This can be seen by considering the graphical interpretation of the
equation, illustrated in Figure 4.4. Each term in the summation on the right-hand side is
the area of a rectangle of height X(jkwg)e’**" and width wg. (Here, 1 is regarded as fixed.)
As wy — 0, the summation converges to the integral of X{(jw)e/*’. Therefore, using
the fact that x(¢) — x(¢) as T — oo, we see that eqs. (4.7) and (4.5) respectively become

.

x(f) = %J X(jw)e! dw

—

and

(4.8)

(4.9)
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Equations (4.8) and (4.9) are referred to as the Fourier transform pair, with the func-
tion X(jw) referred to as the Fourier Transform or Fourier integral of x(t) and eq. (4.8)
as the inverse Fourier transform equation. The synthesis equation (4.8) plays a role for
aperiodic signals similar to that of eq. (3.38) for periodic signals, since both represent a
signal as a linear combination of complex exponentials. For periodic signals, these com-
plex exponentials have amplitudes {a}, as given by eq. (3.39), and occur at a discrete set
of harmonically related frequencies kwg, & = 0, =1, *2,.... For aperiodic signals, the
complex exponentials occur at a continuum of frequencies and, according to the synthesis
equation (4.8), have “amplitude” X(jw)(dw/27). In analogy with the terminology used
for the Fourier series coefficients of a periodic signal, the transform X(jw) of an aperiodic
signal x(¢) is commonly referred to as the spectrum of x(t), as it provides us with the in-
formation needed for describing x(f) as a linear combination (specifically, an integral) of
sinusoidal signals at different frequencies.



Relation between o, and X (jw)

Based on the above development, or equivalently on a comparison of eq. (4.9) and
eq. (3.39), we also note that the Fourier coefficients a; of a periodic signal #(f) can be
expressed in terms of equally spaced samples of the Fourier transform of one period of X(f).
Specifically, suppose that %(t) is a periodic signal with period T and Fourier coefficients
ay. Let x(f) be a finite-duration signal that is equal to X(f) over exactly one period—say,
fors =t = s+ T for some value of s—and that 1s zero otherwise. Then, since eq. (3.39)

allows us to compute the Fourier coefficients of ¥(7) by integrating over any period,
we can write

dp, =

1 s+ T _ 1 s+T |
TJ #(1)e kv dp = T[ x(r)e ke gy
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Since x(f) 1s zero outside the range s = t = s + T we can equivalently write

a —l " ‘fkfﬂufd
(= 7 x(t)e 1,

Comparing with eq. (4.9) we conclude that

l

o = 7X(o) 4.10)

w = ki

where X(jw) is the Fourier transform of x(f). Equation 4.10 states that the Fourier coef-
ficients of X(t) are proportional to samples of the Fourier transform of one period of X(r).



Example 4.1

Consider the signal

x(1) = e “u(t) a=0.

From eq. (4.9),
® 1 |7
] = at ,— jui - —{a+ jw)t
X(jw) L e Te 1dt — ij ﬂ
That is,
) 1
X(jw) = , a>0.

a+ jow
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Since this Fourier transform is complex valued, to plot it as a function of @, we express
X(jw) in terms of its magnitude and phase:

1

Ja* + ?

Each of these components is sketched in Figure 4.5.

Note that if a is complex rather than real, then x(t) is absolutely integrable as long
as Refa} > 0, and in this case the preceding calculation yields the same form for X(jw).
That 1s,

X(jo)| =

. 4X(jw) = —tan”! (E)

a
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Figure 4.5 Fourier transform of the signal x(t) = e~*u(t),a > 0, consid-
ered in Example 4.1.



Example 4.2

Let
x(H) =e a>0

This signal is sketched in Figure 4.6. The Fourier transform of the signal is

4 5 0 %
X(jw) = J e~ Mpmiwl gy — [ ele I dt +J e eT M dt
Cw - 0
1 1
= —
a— jw d-+ jw
B 2a
a’ + w?

In this case X(jw) is real, and it 1s illustrated in Figure 4.7,
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Figure 4.6 Signal x{(?) = e 9! of Example 4.2.
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Figure 4.7 Fourier transform of the sianal considered in
Example 4.2 and depicted in Figure 4.6.
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