Chapter 1 5

Continuous Time:
First-Order Differential
Equations

In the Nomar growth model, we have solved a simple differential equation by dircet inte-
ko, For more complicated dillerential equetivns, there are various establistred methids
of selution. Fven in the {arer cases, however, the fundsmental idea underlying the methods
of solwtion 15 st the techmiques of imtegral caleulus, For this reasen, the solubion Lo a
differentigl equanion is often referred w as the meegrad of that cquation.

Only free-onder differential aquations will be discussed in the presem chapter. In this
conicak, the word order reters to (the highest ceder of the derivarives (or differenoals)
apprearing in the differencal equation; thus a Grst-order diffcrential equation can contain
oy the firgt dermeatrve, say, ol v /o,

15.1 First-Order Linear Differential Equations with Constant
Coefficient and Constant Term

The fitst derreative ofv /it is the only nne Qe can appear in 1 ficst-order dillzrenoal equs-
iwon, but it may enter in variows powers: fefde, (dyfdTE, o oyl The bighest power
altained by he denvative in the equaliom is reforred to as the deoree of the differenrial
equation, In ¢ase the detivative dodds appeary only in ihe first degres, and so does the
lependent vanable v, and furthermore, ne produect of the form w(dv/de) oocurs, then e
vquation is said to be dmewr: Thus 2 Frst-order linear Jifferential equation wall generally
take: the Fowan

i

-I..l p— r
~ oty = wir) {15.7)

| Mote thiad the derfvative term dp/dt in {15.1) has a unit coafficient, This is mot to imphy 1Rad it e
vy artuily hawe a ¢oeflicient other tham one, but when sucha coefcient appears, we can alwhys
“normalize” Ihe squation by dhiding sach term by the sald coefficient. For thiz reason, the form
green in {1513 may renelheless be reganded as a general represendatign.
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where ¢ wiul w are iwo [unctions of 1, as is p. In contrast o dyfde and v, howescr, no
restrictign whatsoever 15 placed on the independent variable 2. Thus the funchions i and w
may very well represent such expressions as 2 and = or some move complicated funetions
of & on the other hand, @ and w may als0 be constanis,

This kst psint leads us to 3 farther ¢lassification. When the function u tthe coefhicicnt of
the dependent vanable ¢) is a constant, and when the functiom w is a constam additmve tenn,
{15.1] reduces to the speeial case of a firgt-order linear differential equalinn with civvicns
cerefffert and comstans terw. In this secton, we shall deal only with this simple varicty of
differenlial equations,

The Homogeneous Case

LE 5 amd v are constunt funetions and iFw happens 1o be identically zevo, {1317 will become
)
— +ay =10 15.2
Ty (15.2)

where g is sorme constant, This differential squation is said Lo be komogeneous on secount
ol the zero constant Term [compare with homuogengous-equatum systems). The delining
characterisne of a homogeneous cquation is that when all the variables there, v /s and y
ne2 mltiplied b a siven constaot, the equaticn cemnaing valid, This characioristic holds if
1he conslant lerm is 7cro, but will e lost 1 the constant term is not zune.

Equation ¢ 15,3 con be wrilen allematnely as

ldv
¥oar
P you will recogmize that the differeniial equation (14.16) we met in the Domar mode| 15

precisely of this form, Therefors, by analogy, we should b able o write the soiution of
152y o¢ [ 15.7) immedietely as follows:

EOGEY " Fenered solaion| {13.3)
o ¥ii) = vile [definite solution] {15.3

Io (15.3), there appeacs an arbitrary constant A, therefury it 2 gemerul sodierfon. When any
particular valoe is subsiituted for A, the solution becomes a pariivuder sofutfor of (15.2).
There is an iofiniwe number of parmicwlaz solutons, one for cach pessible value of A, in-
cluding the value {0}, This latter vahw, hovwever, has a grecial signiflcance: ¥( is the
phly valne that con make the solution satisFy the initial condition, Smce this represents the
result of defnitizag the arbacrary constenl, we sholl reler b [15.537) as the oefiaite mafufior
of the differential equation {13.2) ot (13.7},

You shiwld observe two things about the solution of a differential equation: (1) the selu-
tiom is nota numencal value, bl rather a function w(6)- atime path if 2 spmbolizes time; and
{2y she solution ) is free of any dervative or Jiffecential eapressions, sothat as soon s a
speciie value of ¢ s substiuned nlo it, & copresponding valpe of'y can be calculated dirsctly,

-z (15.2)

The Nonhomogeneous Case

When a ponsero conseant gikes the place of the zero in {15.2), we have 3 nonhomogeneouy
linear ditferznnal equation

&y
N +tav="4 {154)
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The solution of this equation will consist of the sam of two forms. uee of which is called
the complementiony funcéion (which we shall denote bre 3,0, and the other ks as e
pirdicudor ntered {00 be denocd by 350, As will be shown, each ol these has a sisnificant
peeMiotic wilerfiahen, Here, we shall presant only the methad of sulution; s mtionale
wi|| become clzar later.

Even though our abjective 1 o solve the sorhomogeneous equatiom {15.4), frequent|y
we shall have 1o reter to it homwgeneous version, as shown in (85,2, For convenient ref-
crence, we call the latter the redfeced eguwation of (15.4). The nonhomwogencuus cyuatinn
(F5.4) ilself can accerdingly be referred Lo as the complere ogratron. Lt Wims ot Lhat ehe
complemeniary function p. is nothing bul the general solation of the reduced equation.
whereas the particular integral v 15 simply aar particular solution of the complele
£quation,

Owr discnszivn of the homogeneous cass has alneady piven ws the seneral solution of the
reduced cquanon, and w2 may thersfore write

Po=Ae™" [hy (15.3)]

Whar aboud the particular integral? Since the particular inlegral i aup particular sobution
of the cornplete equation, we can Rrst iy the simplast possible type of solution, namely, ¢
being some constant | y = k). Tf ¥ s 4 constani, thea it folows tha dv/dr = 0, and [15.4)
will become gy = b, with the solwion v = bfa. Therefore. the comstant sdminm will work
as long as g £ 0, Lo that case, we hawe

fr
Py = - te = M}
! it

The swin of the complementary function and the particular integral then consuiues te
perwrul solution of the complete aquatton (15.4):;

B .
Mil=p 4 b=de™ + . feeneral solution, case ofg 201 (15.5)

What rkikes thiz a penerl soletion is the presence of the arbateary constanl 4. We maw.
of course, detinitize this consiant by means of 4n initial condition. Let vs say that p takes
the valne W0} when £ = (0. Then, by seting ¢ = 0 in (15.5), we find that

b
¥ilh=A+- and A=~ é
il i
Thus we can rewtite {15,5) inta
h f1
ﬂﬂ=PwL7Jf”+; [definite solwtion, case of ¢ £ 0] {15.5")

1t should be noted than dhe wse of the inital condition s definitize the arbitrary constant
1e—and should be—undertaken ax the final slep, after we have lound the general solution
to the complele equation. Sinee the values of both y, and 1, ace relaled (o Lhe valboe of 300,
both of these st be 1aken into accoumt in defmitizing the constant 1.

Sobve the equabion dp/dt + 2y = 6, with the imibial condition w0) = 10, Hare, we have
=2 ardl b= 6; thus, by {15.57, the salution is

KO =D -Fe¥4+3=7¢ ¥ +3
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Example 2

Example 3

Sobve the equation dyfdt + 4y = 0, with the initial condition W0} =1. Since a=4 and
b =8, we have

W= -0t +o=¢"
The same answer could have been obtained lrom {15.3'), the formula for Lhe homegeneous
case. The homogeneous equation {13.2) 15 merely a special case of the nonhomogenésus

eguation {15.4) when b = 0. Consequenthy, the fonmula (i3, 3') is also a speclal case of for-
mula {15.5y unger the (irgumstance that b =10.

What if o = 0, 50 that the solwiion in 1557 is undebned? In that case. the differential
cquation is of the excremely simple form

o
—=£ 15.6
= 115.6)
Dy srgipht imegragon, its general solwtion can be readity found w be
vifp=M+c {15.7}

whete o i an arbilary constant. The twog component terms in [(L5.7F) can, 0 fact, again be
identificd as the complememary funchen and he paticular mitegral of the given Jifteren.
tial equation, respectively. Since a = 0, the complementary function cap be expressed
sirnply a5

yo=Ae™ = A = A { 4 = an artbabrery constand)

Az to the pacticular integral, the (e that the constant soloon ¢ = & Fails (o work in the
present caze of 4 = 0 sugpens that we shonld wry mstead a soncorszant soldion. Len us
consder the sitplest possible type ol the laver, namely, y = ke IFy = kf thendpfdt = &,
and the complete equation ([3.6) wull veduce 10 & = . 50 that we muy winte

Fo=M (a2 =1
Owr new trial solodion indesd works! The wered saluton of (13.4] s therefin
i =pty.= A4+ [gonemlsolmion, case of g = 0] (15.7)

whichis identical with the reselc in (| 3.7}, hecause ¢ and 4 are but alernative notmions fur
s arbyteyry comstant. Note, howeser, that in the present Case, ¥, 83 constanl whereas 1, 1=
a function of ime—the exact apposite of the sitwtion ing | 3.3}

By definitizing the arbiteary canstant, we fod the defindte solution 40 be

Aty =yt + & [definite solution, caseof a = 0] (15.7)

sohee the equation dyfdr=2, with the mitial condition (0} = 3. The solution i, by
{157,

Mid=5+2

Verification of the Solution
Lt is thue of 4l solutivns of differential equations that thew validity coan always be checked
by differenitwation.
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M wa by Mt on the solution 115,57, we can obtain te derivative

ay O L
—_— = = —_ = '
el M il :

Whon shs egpression for o v/t and the eaprossion For vir} as shown in {15.5 ane subsii-
tutedl i the left side af the differentia) equation (13.4), thae side should reduce exactly
0 1he valuc of the constant 1crm £ on the right side of (1343 i the solwion s careeet,
Performing (his substitution, we indeed find thal

. A
o e t

Thus oor solutton 15 correct, provided it alse satisfes e initial conditon. To cheek the
later, ten us gen ;= 0 i the soluldon (15,5 Sioee the result

f f
v = [ﬂ:m - —} = = p0)
i ¥

15 an 1dentity, the mitial conditian is tndeed satisliod.

It is reenmmgnded e, 3: 2 final sep in the process of solving a differenuial couation.
wiou make 1L 8 halat o check the validiy of your answer by maaking swee (13 tha (he deiv-
atrve of Uhe finee path 1t} is consistent with the given dillerential equaton oo (2] that Lthe
detinite solulion satishes the initwl condiloan,

EXERCISE 15.1

15.2

1. Fmdd §., yo, the general solution, and the defirite solution, given:
d

@ L rbe=13y0=2 X rrey=15u0=0

gy A i dy s _ Al

(B = -~ 2 = G y{0} = 9 (2 +4r =610 =13

2. Check the validity of your answers to Prob_ 1.
3. Frnd the solulicn of each of the following by wsing an appropriate fonmula develaped

in the text:

fﬂ]%ﬂz#l—'ﬁﬂj:ﬂ {ﬂ]%+3r=2;rm}=4
{b}%=33;:ﬂ{ﬂ]=l {e]z—lt'-?}a-;;ﬂn;..r
& 2 sy~ 0; 06 135 L6y =5:0) =0

4. Check the validity of your answer: to Prob. 3,

Dynamics of Market Price

In the {macra} Domar grovwth model. we sownd an application of the Aumageasons case of
Finggr differential equations of the first vrder, To il ustrate the mowdssmorraeous case, 1ot us
present admrcro] dynamic model of the market,
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The Framework
Suppase that, for 3 partcalir commadity, the demand and supphy funcions are as follows:

er=a-.ﬂP {.'Ilﬂ}n}

Uy=-y+iFf [y, 4 = 0] (15.8)
Then, aceording to (3.41, the exquilibrium price should be’
LBy .
= {= wirmoe positive comstant] 15.9
I P (15.9)

I it happens that the initial price {1 iy precisely atthe level ol P*, the markee sall clealy
be in equilibrium already, and no dynamic makysis will be needed. In the more interesting
case of P £ P*, however, A* is atlainable {if ever) only aficr 4 due process of adjust-
ment, during which not only will price change over time but 2 and £, being funclions of
P must chanpe over time 25 well. In this light, e, che price and quantity variables can e
be taken w0 be fatctions of e

Onr chynamic questisn is this; Given solliciant dime for the aujestment proces 1o work
itsell out, does il tend o bring price to the equilibrium lovel P77 That s, dovs the ene path
ity tend b comverge to P a5 — o0

The Time Path

To arewwer [his question, we must fiest find the time path £{7), But that, in o, MEUAres &
specific pefiee of prive change te be prescribod lirst Ln general, poce changes are gov-
erned by the relative sirength of the demand and supply forces in the market, Let us assur,
fow the sake of simplicity, tha the rate of price change (with respect 1 timeb al any momcat
is always directly propanional 1o the vucess diemand {2y — (4] provanling at thal momenl.
Such 2 paltern of change van be expressed symbolically as

dF
— =2 =D {15.10)

dt

where § represents o (constant) adiestmens coefficiend. With thiy pattern of change, we can
hawe P = O if and only if 7, = {3, In this coonection, it may he instryctive to nole
two senses of the term egurlibeinm price: the intertemporal setse (F betng constiml over
time} and the market-clearing sense ithe cquilibmium price heing one that equares @ and
(2. 3. I the present model, the two senses happen 1 coincide with each other. but (s may
not be troe of all models.

By virtue of the demand and supply functions i {15.8), we can express (15.10) specifi-
cally in the form

P

= e - APy - PV = ia+y) — HE P

7.
‘E? + B HP = e +¥) (15.10%

© Yl bave swite hed from the symbols o, by o, @) o {343t (a, B, 7, 4] here to avokd e possible
manfusion wath the use of ¢ and & a5 parameters in the diffevential equation (1545 which we shal
presently apply bo the market model.
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Since this is precisely in the torm of the difterential cquation {15.4), and since the coelli-
cient of P 13 nonzare, we can apply the soluton femgla {15.3") and wrte the solulion—ILhe
e path of price—as

x+y| - L Y
Py = Pilly - — |emf o 2
E [ ﬁ+5] E+4d

SR - Pl ™+ P by (159 k=5 +48]  (1511)

The Dynamic Stability of Equilibrium

Ln the end, the guestien ariginally posed, namely, whethar #{0} — P* a3t — co, amowms
to che question of whether che lirst term an the right of €15 11 will 1end o 2end a5 1 — 0.
Since P and P* arc both constant, the key factor will be ie exponeminl expression
e I view of the fact that & = 0, thai expression does tend to zero as ¢ — a0 Conge-
quently. on the assumptions of our model, the time path will indeed kead the price rowand
the equilibriun position. In a siuation of ihis s, where the time path of the relevant van-
able Pt ) comverpes oo the level £* interprescd hese in its cole a5 the intereemporal {rather
than market-clearing) equilibrmum—be equilibrium 15 said (o be dvnomicially srable.

The concept of dynamic stability is an important one. Tt uy examine it fucther w2
roore detaibed analysia of {151 1) Depending on the relative magmitudes of P and #*,
e sodution {15,111 really encompasses three possible cases. The first is {0 = F*, which
implizs f{ry = . Tno that event, the time path of price can be drawn 2 the horizontal
sticalght line m Fig. 15.1. As mentbioned earlier, the attainmend ol equikibrom is mthis case
i Eant accomnphi. Sccond, we may have P00F > 7. I thas case. the {irst e on the gl of
(1510} 12 positive, but it will decrease as the inereass in ¢ lowers the value of & *7. Thus the
time palh will appraach the uquilibnum level £* from above, s illustraied by the top corvg
m Fig. 151, Third, in the opposite case of 2000 < P, the aquilibrinm level P will ke
approached Irom hedow, as 1llusirated by the battom curve m the rame figare. In gencral,
o have dyrnamic stobality, the deviadion of the e path fom equilibrium muost gither by
wenbeally zem (i incase 1} or steadily decrease wath time {as incases 2 and 1),

A compatison of {E5-1 1 with (155" wells us that the #* term, the counlcepart ol &z,
i= nodhing bul the particular ntegral y,, whereas the exponential e s the (dehinitized)
complementary funciion y.. Thus, we now have an economic interpretaion ot . and
¥o! Py represents the fefertempond eqnlifrian fevel of the relevamt varable, snd | is the
deviafion from equilibrivm. Dynamic stablity requires the asymptole vawstung of e
complementary fmetion as # Becomas infite.

A

F
P 7 g o PHE =
P

Pl case o BT = P

Rl
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FIGURE 15.2

T this model, the particular integral is 2 constant, 5o we have 3 sfakfonor eguitbriam
in the intertemporal sence, reprezented by P, 11 the particolar intcgrat is nonconstan, s in
{15.7), on the ofher hund, we may inlerpret it as a sewing equifehrium.

An Alternative Use of the Moxlel

Whal we have done in the praceding is tn analyze te dynamic stability of equilibrium (ihe
convergence of the time pathy, given certain sign specifications for the parameters. An al-
ternative type of inquiry is: 1n order to ¢nsure dynamic stability, what spefic restnictions
izt be imposed upon the parameters?

The answer 10 that is contained in the sobitwn {15110, IFwe allow P{0} £ P, we see
that the first { 1) 1esmn in (15110 will tend to zere as ¢ — 20afand only if & = 0—tha I%,
ifand only if

Jig+d) =0

Thus, we can fake this last ineguality as the required restrxction on the parameters 7 i ihe ad-
justment ceefficient of pricek 3 {the negative of the slope of the demand curve, plosted with
O on the vertived axis), and § (the slope of the supply curye, plotted similarly}.

In e the poce adjwstment i3 of the "rormal™ type. with 7 = 0, s that excess densimd
drives price wp rather than down, then this restriction becomes merely (F 4 #1:- 0 o,
erquivalenthy,

&= =f
To have dynarnic stability in that event, the slepe of the supply must exceed the slupe of the
demand. When both demand and supply are normally sloped (—g <4, § = [, as in
{15.8), this requircmend is obviously met. But even if onc of the qurves % sloped
erversely” the condition may still be fulfilled, such a3 when & = | and —ff = 1/ 2 (posi-
fively sloped demand). The latter siluation is il lustrated in Fig. 15.2, where the equilibrium
price £ is, asusnal, determited by the point of intersection of the two corves. If the initial
price happens to be at Py, then &, (distance £ {r) will excaed {4, (distance £ F ) and the
cacess detnand (PG will drive price up, On the other hand, if price is initially a1 &, then

2

e —————— — = m=-

e e
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there will be a mepative excess denand MY, which will drive the price dowr. Asthe two ar
tcrw s 1n the figure show, therefore, the price adjusiment in this case will be tard the egui.
dibrium. oo matter which side of P we stanl from. We should eraphasize, lwwever, ihat
while these arrews cin display the direction, they are incapabdc of indicating the magniwds
of change., Thus Fuyz 132 is basically staie, not dynamic. in nature. gnd can seree only o
ilhustraie, not b replace, the Jynamic analysis presenied.

EXERCISE 15.2

1, i both the demand and supply in Pig. 15.2 are negatively sloped instead, which cyrve
should be steeper in order 1o have dynamic sabilty? Does your answer conform to the
aiterion § = —p?

£, Shew that {1510 can be rewritten 25 dF I+ MP - Pl = 0. Fwelet P - P2 = A
(agnifying deviation), so that dA ) dt = dP /o, the diflerential equation can be furlher
mewritten as
T4
E +EA =10
Firvd the time path 206, and discuss the condition for dynarmec stability.

3. The dynamic market model discussad i thes section is closely patterned afier the static
one in 5ec. 3.2 What specifle new Feature i responsible for transferming the static
mode inta a dynamic one?

4. ket the demand and supply be

dF
'D'u"_-i:l'—ﬂP'l'ﬂ'E ':.:IS:_:"'.-l"‘p {':'.-.ﬂr]'lfa::'ﬂ}
(a} Assurning that the rale of change of price over time is directly proporticnal to the
excess demang, hnd the bme path P{t} (general solution).
{&) What is the intenemporal equilibrium price? What is the market-clearing equilib-
riurm price?
{c) What restriction on the parameter o would ensure dynamic slabwhiy?
5. Lt the demand and supply be
dF
Qd=“_ﬁp_-'?"a'[j' Qi:ﬁp {ﬂfﬁrqrﬁ:}u]
{0} Assuming that the marked is cleared at every point of time, find the time path £{1}
(uenedal solution).
{t) Does this market have a dynamically stable intertemporal equiliorium price?
€c) The assuanplion of the present mods chat Gy = G, for all ¢ s sdentical with thar of
the static market model in Se¢. 3.2, Mevertheless, we still have 3 dynamic miodes
hare., Hiwi conmes

15.3 Variable Coefficient and Variable Term

In the more gencral case of 4 tirst-order lincar differential equation

de
E—-—ulr}y: wit) (13.12)
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Example 1

ufsy and wir) represent a variable coelficient and a sariable term, respectively, How do we
find the: tire path /) in this case?

The Homogeneous Case
For the homopenemus case, where with = 0, the solution is stil easy W obitain, Since the
differential equasion is in the firm

dy
el - = [} i 15.13
o + w11y ar ) & !} { }

we have, by integrating both sides im dutn “rith respect o f,

Leﬁs;ide=f- —d = ——an+r {assuming v == 0F}
¥ il

1

Right side = f —nf) dt = - j NiE) alf

Ton the larter, the infegraton process canaod be carricd firther because wir) has nol beewr
given a specifie form; thus we hava to settle for just a peneral intepral expresson, When the
b0 Biles ore equated, the resnlt is

Iny = —¢ —fu[!}dr

Then the desived  path can b2 obtained by king the mibilog of b v
J?L!}:Eh} =ty fui”n'_l: = HE--JI'uI':}.p'.' whese 4 =&~ (15.‘4}

This is the general solmion of the differential squatien (15.13),

Tor bighlighit the variablz nant of the cocffickent #r, ve have so far explicitly written
oul the argumeni ¢ For nefaional simplicity, however, we shall from here on omi ths
argurtient and shodhen 8000 10 &,

As compared with the general swlmtion (15.3) Jor the comstant-coefficient case. the only
modification in {15.14) is the replaccrment of the ¢ ™ expression by the mote complicated

expression ¢ Joit The rationale behind this chunge can be betier understood of we inter-
pret the of term in ¢ ™" as an intepral [a dd = a# {plas a constant which ean e absorbed
it thee A lermn, Smee 2 taised 10 2 constant power is again a constam). In this ligh, the Jdif-
ference between the two general sulutioms in fact tums 6o a satlarity, For in both cascs
we are takimg vhe copfficient o the p term in the differemial equation—a constant derm o in
one case, and a variable irm v in the other—and miegrating thar with respect v r, and thea
taking the negative of the resulling integral a5 he sxponent of ¢

Onee the general solution is obteined. il is 2 relatively simple matter 0 gef the delinie
solution with the help of an appropriate outial conditian,

Find the general solution of the equation %1— Iy =10. Here we have w=23l%, and
fudf=f 32 dr = 1} + . Therefore, by {15.14), vee My white the seluton as
pth= de = AP L= Bt where B = A¢

Observe thal if we had omitted the constant of inlegration ¢, we would have lost no

irfommation, because then we would have abtained Wi = Ae=", which is realty the identi-
tal solution since A and & both represent aitrary constants. In other words, the expression

¢, where the conslant ¢ makes its anly appearance, can always be subsumed under the
other constant A,
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The Nonhomogeneous Case

For the nonhomagensous e, where wis} £ 0, the solution B aot as easy o obtaitn, We
shall iry to find that solution via the concepl of exact differential vuations, o be discnssad
i Sec. 154, v does no hamm, however, to state the resull here Rrst; Given the differential
equation i 13123, e genetal solution ix

iy = e e (.d +fm=f“” d:) (15.15)

where 4 is an arbitrary constant that can be definitized o wa hive an appropriste initial
condition.

It is of interest that this genaral solwiion, like the solution in the congant-coeffisiene
ronstant-term case, again ¢onsists of vwo additive components. Furthermare, ane of s

e, :h?'Jr vl i nothing but the general solwtion of the reduced (homozencous) equation,
denved earlier in (13,14}, and i3 theretore it (he natuare of 2 complementary functior.,

Find the general selution of the equatien % + 2ty = 1. Here we have

H=2t w={ and fudi!:!'2+k {k arbitran)
Thus, by (15.15), we have

pif = g ( At f et d:)

= gt (.4 +é& fre*’dr]

1
= Agret ot (Ee'z +v:) [¢7ef = 1]
=-{Ae" + c]e‘rz + 12
— e +l where B = 4o~ f +cis arhltrary

2

The validity of this solutson can again be checked by difierentiation.

It a5 interesting to note that, in thiz example, we could 2qain have omitted the constant
of integration k, 2= well as the constant of integration ¢, without affecting the fmal sutcome.
This is because both & and © may be subsumed under the arbitrary constant & In the fnal
scrution. You are urged to try out the simpler process of apphing (15.15) without using the
constants k and ¢, and verify that the same solution will emerge.

dy

Sofve the efuation a + Aty =4t Thiz time we :hafl omit the constants of integralion,
Sinte

=4 w=4d4r and fu dt=21  [constant omitted)
the general solution is, by {15.15),
y(D) = e-“*(ﬂ + f 4t "'aft) =& {A+e™)  [constant omitted]

= Ae 3|2+1
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As may be expected, the omission of the constants of integration serves to skmpkly the pro-
cedure subslanttialh

The differentlal equation n'_J: +up=w in {1512} fs more gerwral than the equation
dy

% + oy = b in {15.4), since u and w aré not necessarly constant, as are a and b, Accord-

ingly, solution fonmula (15.15) Ts also move general than solution formula (13.3). Infacy,
when we sel = a and w = b, (15,15} should redece W {15.5). This is indeed the ¢ase. For
when we have

v=a w=Hh and fu L - gt [constant omitted)
then [15.15) becomes

Wt =p"’*[.ﬂ+{te" d!) =g "'(A+ge‘“] [constanl omitted ]

= A4 E
i)

which is identical with {15.5).

EXERCYSE 15.3
Solwe the following first-order inear differential equations; if an inited condition is qiven,
definilize the arbltrany cotnstant:
oy
1, — =1
T +3Y 5
dy
ay 3
| — =1l = =
3 dt+2[}r i; 0} 3

dy . 3
4, E+fr=5t"',ﬁﬂ}—£

d:l"l e _E
5. zdt+|z}r+ze =0 W) = 5
— —
6 r] +y=|

15.4 Exact Differential Equations

We shabl e niroduce the concepd of exact differential cquations and use the solution
mehiod pertaining thereta 10 obiain the solution formula (15,15 previonshy cited for the dif-
fevential equation 13,12, Even thongh tur immediale purjose is 0 use il to sobve o finear
differential equation, an exacrdifferntial cquation can be «ither linear or notlinear by itsell,

Exact Differential Equations
Given a function of two varables F{p, 1), ig wital differential 15

o aF ., aF
.:J'H}-,Ij-_-igﬂ"y+ - il
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When this differential is set cqual to 2evo, the resulling equakion

dF F

— @+ —dr=1

w
i known 35 an eeacr differentiof equation, becanse its lefi side is exactly 1he differential of
e fumetion £ v, £). For instance, given

Fip.th= 't 4§ (% aconstant)
the wtal differential iy
dF = 2etdy+ 1 dt
thus the differential eguatwn

2 dr
detdy4+ptdr=0 ¢ =+ —=1 (15.16}
il ¥
1% LNt
In greneral, a differenial cguation
Mdv+¥di =10 (15.17)

15 wxact it and only if there exists a functim F{x, 71 such thal M = aF /A and & =
thFfd¢. By Young thentem, which siles thn 32 F7ae A = 32 F p3p 81, however, we can

also state that (15171 is exact if and only if
dr g
- = H (15.18)

This last equation gives us a sinple test for e exactness of a dilfzrental cquation, Applisd
bo {15.16). where M = 2yr and & = v*. this test yields 4379 = 23 = AN £y thus the
exaciiess ol swd drferential equation is duly yerifed.

Mare that oo resirictions have been placed on the terms A7 and & wilh regard to thi: man-
ner in which the variable y ocours. Thus an exace differential equation may vory weil be
moviliager (in ¥, Nevertheless, it will always be oFthe first onder and the first degrec.

Being exact, the differcntial equation merely says

dF(y, 1) =
Thus its general solution shuld clearly be in the form
Flp.ni=¢

Tr solve an exact differential equation v basically, therelone, W aswch for the (pomitive)
fumetion 1y, 23 and then sei b eqoul o an arbidrary conslamt. Let us omline a metld of
finding rhig for the equarion 3 dv + N dy = 0.

Method of Solution

To begin with, ginge M = o F /iy, the Tunction # must coneain the integral of & with e
spext iy the varnable - hence we can write outa preliminary resuli—n a yot indeterniinatz
form—as follows:

Fir, ! =f|’h"d_r + ¥t (15.19]
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Example 1

Here M, o pardad derivative, 13 5o be integruted with respect w v only; that (s, 71s 1o be
treated as a constant 0 the (ALegration process. Jusd as i wis trenled 28 a constant in fhe par-
tia] diflerentiaion of £y, ) that resnlied in M = B, Since. in diferentiating Fiy. ¢
partially with resprul Lo 3, sy additive toim containing only the vaniable tand/or some con-
stants (bt with no v would drop oul, we must pow ke cale t reinstate such terms in die
imbepration procoss. Thiz explaing why we have introduced in {15,191 a general term &(r).
which, though not exaclby the same as 2 constaun of intagration, has o preciscly ilentical
role 1o play us the latter. [t is relatively casy to get [3 dy; but how du we pin down the
gxact form of Lhs ot} leem™

The irick is to wilizn the fact that N = { ¥/ A¢. Bul the procedure is bagt explainad wiih

the help of specific cxamphes,
Cobvz the exact differential equalin
2vt dv + yvidi=0  [reproduced from {15.16}]
Iry this equatlon, we have
M2yt and Nz

STep i By (15.19), we can first write the preliminary resuk
Fiy, = fzyr dy + W = L i)

Mote that we have omitted the constant of integration, because it can automatically be
merded into the exprassion yr{l).

ser i vee differentiale the result from Step 1 partially with respect to I we ¢an otdain

aF 2 ,
w =V + ()

Butsinge N = JF /3, we can equate N = y¥ and #F 3t = p2 + 98], to get
vin=0
Srev i Inteqrabon of the [ast result gives us
il = ;[ (0 d!-fﬂn'r=k

and now we have a specific form of Wit} 1t happens in the peesent case that ((f} is smply
a constant; more generally, it can be a nonconstant funchion of £,

STer v The results of Steps and ai can be comibened to yield
F{p =yt 4k

The wlulion of fhe exact differential equation should then be F{y, ) = ¢. But since the con.
stant k can be mergad into ¢, we may write the solulion simply as

ylt=c o H!}:cf'”l

where ¢ i arlptran

FLgmne witers employ the operator 5].-n:|l:m| F{- X d¥ o emphasize that the integration |3 with respect
[ only. Wie shall still wse the symbol | -« dy here, since there i Nttle possibility of corfasion.



Example 2

Example 3

Chapier 15 Comemairuy Fime Firpi-Order Digrentie! Equraniens, 459

Salve the equation (¢ + 2y dy + K+ 30 ft = 0. First ket us check whether this is an
exacl diferential equation. $atting M=t +2y and N = p+ 32, we find that 16/4t =
T =ittyity. Thus the equaticn passes the exaciness test. To fing ity solubon, we agan
follow the procedue outlined in Example 1.

Stern Appily (15 19) and write

Fiy, = f{f +2hdy + 90 = v+ ¥ + ¢ [comstanl menged into ¢ (1))
Sree i DIfferentiale this result with respact 1o 1 to get
F :
TSR {fh
Then, equathog this to W = p+ 32, we find that

Wity = 3t!
STEpBil  Integrate this last resulk 1o get
Wit = jsr’- di=8  [constant may be omitted]
TP v Combine the results of Steps i and il o gel the complete torm of the tunction
Fiy. tn
Flp. =yt + "+ 0
which impdies that the solution of the given differential equation is
RNy

You showkd venly that setting the totaf differential of this equaton equal to zero will indaed
produce the given differential equation,

This four-siep procedure con be used 1o s0lve Any cracl difereatial equation. Inicresi-
ngly, it may even be applicable when ihe viven equation is e exacs, To gee this, however,
we muest first indroduce the coneept of integrating Factor

Integrating Factor

Somwtimes an inexact differential equarion can be made exact by multiplying every term of
the equation by a particular common Factor, Such 3 1acior is called an inngrating fuctor

The differentual equation

Zldy+pdi=0
is not exact, because it does oL satisfy (15 18);
a4 Ll B
—_—— = _— = — = ]
at ﬂtuﬂ 2 ity l':l}"{ﬂ

Howaver, if we muolliply sach kerm by v, the given equation wall tumn kita (1 5.16), which has
been eslablished to be exact. Thus p is an integrating kactor for the difterential equation in
the present axample,
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When an integrating factor can be found for an mexact dilferent | oquation, 1L 1: always
povssible 1o wender it exact, and theo the four-step sohmion procgdure can be readily pot
tis e,

Solution of First-Order Linear Differential Equations
The general First-order linear ditTereniial equation

dv _
yy +uy =h

which, i the furmat ol ¢15.17), can be ¢xpraswed 45
dv+imy — whdt =0 (15200

liz= the intuyraling factar

ol = cap ( f ot u‘r}

Thix integratng fuctor, whose form is by no means intitively ohvious, can be “discov-
erad” s {ollows. Let | be the (yel unknowen) integrating factor. Muluplicaton of (15,20
throwgh by £ should conyert it imio an exact differential oquatum

~_.L dy+ Hup—w) di =1 (15.20"

-‘--' N

The cractness tod diclates that 8 M5 = 85 f8v. Viswal imspection of the A and N
axnpressions suggests that, since M consists of Janly, ad sinee w3l v are fupctions of §
along, the axarmess est will rednce w0 very simple condition if £ is also a function of
falone. For o e test 33 dr = 3N /3 hecomes

df d? fdr
— =1 o
dr
Thus the special lorm £ = Fir) can indeed work, providad i1 has a rate of growth coqual to
a0, of more explicitly, wfi), Accosdingly, (41 shoukd wake the specific form
fiah = Ael*¥ [ef (1513 and (15.14)]
As can b eagily verified, however, the constant_1 can be set equal o 1 without affccting the

ahility of Fir} 10 mee1 (he exaceness st Thas we ean use Lhe simpler form :-Jr " ag the

g Talmge fAcLor.
Subytitution of this integrating factor inte £ 1520 vields the exact differential cquaion

ol gy Py e = 1 (15.20")
which can then be solved by the Four-slop procedure.

STer i Farst, we apply {15.19) to abiain
HAE f*’fu‘" dy -+ Wity =yl “ 4 ()

The result of integration emenges in thls simple form becayse the integrand is independen|
of tha variable .
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STEPT Mext, we diterentiate the result lrom Step i with respect ta £ to get
% = el ) [chain rule]
And, since tis can be equated to N = &f “F{uy — w), we have
w'{ = AEL
STR i Straight ntagration now wiekds

w{rl=—fwt«f“"‘a‘r

Irasmuch as the funchons i = Wf) and w = wit) have not been given specific forms, nodh-
ing further can be dore about this inkegral, and we must be contented with this rather

genersl expression for y{t).
Stepiv Substitutinng this (¢} sxpression nto the resoll of Step i, we find that

Fey, b = rej”uﬂ_fw&fum "

S0 the general solution of the exacd difierential equation (15.20™—and of the equivalent,
though inexact, Kirst-order linear diferential equation {1 5.200—is

}'.E.III-HFT - f wfrl'"um |,ﬂ =¢

Lipon vearrangsenent and substitution of the (aridirany constani) symibol © Ly A, this can be
written a3

WD =E-J“*(..q +jwa'r”'“ﬂ't‘) (15.21)

which is exactly the result given earlier in {15.15).

EXERCISE 15.4

1. Verify that each of the folowing differential equations is exact, and sokve by the
tour-step procedurs:
() 2u® dy+ 3PP di =0
(0 3t dp+ (Y + 2 1 =D
(O 1+ 2P dp+ i1+t =0
{d) s + Zah
dr 472
2, Are the following differential equations exact? if not, try ¢, y, and p< as possible
integrating factors.
{d) 208 + D dy + 37 di =0
(B) 4yt du 4 (2y* = I ar =1
3. By applying the four-step procedure to the general exact ditferential equation
M Aty Mdi =0, derye the Ioliewing frmula far the general solution o an exact
cifferential equation:

judr+f”dt—f(%fﬂ'd}')dt=:

=1{  [Hin First compert (o the form of (15.17).)
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15.5 Nonlinear Differential Equations
of the First Order and First Degree

Example 1

I a fimear differential equatinn, we restrict 1o the fiest degree nol only the dernative dy /o,
but alsp she dependent variable y, and e do ot alloay the product p{dy/de) o appear,
When - appi-ars in 2 power higher than one, the equation beeomes moalinesy even il il only
centains the defivative o p/dr in Lhe frst degree, [n genecal, an equation n the fuem

fyydy +gip ) de=0 (15.22)
ar :3'
2 = h(p) (15.22)
et

whare there i n¢ restriction on the powery of - and ¢, constitutes 4 first-oeder firsi-degree
nonlinear differential equation becawse dyv 'dr 18 3 Graboeder dorivative in the firsy power.
Cerigin varetics of such equations can be solvad with relugve case by niote or kss rowtine
procedhires, Wo shall briefly discuss three cases.

Exact Differential Equations

The first is Uve now-farniliar case olexact differential equations. As was paintcd out earlier,
e p variable con appear in an €xact equation in a bgh power, as wn (153,06} 2prdp 4
b ulf = O—which you should compare with (15,220 True, the cancellauon of the cotumon
factor y tiom both teems on the fefi will raduce the equation to a lincar form, but the exact-
ness propetty wilt be lost in that event As ao cxacd differential equation. thercfore, it mus

be reparded as nonlinedr
Since the solution method for exact differcotial equations has alrcady been discussed.
mo Barther contmenl b pecessary here,

Separable Variahles
The diferendal couaton i (15,22}
frNdp+pive0di =0

miay happen 1o possess the convenient property thav the furwtion /i in the variable yalone,
while the function g mvolyes only the variable i, so that the cquation reduces to the special
foortnt
flrldp+gitide =0 (1523}

In such an svent, the varjables e suid o be yepuruble. because the terms inveling y—
consolidated into f1v}  can be matbematically separated from the lerms ivolving 1,
which ave collected under g(7), Tosolve this special type of equation. only simple: inkegra-
téon lechnigues are required.

Solve the equation 3p° dy — tot = 0. First et us rewrite the equation s
3 dy = td!
Integrating the twe sides (each of which is a differential) and equating the results, we get

7 1
ny-dy:{tdt o F]+C1=i[2+fg
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Thus the general solulion can be written as

3—'E+ or = 't*’- m
podiee o yio=(ierd)

The notatike poitd here is that the ntagration of ach term is performed with respect to
& citferent vanable; it is Lhis which makes the separable variable equation comparatively
easy to handle.

Sobve the equation 2t dy + v dt =&, At first glance, This differential equation does not seem
L belong in this spot, because it lails to condorm te the general form of (15.23). To be
spedfic. the coeffickents of dy and dt are seen to invohe the "wrong® variabbes. Howeyer, a
simple transformation—dividing thmugh by 2yt (< 0)—will rechuce the equation 1o the
separabbe-varable form

1 1

v oy + % gt =0

From our experience with Exarpla 1, we Canowark toward the solution {withaut first trans.
posing a tarm) as foligws:!
1 1
f; ay +,I.E ft=1¢

1
30 Iny+§lnf=-: o Ingp' N =«

Thuis the salution is
wE=F=k o ypih=p""
where k is an arbitrary constant, as are the symbols ¢ and A employed ebewhere,

Mote that, mstead of solving Lhe cquativn i Exzoaple 2 a5 we did, we conld also have
transiormed it first info an exact ditfercniial cquation (hy the tategrating factor v) and then
golved ir ag such. The solution, already given in Example | of Sec. 134, must of course be
identical with the one just obained by separation of vartables, The piint 1s that o given dif-
ferential equation can oflen be solyable o more thao one way, and thereiore tne naay have 2
choice of the method o be used In other cases, 2 diferential equation that i nat amcnable
to0 a particular method rody nonctheless become =0 alfier sn appropriale (DRSO

Equations Reducible to the Linear Form
If the iRerential equatlon o y/ofe = Ry, 1] happens ke the specific nonlinear form

Jdu

d_-r + Ry = 1" {15.24)
wiwre K and T arg pwd functions af ¢, and m &5 any oumber aher than 3 and 1 iwhat if
m = Qorw = |7} then the equation --referred 1o 25 3 Sermottl? equation—can always be

reduced 1o a lingar differential equation and be solved as such.

" In tha inagratgn result, we should, strctly speah ). hine weritten [n | 1] and % In|f].  pand £ can
be aisumed 10 be poutive, a4 is appropeiate Inthe majonin: of 8conomic contexts, then the result
gheer in the Leat will ocour,
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Example 3

Example 4

The eeduction procedure 1= relatvely simple. Firsl, we can divide (1324} by 7 15 ugt

{
J_.'_'“E + .E_]-'I_r"I -_— T

1F wo adopl 2 shorthand vanable = as follows:

then the preceding equation can be wiiken as
LI

—_— z=T

I —m gy t
Moreover, alter multiplying through by {1 — 5] &¢ and regresngings, we can Irnsioon (he
EaGLEALIINY FH

dz + {1 =mIRs =11 -m)¥T|dt =0 {15.24%

This 15 =een to be a frst-order linear differentisl cquation of ehe form {13.20), in which the
varigble = has taken the place of 1-,

Clearly, we can apply tormula {1321} o find its solutivn 20¢). Then. as a final step, we
can iranslate 2 buck vy by reverse substilcion.

Solve the eguation dyidl + iy = 3tw?, This is 4 Bemoull equation, with m = 2 (giving us
=¥ "=y "y R =1t and T =3t Thus, by {15.24'), we can write Lhe linearized difler-
ertial efuation s

Gr+(—ti+3trat=10
By applying formula (15213, the spluden can be found to be

(I = Ae:p{}ztz'} +13

[As an exercise, trace out the steps keadang bo this solution )

Since our primary interest fies in the selution v (£ rather than = {§), wa musl perform a
reverss transformation using the equation 2= ¥, ar ¥ = 21, By taking the reciprocal of
(1}, therelore, we gel

1
o= A_EJ-'.p {':tz} +3

a3 the desired solution. This is a general sobion, ecause an arbitrany constant A i present,

Sobve the equation dy/dt + {1/t y = v:. Here, we have m= 3 {thus z= v~2), B = 1/t, and
7 = 1; s the equation can be linearized inkg the form

d:+(%a+2)ﬂ't=ﬂ

As wal ¢an verify, by the use of formula {15.21), the sclution of this diflerential equalion is
Z{ty = Al 4+ 2t
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It ther follows, by the reverse tansiormation y = 772, that the general solution in the
onginal vartable is to be written as

W = (A + 22

Ag an exercise, check the vabdity of the solulion: of these last lwo axamgles by
differentiation.

EXERCISE 15.5

1. Deterrine, for each of the followin, (1} whether the variables are separable and (7}
whether the equation is inear or else can be lineanzed;

ay t
o 2ty + 2yt =0 — =-=
{a} 2t dy + 2y (c} i
e 2o VI g2
{b}FHdr-iherr—D w’dr*}“
2. Sphve (@} and [} in Prob. 1 oy separation of variables, taking ¥ and & to be positive.
Check your answers by differendation.

3. Solve {cin Prob, 1 2 a separable-variable equation and, alsa, as a Bernoull equation,
4. Sotve (dyin Prob. 1 as a separable-variable equation and, also. as a Bernowlll equation,

5. verify the correctness of the intetrmadiate solution £{1) = A* + 20 in Example 4 by
showang thal Its derivative dz/dt is consistent with the Inearized diflerential equation.

15.6 The Qualitative-Graphic Approach

The several cases of nonlinear dafferential equations previausly Jiscussed (exact differen-
bl g uacions, separable-variable eguations. dod Borooulli equations) have all been salved
guaniiiarivedy. That 15, we have In every case soughl and found 1 1ime path 1(r) which. for
gach valuc of o, telly the specibc corresponding valee of the varwble y,

At limes, we muy ool be able © find a quaniative sobulion from 2 given differential
equation. Yet, in such cases. i may nongthelass be possible (0 sscertain the guedirative
propertias of the me peth -— primwrily, whether ple) converges—by direcily vhserving thy
differenteal equaiion itself or by amalyzing s praph. Even when quantitalive selutions arc
available, motenver, we may soll smpdoy the techniques. of qualitacive analyses i1 he qual-
itagve aspect of the time path i our prineimal or exclusive concern.

The Phase Dlagram

Given & Grst-onder difforendal aquation in the weneral form

a¥

E = .,ﬂ_l-'ll

erther hnear ar nondmear i the varable », we can plod v fdr against v as in Fig 153, Such
A geometrs represcntation, feusihle whenever deydt 15 a funcrion of 1 alooe, s called 2
prhese elegrenr, ard the graph representing Uie funclion £ a phase fae. (& dillerenial cqua-
dion of this form—in which the Hime variable | dpes nod appear a5 0 separale anguimenl of
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FIGURE 15.3

el
ar

the function f—is said to be an amfortomons diflerential equation ) Once a phasa Tme s
knuw . its confipuration will impart significant qualitave information regarding the ime
path wiry. The ¢l tir this lies in the Folkowing two general remarks:

1 Amewhere afuae the horizontal axis {where oy /de = 00 7 must be ineneeang over lime
and, o far 3@ e v a%is is conocened, must be moving from left to nght. By analogous
reasoning, any point befew the honzontal axis musl be associaled with a lefiward move-
ment in e variable ¢, because the negativity of /it means thyt v Joercases overtime.
These dizectional tendencies explain why the arrowheads on the illusirative phise hnes
io Fig. 15.3 are drawn as they are. Above thi: honzonial axis, the arcows are wnifpnmly
Troirtend towird (e right—toward the northeast or seuthegat o due east, 2z the case may
be. The opposite is true below the 1 axis, Moreover, these results are independent of Lhe
algebraic sign of v; even il phase g A (or any other) s transplantad 1o the left of the
vertical axis, the dircetion of the ammows will not be affecicd.

T Anequilibrium level of y—in the intericimporal serse of the termm i exisis, can veeur
only on (e tiorizontal axis, where du/fdé = [ [ seationary aver Bme). To find an cu-
librium, therefure, it is necessary only 1w consider the intersection of the phase limg wirl
ihe v axis." To test the dynamic stabiliny of equilibriwn, an the wther hamd, we should
alse check whether, regardless of the imitial position of ¥, the phase line will always
gnigi it towsnd vhe cquilibiivin position al the said (imarsection.

Types of Time Path
O the basis of the preceding generat remarks, we may observe thee different types ol time
path from the illusrative phase dines i Fig, 15.3.

Phease line 4 has wn euilibrinm o paint v, but obewe as well a5 Hedow that pomd, te
arrowheads consistently lead oway from equaliboom. Thus, although equilibrium <ty be
atiained iFit happens thal 1(0) = p,. Ihi more wsual case af W01 & 3, wall resultin pbeing
ever-increasing [if vil) = p.] or ever-decreasing [if yi0b < 1] Besides. in this case the
deviation of v fiom ¥, tends 10 grow al n bereising pace because, as we fullow the
arrowhesads on the phase line, we deviai farther from the y axas, thereby encountenng ever
increazing numencal valies of 2y /dr as well. The time path 72 ) impiied by phase line 4
can thereliwe e represented Iny the curves shown in Fig. 15,4, where § is plisted against £
irather than dy/dr against ¥, The cquilibeium v, is dymamically unsteble.

* However, net all intersections represent equiibriom positions. We shall see this when wee disouss
phase §ne Ch Fig. 153
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Tir}y if)

Fo

1) ifin i)

[n contrast, phase line & implics o stable equitibrium ac gy, 1F 1900 = 1y, equilibrivm
prevails ar once. But the imporrart feakne of phase line & is that, even it v{0} £ vy, the
movement Mong the phase Line will puide p foward the bevel of pg, The 1ime path (£} cor-
responding to this type of phase ne showld theefors be of the form shown in Fig, 1548,
which 15 remindscem of te dynamie naarker model.

The preceding discussion suggests that, i peneral, i G he slope of the phase line al its
intersection point which holds the key 1o the dynamic stabilicy of couilibeinom or the con-
vergence of the mme parh, A {finile) positfre slope, such as at polnt v, makds for dyngonic
frrshaddfity; wheteas a (fimee] negative slope, such as at ., wnplics dvnaemic sabifiny

This peneralization can help us 1o draw qualiative inferences abowl given differential
equations withowl even plotting their phase lines. Take the lmear differemial equation in
{15.4), for instancs:

o o
E’:—J-I-*ﬂ_l’:b o dl=—uy+b

Since the phase line will obwiowsly have the {consiant) slope —e, hete assumed nonze,
we may immediately infer {without drawing the line) thal

COMVCIZCS 10 I
ezl &y I diveraes from ’eqmllbrmm

As we migy 2xpect, this result coincides pedfecily with what the quanbitative selution of this
cquation telly uy:

b b
¥ii) = |:y1'4}] - ﬂ o+ z [fromt {15.57]

We have [earncd that, starting from 1 nonequilibrivm position, the cooverpence of W)
hinges on the prosgrect Mt @™ = (g5 ¢ = o, Thig can happen of apd only if g = 0 if
a <, thén g™ — voast — o, and p(7} canngt comeerge. Thus. our conclusien 13 one
and the same, whether it is arrived at quantitatively or qualicatively.

It omaing o discuss phase ling O which, bemg 2 elesed loop sitting vorgss the hork
2otk | axng, does net qualify &s 3 farction but shows instead a refarion betwesn oy (it and
»." The interasting new element that erverpes in this cuse is the possibility of a periodicalfy
Auclualing time path. The way thol phase hine © i dewn, we shall find v Auctuating
between (he two values v, and ¥, m 3 perpetual metion. In order to penerate the periodic

* This can atise from a second-degree differential equation (dyrdi’ = oy



498 Fart Five  Drranmic Amolesds

Auclwation, the loop must, of course, straddle the homsontal axis i such a manner that
difdr can abemately be positive and nogative, Besides, af the two intersecuon pomnts k.
and ', the phase line shoutd have an infinfie shope; otherwise the interscetion will resem-
bz either ¥, o ¥y, neither of which permits a continual fow of amewheads. The type of
time path viry corresponding te ahis boped phase line 15 illusteated in Fig. b5 de. Noie that.
whenever i f) hits 1he upper Bound 7, o the lower bound -, we have el = @ (lagal
axmemigy; but these valuce certainly do non eepresem equilibriam values iy In werms
of Fig. 15,3, this means that not all intersections betsoon 2 phuse line and the v axis ape
equilibeiumn posiaan:.

In sum. for the study of ihe dyngamic siabiluy of equiliboorm (or the convergence of the
time path]. ooe has the alternatve cither of indimg e ime path Bisell or else of simply
drawing the imfercace lrom s phasc line. We shall ilustrate the application of the latter
appresach walh the Solow growth awdel, Heavelorth, we shall denote the interiempural
equidrhrivmm value af p by e, ax disbinet from @'

EXERCISE 15.6
1, Pigt the phase line kor gach of the followdng, and discuss its qualtiative mplications:

dy fy y
— —y-7 L =q4_L

W =y Wo=4-3
dy dy
—=1- Z=gy-1

{1 = 1~ 5y () T Gy

2. Plok Ihe phase line for each of Lhe folleweing and interpret;

(aj%:[yﬂ}l’—lﬁ (y = O
d},-_'l 3 .
fﬁjm—i." ¥ (p =

3. Given ay/dt = {y -3y - 5= i -8y 1k
(@) Deduce that there are two possible equalibrium bevels of |, one at p= 13 and the
Chier at y = 5.

) Fingl the sign 4
these? dy

(%J at y = 1 and y = 5, respectively. What can you infer frewm

15.7 Solow Growth Model

The greawth model of Professor Rebert Solow,” 2 Mobel laureare, is purporoed 1o show,
amony other things, thal the razors-adge prowth path of the Domar madel iz pimanly 4
resdlt of che partbicular production-funclion wssumption sdopted tharein amt that, wnder
alternatve ciccumskances, the need Lor delicates balanging may ool ars:.

The Framework

In the Domur madel, output is explicithy staced as a funchon of capital alome: & = oK {he
productive eanacity, or potential oulput. is 2 conslant mukiple of the stock ol capital). The

"Robed b, 5ol “& Conldbition to the Theory of Econamic Crowth,” Cuariedy fuuroal of
Foonomyiis, Febroany 1956, pp, 05-M,
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absence of 4 labor inpul in he prwduction fimction carmies the implication that bbor 14
alnays combined with capital in a fized proportion, so that it is feasible 1o consider cxplic-
illy only one of these faclors of produgtion, Solew, in contrast, seeka 1o malyee the case
where capinal and labor can be combined in varpine proportions. Thus his prodection
function appears in the form

whaere (} is output {net of depreciation), X ks capital, and L is labor—all being used in the
paere sense. I iy assumed that fp and [ are positive (positive marging] producisy. and
Juwand ) are negative (dininishing reums 1o each mpui). Furthermore, the production
fumction £ s taken tn be linearly homogeneous (constant reutns (o sele). Conscquently. i
is ponsible 0 write

K K

(= L.I"'(I, 1) = Leplk)  wherek = n (15.25)

In view of the asswmed signs= ol fy, and fy ., (he newly imroduced ¢ function {wduch, be
U noted, bas only a single argument, b) mus be characienzed by a positive first derivative
aed # negalive second detivative. To verify this claim, we first racall from (1249 that

fv = MPP; = ¢'th)
herey i > O aulomarically means ¢(k) = 0. Them, since

¢, di'{k) ok i ] . _
= HRJPL’_E}— Ty =i [&}IL [sov (12.48]
the axsumption iz < 0 leads directly 1o the result ¢7t4) < O Thus the § Tunction—
which, acrording te {12.46), gives the APP, lor overy capita-abor ratic—is one tha
incTeases with k at 3 decreasing rate.

Girven that £ depends on & and £, 11 15 necessary mow 1 <ipulate how the [atier two wris
ablus themselves are determined. Solow's assuniptions arc:

Jun

. aK
K (E I) =4§  [comstant propoction of €045 imesied]  {15.26)

i ( 4T [t

7 n ) =% {(A=0  [labor force wrows cxponentially] (1529

The symbol ¥ represents a (consiant) marginal propensity to save, and 2. a (constam) rale
of growih of labor, Note the dvmamic nature of These assumptions; they specify nor how (he
feveds of K and L are dewermined, but how thoir seges of chanpe are.

Equatons (15,25 throwgh (15,27} constiture a complete model. To solve this model, we
shall first condensa it info a gingle cquation in one variable. To begin with, substitute
{15.25) inta {15.26) to et

K =sLpik} (15.28)

Sinee &£ = K7L, and K = kL., however, we can obtain another expression for £ hy differ-
eriating the ktter identity:
K=ILk+hL  [produetrle]

_ (15.2%)
=LE+AaL  [by(1527)
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FIGURE 155

When (15,20} is eqoated to {1528 ) and the commen factor L eliminated, the resull €merges
that

k= xsgrify — Ak {15.30}

Thix cqualion—a differential equation in the variable &, with re paraincters @ and 2—s
the fundarmental equation of the Solow g rowih modcl.

A Qualitative-Graphic Analysls

Because {15.3) is staled in 2 general-function torm, no spocific quamtitative solulion i
available Nevertheless, we tan analyze it qualitatively. To this ¢nid, we should plot a phase
line, with & un the vertical axis aml k on Lhe horizontal,

Since £15.30} contains bwo terms un the tight. hiswever, ket oz Lt plod et s 1 sepa-
rate curves, The Ak teqm, 2 lincar function of &, will obviougly show wp i Fg. 135q 45 3
siraigt line. with a zero vertical intcroepl and aslope equal b The s A term, un the ober
hamd, rliats: as 2 carve that increases 208 decrzasing ratc, like k), sibee sH(L) is merely a
constant fraction of the (k] curve. TP we consider K o be an indispensable factor of pradue-
Hom, w Trnst start the s (k) curve From the paint of orgin: this is becawse if & = 0 atd thus
¥ =1, ¢ must also be 7ero, ax will be k) and sg{f). The way he ¢wrve s actually drawn
alsa mellects the implicit avsumption that there cxists a set of & vahies for whach sg{f)
cacecds Ak, o that the two carves ifersest 21 samu silive value of £, namely k.

Bascd upon these two curves., the value of £ for each salue of & gun be measured by the
vertical distance berwsen the two curves, Flowing the values of & agaimst F, 25 in Fig, 15,54,
will then vield the phase bne we need. Nobe that, since the two curves in Fig. 15,34 imer-
scct when the capital-tiher rio is £, the phase ling m Fig. 13,55 must eross the horizontal
axis al &, This marks & 2% the inteztemporal equihibrium capitablabor mtio,

Ihasmuch as the phase lme has 2 segitive slope x &, the equilibrium is readily identified
ax a stable one; given any (positee) initial value of £, the dynatie mevement of the mode]

H=4)

L) LfF)
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mnust lead us comvetgendy 1 he aquilibrium level k. The signilicant point is that once s
cquibbrium i artained—and thus the capital-labor ralio s (by definition) unsarang over
ime—uyapity] mus! ihereatter prow apace with labar, atthe identical rate A This willimply,
in turm, that net imvestment must prow =t the rate & (se2 Exercise 15.7-1), Note, however,
1hat the word merest is nsed here not w the sense of requiretnend, but with the implication of
automnativity, Thus, what the Solow imde] serves to show is thatl, given o rule of prowih of
labir 4, the coononty by ieself, and withowt the delicate balancing 4 la Tromay, <in cveniy-
ally reach a state of steady growth in which investment will grow al the rale A, the sume a8
Kand L. Morener, inorder to satisty (15,257, O must orome at the same rate as wel| because
@k i3 a constant when the capital-labor talio remains unvarying al the level & Such o
strtion, i which (e relevam variables all grow al an whentical #ate, Is called 4 sready
stave—a generahzation of the concept of stetionary siare (in which the relevant variables
all termain conslant. o in other words all grow A the zero rate),

Note thiat, 1n the preceding anabysis, the production function is wssumed for convenimee
to be invariant ever time. [1the state of technology is allowed to imprave, on the other land,
the production fumction will have to be duly modificd. For inslance, il may be writlen
instesd mthe forin

0 = T L, L (“;—f . n)

where T, some measure of 1echnolegy, is an mcneasing functivn of time, Beeanse of the in-
¢reasing mlfiplicetive terma (7). a Baed amownt of K and £ wall g ont a larger oulp i o
a future date than at present. T this event, e sgid) curve in Fig, 15.5 will be subject o a
seculir upward shifl, resulting in successively higher aersections with the M tay and
alse in larger valucs of &, With techaological improvemen, thevefire, it will becoms
passible, i a succession of sleady staies, Lo have o Targer and larger amount of capital
equipment available to cach representative worker in the ceonomy. with 2 concomitant rise
i produchivily,

A Quantitative ustratfon

The preceding analysis had to be quabiatve, owing 1o the presenee of a pareral foncticn

@ik in the model. Butif we specify the production function 1o b a lincady homegeneous

Cobb-Douglaz function, for imstane, then o quantitative soluion can b Found a3 well,
Let ws write (he produchon functivn as

P
O=K"L"""=L|—]| =1&"
~ (%)

soothat (&) = &%, Thew (15 30) becomes

1{' = — Ak W k + itk = ok”

which iz a Bernwwlli couation o the variabk & [sce (1524)], with X =4, T =5, and
m =g Lening = = ¥ #, we obtain its [ineaticed versiun

dz + 1]l —ahiz —{] —eris]ft =)
E il —a)tz =[] —xw

H] f

ar
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This 15 a linear differential cquavion with a constant cocfiicient & and a constant erm b,
Thus, by formula { 13,57, we have

. A

=it = I-:[EII - %}: Wl o

s

The substitwtion ol z = k'™ will then yield the final solution

¥ ; Ly
j:l—ul= I"_ﬂ'l-..r__ . 1 =1 =
[i ) l]{ s
where £{Q} is the initial vahee of che capital-labor rurio £,
Thez solution i whal determines the time path of & Recalling that ¢ - @} and & ane
both positive. we so¢ that as ¢ — oo the exponential expression will approgach 7z
Siseg uetitdy,

v v P I T

o = w A== a5 F — DG
i '

Thercfore, the vapital-labor Fato will appreach 2 consta as its equilibiom value, This

equilibrium or secady-state valug, (57300 ®1 variey diteealy with the propensity to save <,

and inersely with the rate of growth of [abor A

EXERCISE 153.7

1. Divide (15,30} through by k and interpret the resulting equation in tesms of the
growth rates of &, X, and £,

2. Show that, il capital is grovang at the rate « (that is, £ = 4e*'), nat mwgstment { must
alsg be growing al 1he rare 4.

3. The ariginal input variables of the Solou model are & and L, but the fundamental equa-
lioy (15.30) locuses on the capital-labor ratio k inslead. What assumpdwon(s) in the
model is{are} responsible for {and make posdble) this shif of focus? Expdain,

4, Driaw a phase diagram far each of the foligwing, and discuss the qualitative aspects of
the time path yit):

o y=3-y—Iny W y=e-{r+i
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Higher-Order Differential
Equations

In Chap. 15, we diseussed the methads of sehiang afiesi-order differential equation, onin
which ihere appears no derivative (or Jifferential) of orders higher than 1. At imes, how-
ever, the speaificaiion of a model may iowolve the second derivanive or a detivative of an
even hipher order. We may, for instance, Tee given a function describing “the rate of change
of the rate of change” of the income varisble ¥, say,

i
it

fiom which we are supposed to find the bime path of ¥, In this event, the yiven funclion con-
stitules @ second-order differential equation, snd e task of finding the ume path ¥éc) is
that of wofving the second-oeder diflerential wquation, The present chapter is concerned
with the methods of sohation and the ceanomic applications of such higher-oeder differen-
tizd equarions, but we shall confine our discussion to the finegr case only.

A simple variety of linear differential equativny of order n iy of the foilowing form:

d"y =y d
-t dﬁ_':’ +---+uﬂ_l£ + iy = (36.1)

o7, m a0 alternabive notation,
AN e MO+ - e P Fag =k (1819

This equation 1 of arder 1, because the ath detivative ithe tiest ter on the keft) i the high-
2gd detivalve present- IE s Jimegr, since all the denvatives, as well as Lhe dependen varable
v, appear only in the first degree, and moreover, no producd leom oceurs m which v aod amy
of ils derrvarives are multiphad together. You will note, in addition, thal thes diffeeential
equation 15 characierized by ennstan! cocffecients (the a's) and a covatant fermt (0. The con.
stancy ol the coelicients 15 an assumpion w2 shall redain throughoul this chaper, The
constane textn b, on the other hand, is adopied here 25 a first approach;, later, in Sec. 16.5,
we 3031l drop i6in favar of 3 vaeiable form,

=kY

b LF
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16.1 Second-Order Linear Differential Equations
with Constant Coefficients and Constant Term

Example 1

For pedipogic reasons, led vs first discuss the method of sslution [or the secang-urder case
i# = 23. The relevant diffecential equation is then the simple one

YUYt @ i Eay =h (16.2)

whera gy, az, aid b are gl constancs. 11 the 1erm b is 1dentically zern, we have 1 Aonromge-
geples equation, bui if b is 3 nonzero constanl, the equation is monhomogenenu. Cur
disevssion will procead on the assumption that (162] is nonbomogemesus; n solving (he
nonhomosenous version of { | 823 the solution of the homogencaes version will emenge
autemnzically as a by-produc,

In this conncelion, we recall 2 proposition imreduced in Sec. 151 which 1 equally
applicable here: M1 is the complementiory fnction. Le.. the gencral solution {containing
arbitrary constants ol e reduced equaton of {1962 and if pp is the particulor ivtegral. e,
any particulyr seluton {eomaming ne arbitrary consdantsy of the complels cgualson {16.2),
them yiry = ¥, + vy will be ke general solution of the complet: vquation. Ay was explained
previowsTy, the p, componet provides us widh thi equillbriom valoe of fe vaniabie 3 in he
intertemporal sense of the term, whereas the v component reveals, [or each point of time,
the deviation of the vime path yist from the equnlibrium.

The Particular Integral

Foor the case of constant coefficicnts and constant fermy, the parbeular imiegral is relatively
casy to [ind. Since the panicular inbegral can be cey solution of {16.2), 1.6, any vahg of ¥
that satishies this nonhanregensows cquation, we should slways try the simplest possable
ivpe: namehy, g = it conslane. [Ty = o constar, o follows thial

Vi =rti=0
so that (L4.2Y in effect becomes a; p = B, with the salution = Hiw.. Thus, the desired par-
ticular integral is

Yo =

(case ul gz 7 0) (16.3)

&=

Since the process of finding e value of ), imvodves the condition (1) = 0, 1he rationale
fur considering that vale a5 an miesiemporal equilibriom Decemes selt-=evidont.
Find the particular integral of the equation

Filth ¥ -2y =-10

The refevant coefficients here are @y = -- # and b= -0 Therefore, the particular integral is
Fo=—04(-2) = 5.

Whal ifi; =0 s that the eapression &/ 15 oot defined? |p such a stpaton, simec the
eonstant s0lution for v, fuls 1o work, we must Iry some seacorsiesn fonn 0Cadution. Tak Ing
the simplest possibiliy, we may Iy ¥ = &7 Smce o =1, the diffrential pquation is now

U+ a =4
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but if r = Az, which nnplies 3ty =4 and +"{1) = {0, thiz equation redwces W ik = A
This determines the value of & as iAoy, (heteby giviog os The particular smegral

b
Vo= —1 jrase ol ma = U ) 2 10) (16,37
i
bngsmuch 4y v, isin this case a nonconstan fusedon of tme, we shall régard it 52 4 noew-
mi cquilibum.

Find the . of the equation p*tth+ (= -1 Here, we have ¢z =0, m =1, and
b= —T0. Thus, by {16.37, we can write

yp = =101

LT it happens that o) i also 2ero, then the solatbion Torm of ¥ = &F will sk break down,
because the expression &4 'a) will now be undefined. We oupha, then, toiry a solution of thy
form v = &5, With &, = ey = 0, the differential equatiom now rednees w0 the cxtremely
simple foerm

¥lil=b

anc i v = &2, which implies »'(r) = 1kt and »{7) = 24, the difierential equation cam be
writtert as 2k = . Thas, we find £ = B2, and the particolar integral is

]
b= 5:3 fcaseof q) = a; = 0 (16.37)
The equilibrinm represented by this particnlar inteersl is aain 3 moving cquilibriom.

Find the ¥, of the equatlon (1) = —10. Since the cowffidents are 4 = @ =0 and
b= 10, formula {16.3") is applicable. The desired answer is y, = — 512

The Complementary Function
The eomplementiry funetivn of £10,2) 15 defined to be the general solution of i3 redued
fhomogeneous) couation

P ay i Fay =10 (16.4)

This s why we staicd that the solution of & homopencous equation wilt always be a
Fv-rrnduet o the process of solving a conplete equaton,

Even though we hewe never fackled such an equation before, our experience with the
complernentary tnnction of the ind-order differential equations can supply us with a use-
ful hint. From the solutions {1533, {1537, (L33, and (1557, it is cleyr that exponential
expressions of the Jform de™ figure very prominently in (e complementary functions of
first-order differential equations with constant cocfhickents, Thon why not try a solution of
the torm » = A¢™ in the second-ovder equation, teo”

Il we adopt the trial soloion v = Ae™, we must alse accepl

Flil=rde” and ¥ =#ide”
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as the decivatives of ¥, Oin the basis of these cxpressions for +, ¢ (1), and 3 (7], the reduced
difTerential equaton {16.43 can be transformed o

A Fapr + ) =1 {164

As long as we chuose those values of 4 and r that safisfy {16.4), the igal solution » = A¢™
should wrork, Since & can never b zen, we st either let 4 = 0 or sae it that r salis-
fies the equation

it =0 {1647

Snee The valme of the {arbitraryt constant 4 1< w0 be definitized by use of the initial condi-
tions of the problem, however, we cannot simply ded 4 =1 at will. Therelore, it is essential
try look for values of r thay satisfy  16.47)

Equation { 16.4°) is known as the choracterfife eguetion (or @uxifisy epwerion) of te
hynogensous equation (16.4}), or of the complete cquation {162, Beeanse itis a quadratic
cquAtKan 1 r it Wiedus two roots (solutions, relerred 1 in the prosent CONEXN A8 charmcier-
istic maots, as follows:

—u £ .Ir.l':ﬁ — dy

frur = > (16.5)

Thesa two rool: bear 2 simple i imercsting reladoaship oy each oher, which can serve 25
a convenient means of checking our calculation: The suar of the twa rets is ahviys cqual o
—ay, and thelr provhit 15 ahways cyual 10 g, The proof of this salement i siraighifarwand:

— —
—n|+1l.'u$—4ﬂ-_r =dy = fay —de g
Ft+rn= + A == = =d|
z 5 G (16.6)
(—a ¥ - (e - dut;] Az
ffa = = -
1 4
The vales o thesa twoe Toots are the only values we may assign 1o e in the solulion
¥ = Ae" But this means that, in effect, there are peo solutions which wil| work. namely,

=.|:.|‘:

= .-"a'lﬂrlr it ¥ = .d'le""

where A, and A; are twe arbitrary constants, and ) and #; are the charsceenstc roals
found [poem i 16.5). Since w want only oae general solution, however, There seems o be
ang ton many. Twe altermatives are now ppen to ws: {1 pick enher ¥ or y; ac candem, or
{2 combatie thetn in spme tashion.

The first alernative, though sinpler, is unacceplable. There is only ane arbirrary con-
stant m ¥y or vz, but o yualily as o general soluGon of a secomd-order differennal equation,
this Expression must contiin swe arbitcary constanits, This reqrirement siems (rom the Fact
that, in proceeding from a fimetion ¥2) 10 s second derivalive #1000 we “lose™ two
constanls during the tao rounds of differentiaton; thereFore, v vevert from a second-onder
differential equation to the primitive function i #), 199 constants ghould be reinstatcd.
Tha leaves ws ondy the altsmarive of combsning y; and 1. o as b inelode both congtant,

1 Mote that (ke quadkat eoquation (1647} is in the ronmalized oem; tha coefficient of the r? teamis 1.
in applyling fermula (16,51 10 find the characienstic raots of o diflerential equation, we must farst
make sure that e chatacteristic equeticon is indeed in the tovalized lorm.
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A and A+ Az iLlums out, we can simply ke their siere, 1) 4 o, as the feneral solution of
116.4). Let us demrmedcate that, if p and 14, respectively, satisfy {163 then the suem
(¥ + b will alsa do se. I ¥y and ¥z arc indesd solutions of (16.4), then by substinming
each of these nlo [16.4), we riust B that the Following mwo squalins hold:

}'rl:.f} + -ﬂ]v}'“;“j +my =0
B Faps+ap =10

By adding these equalions, hewever, we find that

Do ifF+ 500 + 2 [Fi0F+ vt )] + daly + =1
—_—— e
= fl-m iR =it

Thus, like 1y o g, the sum ) + po ) sansfies the equation [16.4) as vell. Accordingly, the
genctal solurion o e homogeneons equilion (16,4 o the complementary function of the
compkete equalion {16.2) can, 1n general, be writlen an ) = 17 + |1,

A muwe carcful examination of the charactenistic-root fornwla {1651 indicates, however,
that & far as the valucs of /1y and ry e concerped. theee possible cases can onise, somne of
which may necesgitate 9 modiBcanon of sor result v, = g + .

Case | idistingt real rosds)  When o = Aia, the sguare ront in {16.5) is a real nuimber,
aod the two roots ) and #; will take @ivtine? real values, becaase the square root is added (o
—any fir vy ol subicacked from —a) for e, I this case, we can indoed wTite

BeEwntre=die 4 dw (r #E) {16.7}

Because the two roos are distinct, the owe exponential expresgions must be lnearly indke-
pendent {necther is a muliple ol the ather), conzsequentby, 4, and 43 will abvays remam as
separale entities and provide us with fwo Gonstants, 25 vequied.

olve the dilferential equation
¥ T+ g - 2y = 10

The particular integral of this equation hag alresdy been found to be . = 5, in Example 1.
Let us lind the complenentary Junction, Since the coeftiients of the equation are o) =1
and & = —2, the characteristic roots are, by (16.5),
-1£v14+8 -1%3
o= = = Ir -2
i 2

{Check: ry4rz = =1 =—m; ey = =2 =) Since the rools are distinet real numbers,
thee camplernentay furction by, = 46 + Ape 2 Therelore, the general solution can be
wrilten as

WM = e+ ¥p= i + Ape 2 4 5 (16.8)

In order lo defimbize the conslants A, and A-, there is need now for fno initial condi-
s, Let these conditions be W) = 12 and v' (0] = -2, That s, when f =0, W) and v'tF)
are, tespeclively, 12 and —2. Setting t = 0 in (16,8}, we find that

Pl = A + Az 4+ 5
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Differen tiadng (16.8) with respect to ¢ and then selling £ = 0 in the derivalive, we find that
yit = dge' - 247 amd p0)= A - 1A

To satisfy the two initial conditiens, therefore, we must set Wl = 12 and y{0) = -2,
which results in the following pair of ¥multaneous squations:

dy+ Az =7
Ay —2A:=-12

with solutions 4y = 4 and A; = 3. Thius the definite sobution of the differential equation s
Wt = det + 32045 {16.587)

As befare, we can check the validicy of thi; <olulion by dilferentiation, The [t and
sacond denvalress of (16,687 are

Fitt=de -6 ¥ and  y(f=4e' 1267

When these are substituted into dw given differential equation along with {16,587, the result
is an identicy —10 = —10. Thus the selution is cormect As wou can gasily verify, (16.8) also
satisfies bath of the initial conditiens,

Case 1 {repeated real roats)  When ihe coellickents in the Jifferential equation zre such
that &5 = das, the square root in (16.5) will vanish, and the twp charactetistic rools tike an
identical value:

r=n=rl=-=

Cuch roots ure ke a8 repeited miods, of muliigle (here, douhle} vty
1w zttomipt 10 write the complemoniary fuaction 45 . = v, + vo. the sum will inths
vase vollapse into a sinple exprssion

¥ = _,-:h:‘,"” + .-*\‘_-'_H:-."r'I = |:.-"1| + ."]3]&‘” = .‘h,E‘"

ey u with only one comstant. This s not sfficient t lead us fom 4 gecond-irder
Jifferemital cguation back to ity prinutive lunction. The oaly way oul 5 0 tind anether ch-
wible companent t2rm for the sum- 4 lerm which satsfies (6.4} and vet which is Tincarly
independumi ol the term A3, 5o ay 1o preclude such “collapunp.”

An cxpression that will sutisfy these requirements is date™. Since the variable 1 has
entered intu it multiplicatvely, this component werm is obvicusly Tinearly independent uf
the A:0'" terme thus it will enable v to introdiace another constne, 4. B does 4506
quakify 2% 2 solution of (16457 f we ey 1 = A42e”’, then, by the praduct rule, we can find
ity First wnd second derivatives ta be

Vi = 0rf + Ddse”  and ¥ U =00 + ) dee”

Subetituting Lthese expressions of », ¥, and 3" into the loft sude of (1640 we yot the
CXPICSSI0TL

[[r:f 2yt a (et + Ly 4 oar]dae”



Example &

CI‘IﬂFI'['EI'lﬁ Ao Carer DRfferombien Egquctpny 509

Inasmuch as in the present conteat, we have o) = da- and r = —a; /2, s lasi expression
vanishes identcally and thus s always coual o fhe riphi side of {(16.4); this shows that
Aafe" docs indeed qualify as a soluton.

Henge, the complementary funciion of the Jouble-voat case can b2 writlen as

p.o= .':I'|lf"'-II + .'1.1.“"” {16,9]

Solve the diferental equanon
Fi+6pth 4 9y=27
Here, Lhe roefficients are oy = 6 and g; = % since @ = 4, the raol: will be repeated,

According to fommula (16.5), we have r = —3q /2 = — 3. Thus, in line with the resuht in
(16.2), the Complementary furtion may be writlen as

yo= Age ¥ ¢ Agte

The general solution of the given differential equation fs now aksg readity ahbtainable,
Trying a conslanl solution for the particular integral, we gel y, = 3. IC Illows that the
general solution of the complete equation s

FO = b+ = Ay 4 dgte 4.3
The two arlzitrary constants can again be definitized with two initial conditions. Suppose

that the initizl conditions are ¥{0) = 5 andd (0} = —5. By seming t= 0 in Lhe preceding
gereal solubor, we should find {0 = 5, thal is,

M= Ay +3 3

This yields 43 = 2. Maxx, by differantiating the general solution and then setting ¢ = 10 and
also Ay = 2, we must have v {0 = —5_ Thacis,

Witz — 34 - 3date M 4 Age )
and Pl =64 Ay = -5

This yields A, = 1. Thus we can finally write the delmite solubon ol Lhe given equation as
MO=2¢ > 1 el

Case 3 (vomplex mods)  There remains a third possibility repanding the relative mapai-
tude of the coctheients a, and @, namely, @] < da;. When this cventuality recurs, foem
{16.5] will mvolve the squere roeof of & pegedive timber, which cannet be handled before
wi are proporty introdeced 10 the concepts of innnsnery and comgler numbers. For the
time being, therctore, we shall be content with the imere catalogmye of this case and shall
leave the 1ol discleswn of i 1o Secs, 162 and 16,7,

The three cases eited can be illustrated by the three eurves in Fig, 16,1, each of which
represents a different wersion of the quadrane funchon firy =#° +air +a2. As we
learned eatlier, when such o function 13 521 equal 1o zene, the result is a quadratic eynwioen
Firy=1), and 1o selve the later equation is merely 10 “find the 2orms of the quadratic
fumcron” Graphically, this means thae the ot of the equation are o be found on the
hanzomial axis, where #{r) = 0.

The pogition of the lowest curve in Fig. |61, is such that the curve interseots the hon-
zontal axis bwice; thus we can lind Lwo distingt roots #) aod ., bodh of which satisfy the
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FIGURE 16.1
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quadratic equation f{r) = 0 and both of which, of course, are real-vulwed. Thus the Towest
curve illystrates Case |, Taming 10 the middle curve, we node that it mueers the horizontal
akis only onee, al r;. Thia lutter is the only value of r that cat sadsfy the equation fir) = 1,
Therefore, the middle corve illusteates Case 2, Lasl, we note that the top cutve does nm
meet the horizontal axis at all, and there is thus ne teal-valwed ool 1w e equation
Flrd = 0. While 1here exist na real Toots in sueh a case, there are nevertheless two comphex
numbers that can satisfy the cquation, as will be shoan m Sec. 16.2,

The Dymamic Stability of Equilibrium
Eor Cases 1and 2, the condition for dynamic stability of equilibrinm agan depends on the
alpebrnic signs of the charactenstic roms.

For Cise |, e eomplementary fanction (16.7) consists of the two exponentisl expres-
sions A, and 4™, The coefficients 4 and Az arc arbiirary conscants: their vilues
hinge on the initia) conditions of the problem. Thus we can be sure ol a dynamically <1able
eyuilibium |y, =+ 0 as ¢ — oz), repandless of what the initial conditions bappen o be, it
and only il the roots ry and rp ave Jodk negative. We emphasize the word both hore, Because
the condition For dvnamic stabilit does aof pernoit even ane of the rools 1o be posiive or
zein, [Er) =2 and r2 = =5, for instange, i1 might appear &t hrst glance that the second
raed, being larger in absolute value, can outweigh the first. [n actuality, hewever, U s (e
pasifive root thil must eventually dominate, because us ¢ increases, ¢ will prow increas-
ingly larger, bt e will steaddily dwindle aweg,

For Case 2, with tepeated routs, the complementsty function (19.9) comams nol anly
the Familiar ¢ expression. but alsn a multiplicative vapression te™. Forthe former tarm to
appreach zeto whatever the initial conditions may be, it is necessary-andd-sulficient to have
r = . But would that 2k ensare the vanishing of ™% As it tuns o, thi: expression ze”f
(or, mine generally, r*e* 1 phssesses the same general Lype of time path as does ™ (¢ # 0),
This the condition » < (15 ikdeed neceysarv-and-sutficient for the entire complemen-
tary function 1o upproach zere as ¢ — 2o, yielding a dynamically stable wtertemporal
cqui librium,
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EXERCISE 16,7
1. Find the particular integral of each equatfon:
(@ i) - 2N+ 5y =2 (e} pify + 2yt - ¥y =—4
(B P {4+ i =7 {eh p it =12

(i +3Iy=9

2. Find the compkementary fungtion of each equation:
{&r (0 + 3v -4y =12 (o) ¥iel - eyt +y=23
{5 (0 + ar{l 4+ Sy = 16 {d) ¥ 68 + By (6) + 16y = 0

3. Find the general solution of each differential equation in Prob. 2. and then definitize
the sobution with the initial conditions ({0 = 4 and ¥'(0) = 2.

4. Are the intertermporal equilibrivms feund in Prob. 3 dynamically stabée?

5. Werify that the definite solution in Examphe 5 indeed (a) tatisfies the two initial condi-
tions and (b} has fiest and second denvatives thai confarm to the given differential
equatlon.

&, Shew that, as £ — oo, the limit of 227 is zero # 7 < £, but is infinite if r = .,

16.2 Complex Numbers and Circular Functions

When the coellicienss of a second-order lincar Jifferencal equation, »™(r) 4]+
urr = b, are such ibar .-.rf < dapp, the charscteristic-rant formula (16,51 wanld call Tor k-
g the squate 100t of & megeinve pmber, S the sguare of any positive or negative resl
nunber is invariably positive, whereas the square of reny i wero, mly 4 posregadive real
munber can ever yield a real-valued square root. Thos, iF we confine our atiention 10 (he
gk number systeon, as we have so Far, o chanucleristic roots are svailable for this coe
(Cawe 31 This fact motivales us o consicder numbers owgide of the real-number sysiem.

Imaginary and Complex Numbers

Conceptually, i is possible 1o define a number ¢ = =T, which when squared will equal
— L. Bocouse £ is the square coot of 4 negalive nurmber, il is obviously not real-valoed: itis
therelore reforred te as an israginaey suenter, With it al cur disposal, we may wrile a host
of ather imaginary nurnbers, such as =9 = Y971 = 3 and =2 = /3,

Exlendeng its applicaton a step fundser, we may construct yet another type of nomber -
¢me Lhal conbans a read pant a5 well 8 an iwvewdmqy part, such as (B =71 and (3 + 5.
Known a5 comppler aurbers, these can be roprosented gencrally i thsy form g 4 7,
where & and ¥ ace two real numbiers,” Of cowrse, i1 case v = U, the complex number will
reduce 10 a réal number, whergas i & = 0, it will become an imaginary number. Fhus the
et eof il read evembers doall it R) consiituies a subser of wthe set of all comple. suambers (call
it 1. Zimilarly, the ser of el fmagingry agmbery (call il 1 also comstitutes: 1 sobset of .
That is. B C €. and | C €. Futhenmore, since the worme e and imouingry o motually
exclugive, the sets B and Vst be disgoint: that is R0l = (2,

Tie emplary the symibals B (o harizonkal) and v (oe wertical) in fhe oeneral complex-number
riotation, becalse we shall presenthy plog the values of hand v regpmerehy, on The horzantal and
wertical aues of a beo-dimensioral disgram.
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A complex namber (4 + #7) can be represented graphicalty in what is called an Arpem
ditigrans. 38 iTtysiraied in Fig. 16.2, By plotting & horizontally on the reaf axis and v verti-
cally on the imsgivary axy, the number (4 + ) can be specified by the paint (4, v), which
we have alternarively labeled . The values of b and v arc alpebraically signed, of course,
s that if & < 0, the point € will be i the left of the point of origing sintaely, 2 negative o
will mean a lovation below the henzontal axis.

Given the values of £ and v, we can also caleulwie the length of the line OO by Apphyang
Pythagoras’s thearem, which states that the square of the hypotesuse of o tight-angled
riangle is the sum of the squares of the other two sides. Dencting the length of OC by &
ifor radius veclory, we have

B=#4+¥ md R=JE+e (16.10)

where the square 100 is always fuken o be positive, The value of & is sometimes called the
absodwie verlue, o modubies. of the complex mimber (4 @63, (Nole that changing Lhe signg
of & and v will produce i @ffoct on the absolute value of the camplex aumber, R Like 4
and v, then, £ 15 real-valusd, but unlike these other values, & is always positne. We shall
find the number R to be of zreat importance in the cnsuing discussion.

Complex Roots

hicanwhile, let us cerurn to formuda (16.5) wnd examine the s of complex characterigic
roots. When the coefficients of a second-otder differential equarion are such thatef < duz,
the square-rood expression in 4] 6.5) can be atinen as

—
1||||'II-F-I':'. —47m = J#ag - ur\,-"—_l = Mgy — ufi
Hence, if we adopt the shotthand

1."11’-!:—{1:,"
h=— and W= ———————

2 2
the o roots can be denoled by a pair of conjugite complon tumbers;

M.r=htoy
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These two complex rots dre: said o be “conjugate™ becas: they always appear logether,
one bemg the sum of & and vf, and the other being the difference berween b and i, Not
that they share the same absolute value 8.

Find the roots of the characteristic equation ¢2 + r -+ 4 = 0 Applying the familiar formula,
W P
Fledz mELaE = =1 £ 157 = _—1 iLﬂf
2 2 2 2
which constitute a pair of conjugate complex numbers.
At befide, we can wie {16 6) to check our calculations. K corregt, we dwald have
M+r=—ml=-1yandrir: == 4}, Since we do find

-1 -..-'"Tfu[ =1 W5
LR i E A T R i

L

our caledlaton |5 indeed validated.

Even in the complex-rood case {Cuse 13, we may express the compicmentary funglion ol
u differeniial equanion according ta {1675, thal is,

_}“r_=ﬂ]l-‘mw'j'—|-.-i:€iﬁ_1'jlr=t!mff!|£m+ -‘134.’_"'”} {16.1]]

But a new fealure has been introduced: the nuraber f new appears in the exponents of the twa
expressioms m parentheses. How do we interpret such imaginary csponential functions?

Ta facilitate their inlerpretation. it will prove helptul first o transfurm these expressions
imtoequivalent ciretdur-finedon fyrmy, Aswe shall presetuly see, the Lateer functipns char-
actenstically involve periodic fluctuations of a variable, Consequently. iw complementary
fumction {16 113, bemg translaable into circular-feacizon lorms, ean also be expeciad o
renerate a cyclical type of Lime path.

Circular Functions
Consider a circle with it center at the point of ongin and with 4 1adios of lengih B, as
shewn in Fig. 16.3. Lot the racing, ke the hand of a clock, ratate in the counte rclock wise
durection Slarting [rom the positien O, it will gradually move into the position (F, fal-
lowad suceessively by such pusitions as G8, OC, and £ and an the cad of a cycle, it will
return o O4_ Thercaller, the cvele will samply repeat jself,

When in a specific position  say, OP—the clock hand will make a define anglc & with
lime: (24, and the tp of the hamd (™3 will determine a verlical distance @ aod a horizontal dis-
tanoe & As the angle £ changes during the process of votation, v and # will vy, ulibingzh
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£ will not, Thus the mtios v/ & and A7 R must ghange with 7 that iz, these two ratios are
both fanctions ol the angle §, Specifically, /& and 4/ R are called, respectively, the sine
(function ) ofd and the vosiee {function]) ol ¢

L!

st = r (16.12)
h

cosf = F {16.13)

[n view of theit connection sath a circle, ese fonetions are referned b us cfrentar fune-
rigns, Since they are also wssociatad with a mangle, bowever, they aee aliernatively called
trigomametric furctions, Anirher dand fancier) name Tor them is sinusoidol furcions. The
sime and cosite functions are not the onky circular fanctions; sudher Jeequently encoun-
tercd ome is the rengear function, definad as

and = — =— (£}
GO 4

Owr major concern here, however, will be with 1he sine ad cosine functions.

The independent variable uwa civcular function is the angic @, 50 the mapjHng inwlved
here is From an aagle 10 & raie of o dixtamces. Usually, anphes are meagured in degrees
{for example, 30, 43, snd WY in analylical work, bowever, it is mons comvenical 1 mea-
sure angles in radiars instead. The advaniage of the radian measure stems Mo the fact
that, when # is w0 measured, the dorivatives ol citoular functions wil come ol 0 aeater
expressions  much as the hase e gives bs neater durivatives for eaponential and logarith-
mic. functions. Bul just how mach i a radian? To cuplain thas. let us naum o Fig. 16.3,
where we hiave deawn the puint P so that the Tength of the e AF is cxacily equal b the
radivs B A sredian (abbrevioied as raed) cin then be defined as the siee of the angle #
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{in Fig. 16.3} formad by such an B-lenpth arc, Since the circomiferenee of the cirele has
d total length of 20 R {wheie m =1 41590 a conplere cirele must involye an angle
of 2n rad alogetber, in wrms o degrees, Iowever, o complese circle makes an angke
of Ja0¥ thus. by equating 3 m 27 rad, we can arrive at the followiny conversion
1able:

DEgrEE5|31l5ﬂ |:'.'?ﬂ |IEU 9D|45|D
Iv

2

Kacliars i " 0

|

rt| A

Properties of the Sine and Cosine Functions

Given the lenglh of R, the valve oF sinf hinges upon the way 1he value of o changes i re-
yponse (0 changes in the angle 1,10 the sarting position £24, we have v = (A5 the ¢lock
hand rirves counterelockwise, ¥ $tarts 10 assume a0 creasing pogitive value, culminaling
in the maximum wilue of 7= £ when the hard coincides with (28, that 15, whon & =
& 2 rad (= ). Further movemenn will pradually shorden , wntil its value becomes zemn
when the: hand 1s o the positien OC, Le, when d = 7 rd (= T80 As e hand entees the
third quadrant, v beging (0 a35ume negarive values, in the posinen €8, wae have 1= —f_
o e Tourth quiadramt, & iz scill negative, D owill iecrease Bom the vilue of — R toward
the valye of = 0, whivh i attadned when the hund returns o Od—hat is, when 0 =
21 rad (= 36077 The cycle then repeats itself.

When theae illustratve values of v e substined joto (16.12), we can obuin the resules
shown in the “siné™ row of Table b 1. For g moe complete deseripiod of the sine fnc-
ton, however, see the graph i Fig, 16.4a, whene the values ol sin # are plotted apainst those
ol # fexpressed in radians).

The value of cos#, in contrast, depends instead upon the way that & changes in respons:
t changes n 6, [o the starting position ¢4, we have it = £ Then A gradually shrinks, till
A =0 when @ =72 (posinon 38, In the secomd quadeant. A wms megaiiee, snd when
# = [position LX), &k = — £ The valec of A sraduwally increases foonn — R 60 2ero in (e
thivd quadvant, and wlien & = Jor /2 [position D1, we find that & = 0. In the Fourth quac-
Tant, & rurns poative again., and when the hand relams to position 4 (¢ = 27), we again
have £ = &, The cycle then repeats itsell’

The substitwrion of these (llustranve values of & inw (16.13) yields the results in the
betiom row of Table 16.1. bur Fig. 1038 gives 2 mure complete depiction of he cosine
Fuerectivars,

The siné an cos ¢ {inelions share the same domain, namely, the set of al| real numbers
(riwlian measures of #) B this conncction. it may be poitted oot thal a acgeiive angte
simphy rofers to the reverse rolation of the clock hand; for lnstance, it clockwise movement

1 3
é 0 EI -4 il' o
an g 0 1 H -1 1)
s o 1 0 ~1 g i
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from ¢4 1o 0D in Fig 16.3 peneraies an angle of —= 2 rad (= —90°), There is als0 a
commun range for the two funciions, namely, the ¢losed imerval [=1. 1], For this reason,
the graphs of am & and cosd are, in Fig. 16,4, confined 10 a definrnz hovzental baud,

A major distinguishing property of the sine and cosine functions i5 that both are peri-
oie their valoes will repeat themsebres for overy I tad (a complote ciecle) the angle A
mavels through, Each function is therefore said w0 have a perind of 2. In view of this
periodicity feature, the following equations hold (for any imleger w);

sibf +2em) = ginf! cosld +2nm} = cosd

Than is, adding tor subtracting) amy infeger multiple of 27 1o any angle & will atfece neither
the valuc of God gor that of vos €.

The graplis of the e and cosine funclions indicate 3 constatt range of Hoctualion m
each periad, namely, £1. This is sometimes shernatively described by saying that the:
ampdizade of fluctmation is 1, By virtwe of the identical pened A the identical amplitude,
we ser that the ¢os B carve, il <shified nightward by = /2, will be exactly coincident with the
siné curve. These bwo curves ane [hetefiore sald w difler only in phase, Q2. w differ anly
i the lecation of the peak in each period. Symbolically. this fav may be stated by the
aquetian

Cosf = s (ﬁ‘ + %}
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The sine and cosine funcuons abey corlain idewlitics. Among (hese, (e meore freguent ly
wsed are

S —#)] = — 5Ny
g —R) = o5 P
ant B +endB = | [wheresin®d =1simd) ee]  (16.15)

(16.14)

sinfdh & &)= s (! os (b £ oosth sindy

. 161
oasifh £t = cos#) costh F sind) sinéh (1616}

The pat of ideniics {16 14) serves to underscors the Gact that the cosine funcrion is syin-
metrical with respect to e venical axis (that is, @ and —F always yicld the same ¢osine
value), while the sine function is net. Shown in (16,13 is the fct thad, for any magninde
of @, the sum of the sguares of ts sine and cosjne is always wnity, And e sl of identities
I ¢ 14, 16 gives the sine amd coving of the sum and diference of two angles &) ol 6.

Finally, a word about dovivatives, Being continnows and smooth, both sind and ¢osé are
diiferentiable, The derivatives, dixin @) /d# and d{cosd)idd. are olainable by wuking the
limits. respectively, of the ditference quotients A{sing) /A and Advos 3178 s Ad = 1}
Tha results. stated here without proed, ane

d .

E sind = cos {16.17}
] ]

—oos# = — 3ind {16.18)
ot

It should be emphasized, however, that these denvative fortulas are valid only when & j3
mesured in tadians; if measured in degrees, for instance, (16,171 will become disind)/
g8 = (r/ 180) coed instead. Wis for the sake of getiing nd of the facter (7 1807 that eadian
measures are prefemed o dupree measures i analyvical work,

Find the slope of the sind curve at # = =/2. The slope of the sine curve is given by its
cervatne (w cosd), Thus, at d = 172, the shope should be ¢os (2] = 0. You may reler b
Fig. 16.4 for verification of this rewll,

Firel the second demwative ol sin @, From {18177, we know that the first derivative of sind is
cos &, therelore the desired second dereative is

. . d .
h'ﬂf' sini? = E1:1:|5|5' = —s5inQ

Euler Relatlons

In Sec. 9.5, it was shown that any lunction which hay finite, comtinuows derjvitives wp to the
desincd ovdcr can be ez panded mta 2 polynomdal funeekom, Moreover, if the remainder term
K, m ihe resulting Ty lor series (expansion atany poinl ) of Maclaurin series {expansion
al xg = {I) happuens e approach zero as the number of terms u heeomes infinite, the poly-
nomuial may be written as an wfinibe series. We shall oo espnd the sing and ¢osine fune-
tions and then ailernpt to show how the inaginary exponential expressions encountered in
(16.0 | hcon be translormed wio circular funchions having cquivatent cxjransivns.
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For the sine tunchion, write ¢i{d)} = sind; it (hen Follows that ¢400) = sin = (1. By
sucoessive dervation, we can pet

P} = cos #i0) = costh =
&' = —sind i) = —sm0 =10
d () = —cios ) = —cs = =1
$1%18) = sind F o0 = sind =0
d"HH) = cosd #i0) = cos0 = |

Whett substiluted i (9 14}, where @ wow raplacex 5, hese will give ws the following
Maclayrin series with rermasnder:
- 04840 HS 0 H.'i ¢{ﬂ+“{F}Hn+I
s =U+ 46+ _i-l_ +§+---+ T

Mo, the expression ¢¢*+ 1 p} in the list (remainder) tean, which represents the {e + Pt
derivative evaluated até = g, canonly 1ake the form of teos p o sin proand, as such, can
onty take a value m e interval [—1, 17, randless of how Tege # 15, Onohe ofber haml,
(1 4 LR will prow rapidhy as s — mo—in Fact, much more rapidly than ' as # increascs.
Henee, the temeinder term will appeoach zero as v — oo, ad we can thercfore express the
blaclannn serics as an infmite seties:

. #or e
Samnilarty, 1 we woale Y #) = ¢cos @, thed wril] = cos 0 = 1, gnd the sucgesave dera-
ves will be
Pi0) = —sing [0 = —sindl = 0
) = —pox FH = —cos b= —1
v (#) = sind U =snl=U
$(d) = cosd =Y iy = cost = |
@) = —sind v M = —sinf =1

On the basis of these deovalives, we can expand cosd as 1ollows:

is il "t )
_ _r AT TR . Lty ||
cosfl = 144 1!+l”]+4!-|- +{rr+l,'|!
$ince the remainder term will again tend toward zer as n — ¢, the cosine fancton 15 alse

expressible 43 an infinite series, as Follows.

Hl ﬂ.d ﬁlf'
cnsﬁ'=]nﬁ+ﬂnﬁ+--- (16.20)

You mueid have noticed that, with (16,195 and (16,2400 at hamd, w¢ are o capable of
constructing 3 table of sine and cosine values for all possible values of 8 {in radians). How-
ever, our immediate interest lies in finding the relationship berween imaginary expanential
expresaions and circular fenctions. To this end, let us now cupand the two exponential
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expressions ¢ and ¢ . The reacler will recopnize that thes are but special cases of the
eaprezssion e, which has previously been shown, o { 16D, to have the expansion

PR TN I LIS L
=l4+x4+=x"+— —
2l i 4!

Letting x = i#, (heretore, we can immediacehy obtain
Y et (et ey
W+ + ) +

i '
T TR |
148 R N Tk
=1+ - rrie ? E + F -
L L ) ER
=(1_F+E_ ]-I_!(ﬂ_'t_r-'_ﬁuh-)
Similarly, by setting x = —i#, the folkewving tesult will conone:
R L G R L) M T
er Sl et ey e
2 TaE] d 5
:I—fu"‘.i'—lg—-}ﬂ Ell__i_,,

_{ gt gt y uf!- g

__ﬁ+4_r_ -7 _i+§—...
By substituting {14, 1%} and (16 20} mio these owa results, the fallewang pair of identities—
known as the Evwfer refationy—can teadily be established:

& =cosd) + i sln g {16.21)
e = cow = ind {16.21%)

These will enable us to translate any imagieaty cxponential function ino an couivalent
linear combination of sine and cosine funclions. and vice versd,

Find the value of &/, First ket us convert (hls expression inke a tigonometric expression, By
setling & = in {16.21), ol & found that ™ =cosx + fsine. Since cosy = —1 and
sing =0, it follows that ' = -1,

Show that e==% = —j, Setting & = m/2 in {16.21°), we have

T, ® : -
E-"-"'I;{m%--mnE:ﬂl—rﬂ}=—l

Alternative Representations of Complex Numbers

S0 far, we have represented a pair of conjngate comphex numbers in the general fonm
(k£ i} Since A and v refer W the abscizsa and ordinace in the Cartesian coordinate sys-
i of an Argand diagram. the eapression i £ o)) represenis the Carecion v of 2 pair
ol conjugale complex numbers. As a by-procuct of the discussion wf cireolar functions and
Euler relations, we cau mow express (4 4 vi ) in two other ways.
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Refarring to Fig. 16.2, we see thul 23 soon a5 A and » are specifled. the angle # and the
vulue of | also breome determinate, Since a given £ amd & given £ can tougther identify a
enique poirt in the Argand diagram, we may eraploy # and & io specidy the particular par
ol commples numbirs. By ewriting the gefinitens of the sme and gosing twnelons in
(16,12 pand (16.13) as

= #sH ond A= Kcosd

{¥.2d)

the conjustic comples gumbers () & 1) can be translormed as follows:
bt o = Ruosd £ Rismd = Ricozd £isinid

Loy 5o dodng, w have in effect seitched from the Canesian coardinuees of the complox
numbers (# and vy 0 whal are called their polae covseelinetes {8 and @3 The ngh-hand
cxprossion in the preceding eqoation. accordinghy, excrmiifics the pelar form ol a pair of
Coiupsate comples numbers.

Furcheomur:, in view ul the Guler elaions, the polar Bormoay alse be rewrtten snio the
ppetensiad o as follows: Bcos £ sind) = Ret™, Henoe, we have a fatal of fhiee
aleermative represeniations of the conjugace comples nutnbers.

I= i = Bicosd £ sind) = gAY (16.23)

1w are ven the valwes of & and &, the iransformntion 1o & and v i strighiforwand:
wiz wse the i cquations in {16.22) What about the reverse ansioemaugn? With given
valogs of & and v, no dithcully arises i Goding the corresponding valse of R, which 13
cyual to 4= + o2, Bul 3 slight ambipuity ariscs in regard 1o #: the desired valug of'6) i
radians) is thet which satisfiex the lwo condiions costd = i f & sl sin® = o7 R but for
piven values of i and t. @ is nor unique! {Why?) Fortunately, the problem 35 rot serious for
hy conkirae cor giention to the inerval [0, 27 in the domain, rhe indeerminancy i
guickly resolved.

Fired the Cartesian foren of the comphex number 567 Here we have £ = Sand it = 3a/2;
hence, by (16.22) and Table 16,1,

it

ir )
h=5-:us?—lfl arvd l.f_Ssm?_—S

The Cartesian fomm is thas simply A - v = =31,
Find the pelar and exponential forms of {1 + W3 I this case, we have A = 1 and v = J3;

thus R = 1 +3 =2, Table 161 45 ¢f ng use W locating the value of ¢ this ime, but
Table 16 T, which lists some additional selected values of $im#f and cos &, will help. Specifically,

x T n Iz

’ 6 i ] 0y

dnd ! '_(= E) 3 1 (= E)
3 SN 2 z 1

cosi ¥3 _1.(=£) 1 :1(;"5-)
2 L 2 ] 2
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we are seeking the value of 8 such that cosh = B = 1,2 and sind = v/ & = 3/ The
value # = =71 mee) the requirements. Thus, according to (16.23), the desired transdorma-
tigh is
14473 = I(cns% + i sin %] = g3

Before [Baving this topic, et us note an Frnp{:r'rm{ extenzipn of the result in (16.23).
Supposing bitat we have the th power of a comples number—say, £ + vi)"™—how do we
write ity polat ang exponentia forms? The exponential form is the eatier bo denve, Since
A+ vi = Re™ it folkows that

{h + 'I-"]‘}” - [REHJJ - Iq.".".‘:_,n'n':ll,l
Similarly, we can write
”:] 'I.".l':l'q - ['R-E—u ']."l R.':I ~ e
Male that the power n has brought abaut two changes: (1) A now became: /7, and {234
nowe becomes mi_ When these two changes are inserted into the polar farmin {16.23), we
find that
(hx i) = RP{coenit L7 5inaw (16,239
That is,
[Rlgost = 3ln )] = RYcos o £ dnmi}

Kriown as Oe Modies theorem, this result indlcates that, to ralie a complex nonber to the
fith poweer, one must simply modify it polar coordinates by raising # to the mth power and
rrlnolyIng # By o,

EXERCISE 16.2

1. Find the mots of the follgwing quadratic equathons;
(@) 2 -3r+0=10 (G 2¢+x+8=0
bt +2r+17 =14 i) 2 ~x+1=04
2. (&) How many degrees are there in 4 radian?
{0 How many radians are there in a degree?
3. With reference to Fig, 16.3, and by wsing Pythagoras's theorem, prove thal
.1 P o T 1
iG) sn* & 4 cos?d =1 (b]ifn;:cmzzﬁ
4 By mieans of the identities {1414}, {16.15), and {15.16], sheew that;
i) w2 = 2und cosd
B cosd =1 - 2sint e
i) smlfh + i)+ 5indBy — ) = 2sindy cosfy
i

fd]n1+lanzﬂ=m

(2) Sl'l{E —H]EG}SH {f ms(i —I!"')ESII'II!'J
5. By applying th.e chain rule;

{er] Wirte out the derivatme formulas For ism F{HY and —. cusf{ﬁl} whiere 119 is a
function of #.

() Find the dervatives of cos #°, sinfg? + 347, cose”, and sinf1 8},
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&, From the Euber relations, deduce that:
. ",
fal &' = -1 [cp € = T?“ +1)
_I =
(b &'} = EU + ﬁr’} {dye M = —%2{1 +i}

7. Find the Cartesian form of each complex nuenber;

(o z(ms % +isin %] (i 4o () «Ia-izd
5. Fond the polar and exponertial ferms of the follewing complex numbers:
LR YA .
() §+—;§r {6y AT+ 1)

16.3 Analysis of the Complex-Root Case

With the concepts of comples nuntbers and circular Tunctions at our disposal, we ang now
preqared toapproash te complecrant case {Case 3. referrad 1000 Sec, 161, Yau will re-
call that the ¢lassilication of the three cascs, according o the nature of the charctensiic
ruots, 15 concemed only with the complementary functon of a differendial cqeanon. Thus,
Wt ¢an contimoe to foeus our attenaon of (he reduced equatien

Fith+ o +asy =4 [reproduced from  L6.4))

The Complementary Function

When the values of the coefficients i and w2 are such that ¢ « da1. e characteristic
roots will be the pait of conjugate complex. oumbers

oo =Rt
he h= ! mu -] N i
wners ~——Em 4 "_E"" il 1
The complementary function, as wis already previewed, will thus be o the form
Vo= A e ™™ [reproduced from {16.111]

Ler us first ransform e imaginary exponendial expressions in the parentheses ot
equivalent rigenometric expressions, s that we may interpres die compleme ataty Eunclion
@y 4 circular fonciion. This may he accomplished by using the Euler relations. Letting,
B = in {1621 pand (16.21°), we find at

" = convd —Jsinze and ¢ "V megutd — Jsins
From thisc. it toltows that the complementary foncton in (16,01 can be rewrten as

o= n*j"[si|ta'11~¢ o isinwy 4 Aeosad — s}

, _ {16.24)
=" [(d) + Apcos vt + (A — A7) sinet]
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o
f \{-.n:,m =

-:Ill:-l iredians] \l
— 7] A

Furthcrmome, if wa: ermploy the shorthand symbkls
As=A+ 4y ad dg=0{4) - A2}
Ul 35 possible to simplily {16.24] inlo!
B = A Con Bt 4 A s b {16.247

whes Lhe new arbalmry constands A 5 and A are Lrter to be defmitized.

Il you &rz meliculous, you may lecl snmewhat uncasy about the substitution of & by
in the foregaing progodure, The varinble & messyras an angle, but w7 15 8 naganade i yoits
ot 1 (mdur combext, time ), Theretore, oy can wy make thy substifition @ = v The answer
W his guestion can best e explained with referenoe i the e cirefe {a circle wath andius
A = 1irmFig. 8.5 True, we have been using & Lo designale an angbe: ot sinee the oy
is measured in radian unils, the valus of 0 is alwavs the ratio of the length of are 4B fo the
radins £, Whan £ = |, e have specifically

arc Al _ arc A5 _

i+ = =ax AP
R |

In other words, & is nol only the radian measure of the angle, bul also the length of the
are A8, which iy 4 sumber raher than an angle, [ the passing of dine i chaned on e
cirgumference of the unit circle (countzrclockos ise ), rather than on a seraight [fre as we do
n plotting o tme series, it really maikes no difference whatsoever whether we consider the

" The Jacd that in definkng Ag, we Inclode inicche magloan nuatber Jis by no msars an aemgt b
"dwneefy the dirt uncler e nug.” Because A 15 an arbitrary constant, it can take an imagenary as well
i3 4 reall value. Mar i il true that, a5 celined, 45 wall necesaarily furm uut b be imaginany. Actually,

if A7 and Az are a par of conjugate comphe: humbars, @y, Atk m, then Ap and Ag will bolb be
real As =414 Az =(m+ Al Fim-mi=2m and g = (A — A =[im4+ ) —om— )i =

(& )f = —2n,
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lapse of Hme 53 an increase in the radian measure of the mgle # or a5 a lengibening of the
ute AF Even il £ = |, moreover, the same line of weasoning can appli. excepd that in st
case @ will be cqual 1o (are 480/ R instead; e the angle & and the ate 48 will beara ixed
propittion 10 cach othet, instead of being equal. Thuzs, the subsbtulkm & = v is indeed
legitimale.

An Example of Solution
Lel us find ihe solution of the differeniial eguation
PN 2P0+ 1T =34
with the initial conditions v(0) = 3 and (0% = 11,
Since g = 2.as = 17, amd = 3, we can immediztely find the partcular integrsl w be
kM
"TeTT
Maorcover, since o = 4 < Jaz = 68, the characteristic roots will be the pair of conjugute
cormiplex numbers (8 £ a7 ), where
| ]
==ty = =1 and = = dm -

2 2
Hence, by (1624, the omplementary function (s

2 [by{l63))

P =0 [ Aveosd + dgsinds)
Combining ¥ aml 1., the geoeral solwiion can be expressed as
M) = e W decondi + dgsindr)+ 2

To definftize the congtanrs 45 and A, we uithize the o otz comdions. First, by

sciting ¢ = 0 in the gencral solution, we find (hat
Wl = " 45 cos0+ Agsini)) + 2
=(As+0)+23=d;+2 [cost=1; s} = 1]

By the initial condition w0) = 3, we van (hus specily 4; = 1. Next, let us differeneuate the
peneral solution with respect to —-using the product tule ad the derivarive formulas
{16.17) and { 1618} while bearing in mind the chain il [Exercise 16.2-51—to find v i1}
and then v'{L:

¥irh = —e (A 00adt + A sinde]) e [Ads{—dsindri + 44, cosdt]
s0 that
LN = ={ Ay coslt+ Ag sin) +{—d s sinF + A4, coz
= {4+ M+ +44 =445 — A=

By the gecond initial condinion p(0) = 11, and in view thal 4. = |, it than becomes clear
that 4z = 3.7 The definite solution is, therefore,

v = ¢ oosdt + Xsindl + 2 (16.25)

1 Mote that, here, g indeed taims oul wo be 3 real number, even thowgh we have included the
Wmaginary number i ity defindtion.
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As before, the v, componeni (= 21 can be igterpreted as the intertemparal 2quilitrium
level of v, whereas the v, companent rapresents the deviation From equilibrium. Becavse of
the presenoe of circular funclions 1n .., the tise path (16.25) may be expected to exhiabu a
Auetuanng pattern, B what specific patteot will it imwolve?

The Time Path

We are familiar with the paths of o anple sine or cosine function, as shewn in Fig. 16.3,
Ninw wie must study the paths of certain vanancs and combinations +f sine and cosine func-
tions 50 that we ¢an interpret. in reneral, the complementary [unction [16.247)

¥ = M Ay cos e + A 5i0 1T

amd, in particular, the ¥, component of (| 6.23).

Lel us first exanmuine Lbhe lorm § A5 cos o . By iisell, the expression {cos v} 15 a circular
funcrion of [ ps}, with period 27 (= 6.2832) and amplitde 1, The perkal of 27 means thal
the graph will repeat ils contiguridion every lime that { vf § increases by L. When ¢ glone is
taken as ihe independent variable, however, repetifon wilt oceut every ime ¢ moreases by
Xty o0 that with reference wr 2% is appropriate in dynamic economic anglyas  we
shall consider the penod of (cos ef} o be 2y (The amplitude, however, remains at 1)
Mo, when u multiplicative constant A is attached w0 (eo8 1), 01 canses the rnge of
Auctuation wy change from £1 10 £45 Thus the amplinede nosw becomes #«, tough
the penod is unaffecred by this constant, [ shorr, { 45 cosad) is a cosine function ol £, with
perickl 2 /v und amplilude A;. By the same whken, A, sinr) i 2 sine fueciien ol 1,
with petiod 2n /e and amplinide 4,

There being & common penad, the sum §4s cos v 4+ Agxinow ) will abso digplay a re-
pealing cyele every time ¢ increases by 2 /w. To show this mere rigoronsly, leg ug noce thay
ioT given values of A5 and Ay we can always (nd two constants 4 and £, such thar

Asm Acosr aml Ay = —Asine
Thus wi¢ may cxpress the said sum as

Ascoset + Apsinef = dooss comp? — 4 sins sin o
= A{coz ot ooy s — 5INIFSINE)
= Advos{er + £] [bee [ 16 16)]

This 1z a modified cosine fonction of ¢ with amplilude 4 and period 2 fr, becawse cvery
g that £ ingreases by 2w fe, (0f + £y will increase by 2, wiich will complete acvele uit
the gosing curve,

MNad y, comsisted only of the exprassion (s coser + o5 i) the onplication would
have buen that the time path of 1 would be a neser-cnding, eynstant-gmphiode finctuaion
around the cyuilibewm value of ¥, a9 represented by 3. Buf there is, in fact, also the mul-
hplicative berm @™ ta consider, This lier e 15 of major imporiance, for. as we shall see,
it holds the key to the guestion of whether the rime path will convenge,

I = O, b value of @ will increase contmually as ¢ incteases. This will produce g
miaghilyimg eilec on the amplitode of { A cosee + Ay 0 v and cause ever-greater devie
anons from the equilibrivem in cach successive cycle. As illustrated m Fig, 16.6a, the e
path will in this case be chatacierized by evplosive fuciuafion. W& = 1. on the othar hand,
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FIGURE 16.6
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then €® = |, and the complementary funchion will simply be [Ascos1 + A, sin e,
which hays been shown 1o have a constimt wnplitude, la this second case, esch eycle will
dizplay 4 uniform pattern of deviatinn from the cquilibrom as llustrated by the ame path
in Fig. 16 éf, This is  time path with ueiferm fucteation. Last, ifF < O, he term e will
vontinysly decreass as tincresses, undeach successive cyele wall have a smalier amplilude
than the preceding one, much as the way o Tipple dies down. This case 15 dlustrated in
Fig. |&.6¢, where the time path is characretized by dumped fectmtion, The solution 1
116,253, with & = — 1, examplifies this Last case, W shonld be clear that only the case of
damped fAucivasion can produce 4 comerpesd hme path; o e other ben cases, the linse
pakh is noacomergent or diverpent.

[n all theee diagrams of Fig, 1640, the intertemporal equilibrium is wssumed to be sla-
Womary. 10aE i3 2 mowing one, th: thiree ek of e pad depicted will skl Hucowale areund
it, but sinee 2 moving equilibrivm eerermlly plots asa corve radlies thana hovizontal seaight

P shiall wie the two wargds pomcreergent and déeergent inlerthangeatdy, althaugh the latler i
rore skilctly applicable to the explasive than bo Uhe unlfomd va sty Of Ao Conmeergence
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line, the: Auctuaion will take on the nature of, say, A serics of Business cveles aroend a
seoular trengd,

The Dynamic Stability of Equilibrium

The concopt of comvergencs of the ime puth of a variable is inextricably tied tw the comncem
of dymamic stabilicy of the iertemporal equilibiium of that variable. Spevificalfy the coui-
L is dyitamically stable if, and only it the lime path i comvengent, The condiion for
convergence of the W) path, mamely b < O (Fig. 166e), is therefore also the condilion
for dvnamic stabilily of the intcrtemporal oquilibrum of v

You will recall char, for Cases | and 2 where the chamcterisie rooes re r2l, (he sond-
tion for dynamic stahility of equilibriwm s that every chacucienrstic tont be newative. In te
present case (Case 3), with complex noots, the condition seems tn b more specialized; it
strpultates only that the real part () ofthe complex roots (f £ 24 ) be negaove, However, §t
1 psssible Lo unify alb three cases and consolidaig the seemingly diffcrent condidans jrto 4
single, generally applicable one. Just interpret any real root » 45 @ complea wool whose
maaginary part is zero (= U). Thea dhe condition *the sl part of ceary characteristic
rut e negative™ clearly becomes applicabde w oall theee cases and ametpes as the onby
conuditienn wiz neegd,

EXERCISE 16.3

Find the y, and the y, the general solution, and the definite solution of each of the
{oblovrirg-

Loyl -4+ By =0, ) =3, ¥°(0) = 7

2oy (04 aptn -8y =2 woy=21, p (0 =4

3oy N+ 3N —dy =15 v =2,y (01 = 2

4y N -2 (N =10y =5 viD) =6, y(D =8 %

¥+ =3O =1, p(0) =3

G, 2y~ 12y (8 + 20p =40 {0 =4, ¥ (0 =5

7. Which of the differential equations in Prebs. 1 10 6 yiedd Berre paths with o) damped
flucluation; (b} unlferm Buctuation; () explosive fuctation?

16.4 A Market Model with Price Expectations

I the gatlier formutatiom of the dynamic market inodel, both £y and €, arc taken 1o be
functons of the current price  alone. Bur sometimes buyers and sellers may hage their
market hehavicr not enly on the cument prive but alse on the prce ereaf provailing al the
e, fur the price et is bhely 10 Jead them o certain evieclations reparding the price
level 1n the futurg, and these ¢xpeciationa can, m tum, inHuence their demand and sopply
decisions.

Price Trend and Price Expectations

In the continuous-time eonlext, the price-rend inlomation is w be found primarily in the
(e ikrvalives dP /et (whether pricc is rising) and o P/efs* {whether increasing a1 an
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increasing cate). To take the price trend inio account, let us now include these denivitives a3
additional argumenis in the demand and supply functivns:

O = DIP(Yy, P, #7e
0, =8[Pir). PN £

1F we confime oursslves o the lincar version of thes: funstions and simplity the notabion for
the independent variables to F, £ and P*, we can write

= —fP+mP + el fa, i = 0
& =—y+iP+uf +nf  (pbd=W

whese the paramctens e, #, p, and & are mecely carryovers from the previous markes
models. bt m. &, w, and wane oew,

The four new paramerers. whose signs have not been resinicted, cmbody the bayers” and
sellers' price expoctatons. Fm = 0, forinsanee, 4 rising price will cause (), oy increase.
Thiz would sugrest that buyers expectthe fising price 1 contine? o rise and, henee, prefer
40 1herease their purehages wow, when the price iz still relatively low, The opposite sign for
st wanld, on the other hand, sigmity the expectation ol g prompt reversal of the pnee eend.
o The buyers would prefir w ot back current purehases and wait for a lower proce Lo ma-
reralize laier. The mclusion of the pavameter & makoes the buyers’ behavior depend also on
the rate of changs of o P fedr, Thios the new paratneters s amd ¢ nject a substartial element
of price speculation into the woded “The parameters o and wearey a sinular implication un
the sellers’ side of (he prcture,

A Simplified Model

For simplicity, ne shail assume chat only the demand function containg price expectations.
Specifically, we let m and 1 be someere, but e = w =0 in (1 626). Further assume thi
the rarkar is clearcd af every ek of tinee. Then we may equate The Jdemand and @pply
funclons to obtain (after nomoadizing} the differenilal equation

{1&.20)

: d -
pryMp _BHE,  EHY (16.27)
" "
This equation i in the form of ¢ 16.2) with the followmg subsotuions:
+ A +
r="F r.a|=T ujz—'ﬁ J'J:—ﬂ ]
i i ]|

Since this pattern of change of # involves the second derivarive £ as well as the st
derivarive P, the prosent el is cerainly distinet trom the dyoamic markes model
presented in Sec. 15.2,

Hote, however, thyt the peesent mode| difliess from the previous model in yet andither
way. Jn Sec. 15.2, a thmamic adjusunent mechanism, dF fdr = f{Cy = €00 15 presnd
Since that equation impliex that &F fde = 0 il and onby if {1, = £ the intertcmporal
gense and the markel-glepring sense of eyuibiboum are coincidend in thet model. In con-
trast, the present model assurnes market clearanee af every momnent of Lime. Thux every
price: anained m the market 15 an equilibtinm price i the market-cleanng sense, although
i1 ey nat qualify as the intertemporzl equilibriwn prive. In other words, the two senses
of eguilibrium are now dispacale Note, also, that the adjsiment mechanism o di =
A0y — (L), conlaining & denvative, is what makes the previous market model dymamic
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It the present model, with no adjostment meehanism, the dynanic sature of the mdel
emaniics ineicadd from the expectation lerms m #° and 7 P

The Time Path of Price
The: miertemproral cquilibrium price of this model —the particular inkegrad £, {lormerly
i easily [ound by weing (16.3). Lt is

bty

e — —

"w Btd
Becanse 1his 1 o {powitive) constant, it represents o aationary equiibtivm,
As for the comphomecniary funciion £, (formerly w.), there are three possible cases,

(5)-~(5)

The complementary funetion of this casc 1, by (16.7,
.P,- — .-'l]E'r'F + .";I-JE-'HI

1 W w2 g4+
s ‘;*J(;) H57)| e

docordingly, the general solution is

Case 1 {distimet Teal roots)

where

w4+

PURI=P 4 Po= e+ dae™ 16.29
4] + &= ™+ Y (16.29}
Casel {dvubk real roots)
E .
§
o =(2)
A n
[ this case, the charackerisiie ronds (ke the smele value
4]
P=——
e
thus, by (1699, the general solution may be written as
. e TP .
Ples= dse ™0 4 g, ppmmie ;T:: (16.29)

Case3 (complex roots)

() ()

In thiv third and lase case, che characteristic rooe: are the pair of comugale eomplex
numbers

.= h+
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Example 1

wherg

i A& :
] M
h = _ﬂ ﬂnd i'= EJ—‘i( p ) - (:)

Therefore, by { 14,24}, we have the genersl solutign

: +
Plrh = e~ M Ay cas vt + 4asin 1)+ ot (16.29")

g+

A couple of general vonclusions can be deduced from these results. Firsy, if'w = 0. then
=A1A + §)/n rust be nepative and bente less than (/4 ). Hence Cases 2 and 3 can im-
mediately be ruled out. Moreever, with v positive {as are # and 3, the cxpression undar
the squarc-roct sign in [ 16.28) necessanly excceds {a frr)*, and thus the square root must
e greater than [m/e|. The £ sign in {16.28) would then produce one positpre ropt (ry ) and
one megative Kk (), Consaquently, the interemporal equilibium is dynamically unsta-
Mo, unless ehe detinitized yalue of the crnstant A | bappens (0 be 2e00 in { [0 29).

Secomdd, ifm < U, then all theee cases baeome feasible. Under Cas | we can b Sure
that both voats will be nepative iF m is newative. (Why?) mierestingly, the reprated root of
Caze 2 will also be nepative if m is oegative, Motegver, since k, the real partof the compley
rools in Case 3, 1akes (he sume value as the repeated root # in Casc 2, the nopalivity of m
will also guarantes thet /4 is negative. Lo shori, for all three cases, the dynamc slability
equilibrium is ensured when the paramaters w and » arce both nepalive.

Lat the demand ancd supply functlons be
qd:42—4F—4F'+Pd
3 =-—H+8F

with initial condivens £{0) = & and £0) = 4, Assuming market clearance at every poinl ol
thre, Tirud the time path P}
I this eaarngle, the patameter values are

w=4d2 p=4 F=4 §=8 m= -4 n=1

SiNCe nt s positive, our previous ciscussion suggests that only Case 1 can anse, and Lhat the
twa (real) roots - oand ry will ke opposite <igns. Substilution of the parameter values inlo
116.28) indeed confirms this, for

Fl.fz = 15{“*'-.1&"“‘3}: ]Efqia}:ﬁ', —E

The general solution is, then, by {16.29),
Pl = A+ Aze ¥ 44

By takmwy the initial conditions nta account, morever, we find that 4, = Az = 1, 50 the
tefinlte solutlan 15

Pih =¥ 4678 1+ 4

I view of the positive 10t #1 = 6, the mbertemporal equilibium (f, = 4} i dymamically
unstabile.
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The preceding solution is found by use of fnrmulas {16.28) and (16.29). Alternativaly, we
can first equate the given demand and supply lunctions to oblan the dilerential equation

PYU— 4P - 10P - -4
and then solve this equation as a specific case of (16.2).

Given the demand and supply funchions
Qe=A0-3p - 25" - p"
3, =-5+1F

with A0 =12 and P(0) =1, fird PEt) an the assumplion (hat the market is abways
clearer,

Here the parameters m and 1 are both negative, According Lo our previous general dis-
cussion, therefore, the Interemporal equllibiium should be dynamically stable To find the
specilic sobulion, we may first equate Tty and O, to obtain the differential equation (after
multiplying through by —1)

PP+ 5P =45
The intertemporal eguilibrium is qiven by the particular integral
45

From the characteristic equation of the differential equation,

A+ +5=0
we find that the roots are complex:
1 1
Pl f2 = E{_Ei W4 - 20) = E{—E:HI] ——

This reans that #f = —1 andd v = 2, so the general solution 1
Plth = e " AsCO8 21 + AgSin 20} + 9

To definitize the arbitrany constants Ag and Ag, we set ¢ = 0 in the general solution, to

get
PO} = e*(Ascos 0+ Agsin 03 +9= A +9  [cos = 1; sindt = 0)
horeover, by ditferentialing the general solutisn ard then satting 1 = 0, we find that
Ft)m —e™lcos 2t Agsn20) 4+ 0 Y—24; 5in 20+ 245 cos 2D
[preduct rule 2nd chain rukg]
and PO = — (s cosO 4+ Ag sinO) + 25— 24 sind + 245 s 0}
= —[As +H + D+ 2461 = —As + ZAs

Thus, by wirtue &f the initial conditions P00 =12 and {01 =1, we have A; =3 and
Ag = 2. Consequently, the definite solution is

Pity=¢ '(3cos 214+ 25in 21} + 9
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This time path is obviously ore with periodic tuctuation; the peried is 29/v = 7. Thatis.

there iy a complete Tycle every time thal { mcreases by m = 314152 .. In viesy of the
multipticative term g7', the fuctuaten |s darmped. The time path, which ctans from the
nitial price P{0) = 12, convenges to the interternporal equilibrium price P, =9 in a ¢pclical
fashwon.

EXERCISE 16.4
1.

Let the parametets r, o, o, and w in {16.26) be all nonzer.

() Assurming markel clearance at every paint of time, write the few diferential
equalion of the mode]

fi) Find the imdertermporal equilibrium gz,

fc) Underwhat ¢ciumstances can pemodic fluctuation be ruled out?

Let the demand and supply functions be as in {16.28), but with v =w =10 a in the

text discussion,

fzy I the market s not always ceared, bat adjusts atcording to

dF ]
ar - Qe -Qa {j=M

wite the appropriate new dilfarential equation.

(5} Find the Intertemporal equilibrium price P and the markek-cleating eguilibrivm
price P*_

(<] State the concibon for having a Huchuating price path. Can Mucluatton occwr I
- JE

. Let the demand ard supply be

Qe=9=P+P +3P" (G =-1+4p P <5p"

with P{0) = 4 and F{0) = 4,
() Find the price path, assumiTeg market Clearance at avery point of thme.
£h) 15 the fime path convergent? With thuchuation?

16.5 The Interaction of Inflation and Unempioyment

In

this section, we illusirate the use of & secondprder differential equation with a maceoe

mide] dealmy with the peoblem of mtlaton and umem phoy et

The Phillips Relation

One of the st widely wsed coneepis in the modemn analysis of the problem of inflaton
and unemployment is the Phillips relation.” Tn it wigial foenkation, this relation depicis

a0

cmpirically based negative selation between the raie of growih of money wage aml the

rele Of uncrployment:

w= ftt L) < 0] (16.307

1 4. vy Phillips, “The Relatiorehip Between Unerngloyrment and the Rate of Change of Maney Wage
Rates in the United Kingdom, 18581-19572," Lconorrion, Novemnber EF5E, pp. 263-209.
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whete the [iwereise letter w denotes the rate of growith of money wags Fiic, w= W/ F)
and L' is the ratg of wnemploymenl. I thos pertains onby to the labor market. Later usage,
hewever, has adapted the Phallips relatgon o a fanction that links the rate of Inflaidan
{instend of w) lo the nate of unemployiment. Thiz adaptation ray be justified by anguing that
mark-up pneing i i owide we, 90 thel a posiive w, reflecting prowing moncy-wage cist,
winld nécessanly carmy inflanonary moplicatione. And this makes the rate of infation, like
w, 4 function of £F, The inflationary pressuce of 2 positive w can, however, be offwt by yn
increase in labor preductivity, assumed to be exogeneous. and denoled here by T Specifi-
cally, the inflacionaty effect com materialize only to the extant that money wage grows [aser
than productivity, Demding the rale of inflation—that is. the rate of growth of the price
level P—by the lowercase lefler p, i p = P/ F), wie may thus wikz

p=w—F {1631}

Combining {16.30) and (16,31, and adepaing the lingar version of the Ranetion #{L7}, we
rhen get an adapred Phillips relaion

n=a-7 =8 g, p=0) {16.32)

The Expectations-Augmented Phillips Relation

Bdore recently. counomists have preferred to use the expectations-duemented veesaon of the
Fhiilips relaiton

w=flUl+gr  Dagzl 116.307)

where x denotes the expected pte of inflation, The undedyine idea ol (1630, as pro-
poutided by e Nabel lurcate Professor Frisdman,! is that ifan inflationary wend has been
Ln etfect [ong encugh. people are apttu furm certain inflation expectations which they then
altempt to meorporate into thair moncy-wage demands. Thus w showld be an increasing
funetion of w_ Carricd ower to {1632, this idea results in the equation

p=u—T - fli 4 pr (0 zp=1) (16.33)

With the miraduction ol 4 new wmable to denpte the expectad rate of inflaion. it
becomes necessary to hvpothiesize how infation expeclations are specifically formed
Here we adopt the mdguiive expeetalions hypothosis

dw i
i R UE PR {16.34)
Mg thai, ranher 1han explain the absolwe magniode of . this equation describes instead
ik puttern of change over time, If the acmal tate of inflation p wrng out to exceed the
crpected rate . the latter, having now been proven to be too bw, is revised upward
(el idi = 0) Conversely. if p alls shom of o, vhen ar Is rewised in the devwnwvard direction.
In formet, (16.34) closaly resembles the adjustment maechanism J P /dr = 200, — (1) of

! Miltan Friedman, “The Rale of onelary Pelicy,™ Ammerican Ecovvmic Rewiawr, karch 1968, pp. 1-17
1Thk is in contrast Lo Sec. 16.4, where price eapeclations were discussed] withoun introducing a rew
vanabhe 1o represanl the exparied pnce. As a result, the assum plicns reganding the formation of
expictalions were vy Inplicitly embedoed in lhe parameters m, 0, v, and win (14,26
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the muurkel madel, Bul here the driving foree behind the adjusiment s the discrepandy
hetwesn the acruwd and expecied rales ol inflation, rather than (2 and £,

The Feedback from Inflation to Unemployment

[ s pessable 1o consider [16.33) ond (16,34} ag eonsdiuting a complete meadel. Since there
are throe vanables in a two-equaton system, howewer, one of the vanables has 1o be tiken
a5 exogeenous. [f 7 and @ are considered endogenons. for mstance, then L must be treuted
as exopenous. A wore satisfying altemarive 1w e imeoduce 2 third equation w explain the
variahle L, so that the mogdet will be richer im behavioral chacacienistics, More significany,
thiz will provide us with an opporiumty to ake into accownt ihe feedhack effect ol mflation
on unemmplayment. Equation {1633} tells s how L affects p—larpely from the supply sids
of the economy. But p surchy can affeet L7in wiuen. For eaample, the rate of inflation may
in Awence the consumption-<aving decisions of the public, hence alse the agrepats demand
for Jognestjc productian, gnd the batier will, in twen, affect the rale of uncmpleymont, Even
in the cophct of government poheies ol demand manggement, the rate of infiation can
make 2 differcoue in their effecidveness. Depending on the rate of inflation, a grven leved of
meney expondilure {fiecal policy) could translate into varying |evels of real expenditure,
and sirmilarky, & given mie of pominalanoney expansion (mwnctacy policy ) could mean
waryiny races of real-money expansion. And these, in turn, wauld imply diflering effects un
oulpUt and unemployieo.

For siraplicite, we shall only tke mwo congideranon the feedback through te condogt of
monelary policy. Denoting the nontiinal motey balance by A and ity tate of growth by
At = MM, kel us postulate thar®

dt

e —kire—py k= (16.35]
Recalling (10.25), and applying it backward. we see that the expression (m — g 1epreset
the rane of growth of real moncy:

MoOF o
Moo= T p Mo T e

Thus (16.35 b stipulistés that €7 7t 15 aeralively velated to ¢he rate of growih of real-money
balance. Inasmuch as the variable o now: eniers into the dedermination ot &/ /dr, the madel
niw containg 3 foedback from inflation 10 unemploymeni,

The Time Path of &
Together, {1 6.33) through {1 6.35) constitme a closed model i the Wwee varables 7. p, and
£, By eliminating two of the three variables, howeser, we can condense the model 1ma a
sgbe diferemial cyuation 0 a single vanable. Suppose Lhal we lel that single variabbe be
. Then we may tiesd subsmouks {1633) mea 116,341 6 et

A

& flo =T —gt) = ftl — g (16.36)

TIn an earlier discussian, we derwited the money suppiy by A, to disinguish it Irom the demand for
mangy My. Here, we can senply use the unsubsanipted letter M, since there is no fear of confuskan.
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Had this equalion comained the expression JT /et instead of £, we could have subsliied
(16.33) into (16.36) dieecly. But as §16.36) stands, we must first deliberacely crepte 2
U Adf term by differentiating { [5.30) with respect to £, with the resalt

e gl d
— =—Jf— - fll —g)— '
LI {16.3/)
Substitution of {14.35) ino this then yields
4w o
— = jfm = jHkp — | — 21— f
= k- -9 (16.37)
There is shll a gr variable o be climinited, To achieve that, we nole Lhat { L6 34} implicy
| éx
= —— 4 16.3
& P +ir { 8)

Uging this reault @ (1637}, and simplifying, we finally obtain the desired difFerential
equation In e vatiakle & alone:

1

dr _ dr
r T AL o AR = Bk g
&1 'y 4

The particular iegral of this equition is simply
b

Ty = = =
! ifr
Thus, in this mode), the interemporal euilibriom value of the expected rate of milatian
hinges exclusively on the rate of growth of iemmal money,

For the complementary function, the two rooks are, as betore,

| I
Fiofa = E (—ﬂ" + ﬂ']" - -‘qﬂl) {1&.]9}

where, a2 mav be neted from (16.37"}, both 4 and a; are positive. Om a prion grounds, it
s not possible to determine whether &/ would exceed, equal, or be less than 4az. Thus all
thece caweys of churacteristic cools—distinet real voots, repeated real roots. or complea
roots—can conceivably arnge, Whichever case presems itself, however, the interternporal
egqurlibrinm will prove dynamically stable in the prosent wugkel, This can be explained as
fisflowss: Suppowe, fiest, that Case | prevails, with 27 > 4o Then the squars root in 116.39)

vieldz a real number. Eince a7 i positive, Jﬂf — 43 15 pecessanly less than J;f =a.lt
follows that r 15 negalive, as is ry, imphdog & dynmamically scable equilibrium. What if
at = dag {Case 2! In that cvent, the sguare root is 2ero, sothalrp =y = —eu f2 < 0. And
the negativity of the repeated rots arain wnplics dynamic stakality, Finally. {for Case 3, the
redl part of the complex Tools 15 & = —a) 2. Since this has the sane value as e repeated
rools under Case 2. the identical conclusion reparding dynamic stability applics.

Abhough we have only studied the time path of =, the model can certaindy yield infor-
matign o the ather variables, too, To fmd (he time path of, say, the £ variable, we can
eftfrer st off by condensing the modzl into a dilTerential cyustion in £/ ruther than | see
Eneronse 16.5-2} o+ deduce the L path ltom the = path alreody found (see Example 1),
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Example 1

Let the three eguations of the model take the specific forms

p=15—3i.l' 4 {156.40)
dr 1
— =37 (16.41)
ol 1
— = —_{m- 16.
= l.'[m 4 {16.47)

Theri we have the parameter values 1 = 3, ft =1, | = é, and k = %,: thus, with rederange to
{16.37"), we find

G

. 3 . . 9
ﬂ|=.ﬁ*+,f{1_g}:i @:Iﬁizg and b= jfkm= Em

The particukr integral is bim; = m. With o < 44, the characteristic roots are complex:

PPN O gy LA . _Lir)__hi.-
RAER 2 Tt i ‘z( 2T2) 474

That ig, h = —% and ¥ = ?—,. Consequently, the general solutlon for the eapected rate of
inflathg s

w(l) = e~ (AE, ros %t boAg sin i:) +m (14433

4
which depicts a time path with damped fluctuation around the equilibrivim value .

From (his, we can also deduce the twme paths lar the p and U vamables, According o
(1541}, p can be expressed in terms of = and da,/dl by the equation

_ 4 gx N
P=3%
The 7 path in the genesal solubion (16.42) imphes the derivatve

dr 3

3 _ 3]
PRl (Mmsau.#{.sm;

4
Lising the solution {16.43) and its dervative, we thus have

L g (_§A5 sin %: + %Aﬁﬂ:ﬁ%f} {preduct mde and chain fule]

pp = g b [Aﬁcm%r — Agsin %r) +m (16.44)
Like thee pxpectad rate of inflabion =, the aetual rate of inflaticn p also has a Auctuating bme
path converging ko the equilibriom valug m,

As for the [f variable, {16.40) tells us thal it can be expressed in term: of o and poas
follomms:

1 1
U=-3'[H—F|}1'ﬁ

By virtue of the sobubions [16.43) and (16.44), therelare, We can wite the time path of the
rate of unemplowment a3

. 1
Ui = %e‘“ﬂ [{A,. — Agleas LI (A5 + Ag) sin Ea] tg (16.45)

4 q
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This path is, again, ene with damped fhetuation, with [ a0 U, the dynamically stable
mkertempenal equilibriom value of L

Because the intertemporal equilibriom values of = 2 p are both equal to the monetany-
palicy parameter m, the valse of m—the rate of growth ol nominal money—pravides the
axis arcued which the time paths of = and p fluctuate, it a change accurs in rv, & new equis
libriurm value of 1 and p will immediately replace the old one, and whatever values the =
and pvariables happen ta take al the moment of the monetany-policy change will become
the initia| values fram which Lhe new  and p paths emanate.

In centrasy, the interternporal aquilibrium valug [ does nol depend on m. According to
{16.45), U/ converges to the conslant 1 regardless of the rate of growth of nominal money,
and hence regardless of the equillbium rate of inflation, This constant equilibriuem value of
i of referred bo as Lhe rafival rate of upemployrent. The fack that the natural ke of unem-
ployment is consistent with any equiibirium rate of inflation can be represented in the iig
space by a vartical straight line paralld to the @ axis. That vertical lawe relating the equilil-
riurmn values of Lf and ¢ to each other, is known as the fong-run Philips corve, The vertical
shape of this curve, however, is contingent upon a spedial pararmeter value assumed in this
example. When that value is altered, as in Exercise 16.5-4, the bong-run Phillipg curve may
no bnger be vertical.

EXERCISE 16.5

1. b the inflation-urem ployment model, retain §14.33) and {14.34) but dedete {15, 35)
and |et 4f be exogencus instead.

(@) Yhat kaind of differential quation will now arise?
(b How maatty characteristic raols can your ahiain? 13 it postibde now to have percoic
fluctuation in the complementary lunction?

2. In the text discussien, we condenced the inflaton-unemployment madel into a differ-
wihtial equation m the varabke 7. Show that the model can alternatively be condensed
into a second-order differential equation in the varable U, with the same o and @
copffickents as in (16.3/77), but a different constanl term b = kffe - T - {1 — gim].

3. Let the adaptive expectations bypothesis (16.34) be replaced by the so.called parfact
Iweslght hypothesls x = p, but retmin (16.33) and {16.35),
15y Derive a differentsal equation in the vanable p.
tby Derive a differentsal eguation in the varishle U,
{€) How do these equations difer Jundamentally from the one we obtained under the
adapbve expectations hypothesis?
(d} Whal change in parameter restriction is now necessary o make the pew differen-
tial equations meaningful?
¢. In Exarmple 1, retain (16.41) and {16.42) but replace (16.40) by

1 1
ﬂ—E—3U+in’

() Bnd @6} a(L), and LKL

(h) Are the tine paths still uctuating? Still comergent?

fc) What are and I, the Interiemporal equilibrium values. of p and U7

() Is i still e that £ s functlienally unrelated to 52 If we aow link these two equilib-
Hurm vatues to each other in a lang-run Phillips curve, can we stlll got a vertical
curve? What assumplion m Example 1 is thus crucial for deriing a vertical long-run
Fhiilips curve?
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16.6 Differential Equations with a Variable Term

Example 1

In che differantial equations considered 10 Sce. 14,1,
P e b azy = b

the ripht-hand 1erm 6 15 a con=tan. What il insiead of &, we liave onthe right o warfaie
v Le. some funciion of ¢ soch as &, &M or Asin r? The anawer is hat we must (han
modify our pardeular mtegral ¥, Fornately, Qe complementary fanction is ned aiflecled
by the presence of 8 vtiahle 1erin, because 3, deals only with the reduced equation, whose
right side is always st

Method of Undetermined Coefficients

We shall explain a method of finding v, knewn as the method of undstermined coefficienrs,
which is applicable o comstant-coeificient variable-term differential cquations, as long as
the variable erm and irs sucressive derivatives dogether contain vnly a feite anmber of
distinet frpes af expression {apart from muliplicalive cepsrants). The explanation of this
method can hest be carricd out with a concrete illustration.

Findd the parlcular ntggral of
pUE + Syl + 3y =B — k-1 {16.46)

By definition, the particular integral s a value of y satistying the given equation, i.e., a value
o p that will make the left side identically equal to the nght side regardless of the value of
I, Singe the left sade conlains the fonction yif} and the denvatives (8 and ¥ (—atereas
the right side contains multiphes of the exprassions 2, ¢, and 3 constant—we askc What gen-
eral function form of (e, alang with s first and second derpvatives, will give us the three
Wpes of expression 17, [, and a constant? The obvious answer i 3 fnction of the fomn
Brt€ + 8,1 + By {where B are coefficients vet o he datermined), tor if we write the paric-
ular integral as

Wil = B+ 8t 4 B
v (36 darlee
Fifi=2t+8;  and ¥t =26 {1647}

and these three equalions ae indeed compased of the said types of expression, Substitut-
ing these into {16.46) and collecling tenms, we get

Left sidke = (38,30 + (108, + 38,0 + (28, + 58z + 383)

And when thic it aquated term by e {o the rght side, we can determine the coeffioenls
B; as fgllows:

30 =@ =2
108 + 382 = -1 = Bo=-7
2 + 5By 4+ 303 = -1 By =10

Thus the desired particular integral can be written as
¥p= 281 -7t + 10
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This methed can work ondi when the sumber of expression Ivpes s fnile. (Sce Excr-
cise 16.4-1.) In peneral, when this prerequisite is met, the partcalar ntegral may be taken
a5 being in the form of a lwear combimativn of alt ihe distinet expression types comained
it the given vaciable t2rin, a3 well as i al ity denvatives. Note, in particular, (hat a constant
cxpressien should be inciuded in the prurticular integral, if the original variable lerm ur any
of ity suceessive derivalives comlaing a conatant term.

AS 4 further illustration, |et us fing the general iomm for the particular integral suicabile for the
varable term (bsin I}, Repeated differentiation yields, in this case, the successive derivatives
(boos 1), (—bsin 1), {-Bcos [), (bsint), etc., which involve only lwo distined types of axpres.
sicen. Wi miay therefire Try a panticular integral of the form (8 sint + Bz cos £).

A Modification
In certain Gases, o complication arises w applying the method. When the coefficient of the
¥ titTm in the grven differantial equanon (s cera, such a5 in

FU ) e ]

the previously used trial form for the v, nanely, Bii” + Bat + By, will fail to work, The
cange of hus v i= that, since the 121 term is ot of the picture and sinee only denva-
tives ¥ and v 7(eh a5 shown in (16, 4T) will be substituted inte the [aft zide, ng Byr® rerm
will ever appear on the left to be cquated to the 61 1erm on the right The way out of this
kind of ditficulty is 10 use insiead this trial sohstion 15 7% + Baf + By); of if this (oo fails
(£, given the equation ¥*(7) = 6% — ¢ — 1 touse 27 Byd™ + Baf + £xb. and 5o on.

Indeed, the same trick may be employed in ver anether difficul ceumstance, az is
illustrated in Example 3.

Find the particular integeal of
¥+ 3ty —dy = 2e ™ (1648}

Here, the variable term is in the fonm of #%, but all of its successive darivatives (namely,
—BeH 32e~¥ 128 e1c ) take the same form azwell, If we try the solution

pith= Be ™ fwith vt = —48e~ and y*(f) = 168¢ *]
and subslitute these mto (156,48}, we obtain the nauspicious result that
Left ende = [16 - 17 — 418 ¥ =10 {16.4%

which obwisudy cannot be equated to the fighl-side term 267,
Whal causes 1his 1o haggeen is the fact that the exponential coefficient in the variable
term {4} happens to be equal to one of the roots of the characleristic equation of {16.48):

Frir—d=10 (rootst), f=1, —1)

The charac taristic equation, it will be recalled, is obtained through a process of differentia-
Nion:! bt the exprassion (16 — 12 — 4) in {16.4%) is derived through the same process. Mo
surprsingly, therefore, (16 — 12 — 4)is merely a specific version of {r? + I — 4 with r set
erqual 1 —d. Since —4 happens bo be a characheristic root, the quadratic expressian

3 —4=16-12-4
st of necessity be identically zero.

" See the best discugsion leading 10 (1547,
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T cope walh this siluation, let us try instead the solulion
1) = Bte ¥
with derivatives
P =01 -d08e™  and  ¢{H = (-B+ 1608
Substituling these into {16.48) will now viekd: kef side = — 5 #e-% When this s equated to

the right skde, we determine the coefficient t be # = — 275, Cansequently, the desirad par-
tcular inteqgral of {16.48) can b wiilten a;
-2 i

}':!:-= ?I'E‘

EXERCISE 16.6

1. Showy that the method of undetermined coefilcients is inapplicable to the dilferential
equatlon p{f) —ay{fi+ by =1 |,

2_ Find the particular integral of each of the folitwng equations by the methad of urde-
termined oocfhicients:
(@ v B+ 2 +y=t (o) w (0 + vt 4+ 2y =&
fb) ¥ ()4 4y (8 + = 204 (ef) ¥ 0 + ¥[8 + 3y = sin ¢

16.7 Higher-Order Linear Differential Equations

The tpethuls of solution imroduced in the previows sections are readily exended 10
sth-order kincar differcniial equation, With eonstant coctcients and a constant term, SUch
an cquation can be writken penarally as

}iﬂf“J + ﬂ'l_'-'l'" 1.:'”“' 4 ... —'-Iil',_._|_|-"lf] T,y = b (16.50)

Finding the Solution
In this ¢nse of conseant cocfiicients md consins term, the presence of the higher deriva-
tivex does nol materially alfect the methid of finding the particular wepral disewsied
carlwr,

[f wa by the simplest passibbe Wype of selulion, - = . we con see that all the donvatives
froam o i) to P ed will be Zeros hence i 16508 will reduce bo @k = f, and we can write

h
M=k =— fgg =M et 16,31
cy
n case o, = 0, lwwever, we raust oy a soluton of the form » = &4, Then. since p'ir) = &,
all the higher Jorivatives will vanish, {1650y can be reduced 10 4, (£ = 5. thereby viclding
the panticular inlegral

h :
= ki = ——1 o, =M, | & W] [{!'F- (16.3 'IJ
Ho—-|

I£ 3t ha ppens Mac e, = ety—7 = 0. 1hen this Jast solation will Fal, (0o, instead, a solution of
the form 3 = ke must be tried. Fuether adaptations of Lhis procedure should be obvious.
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Ag for the complemertary function, inghision of the higher-order denvatives in the dif-
ferential equation bns the effeet of ruising te degree of the choragteristic equaton. The
complementary funclion is defined as ihe general solufion ol the tedueed equation

PO +a i+ e @ +ar =0 {1651)

Toyimg v = A’ (0 a5 a mhﬂinn_md utilizing the knuwledpe that this implics
i) = rde™ I = e e o Y = " Ae™ ) we can rewritc (16.51) ay

Ae™ " -|-I1'1|"'”_I oot der ta =10

Thiz cquation 15 satisfied by any vatue of r which sutishes the following {ath-depree poldy-
nonual) characlerisne equation

F* 4 ar” | +- 4y ¢ +a, =il {1651

There will, of course, be m raots 1 1his polyoomial, and esch of these should be included in
the: gemeral solution of (16.51) Thus cur complementary fonction should m general be in
the furm

T
o= A"+ A+ 4,0 (: E.‘fii."”)
 a=]

As before, however, some moulificalions must be made in case the i oty are not 3l rezl
and distinct. First, suppose (hat there are epeated roots, say, #| = re = r3. Then, o aviid
“collapsing” we must write fhe frst three terms of the solutions as 467"+
e + Ayt [of, (16.90] In case we have £y = r, as well. the fourth term must be
altered wo Aui7e™", ele.

Second. suppoase Lhal lwa of the ot are complex, say,

N T

then the fifth and gixth teoms in the preceding solunon showld by combined inte the fol-
lowing expressin:

HiAscos e+ Agsinet)  [of £16.247]

By the same token. 3 two Jistfact pairs of complex roots are foand, there must be s such
tngonometne sxpressions {with a ditberent set of values of k., v, and vwo arbitrary constans
for eachd.’ Az a Forther possibility, iF there happen to be two paits of repeared complex
rots, then we should use ¢ as the multiplicative term for one bat wse e far the ather,
Also, even thaugh f and v have identical valucs in the repeated complex roms, a differem
patr of arbitrary constants must now be asagned 1o gach

Onee 1y amd y, are Tound, Lhe gencral sphmtion of the complete equation {16,301 fullows
easiby. As before, i 15 simply the sum of the complementary funcuen and the partealar
tegral: (1= J + . In this gencral suluhon, we can count a inal ot # arbitrany con-
stants, Thus, to deflnitze the solution, as many a6 # initial conditions will be required.

Pit is od dnlerest to note thal, inasmich 25 comples meots always come in CONpgate pas, we can be
suwre of having of kst orme real roon when the difarentid equation is ol an odd order, ve, when g s
an odld rainar,
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Example 1

Find the gencral solution of
PIE + G L+ 14T 1By () - By = 24

The particular inteqral of this fourth-order eguation & simply
24
=g = 3

Its characteristic equation b, by {16.317,

e 14t 16+ 8 =0
which can be factored intg the form

(r+ 23+ 2+ Ir + 25 =0

From the flrst tywo parenthetical ewpressions, we can obtain the double rosts ry =rz = =2,
but the last {quadratic) expression vigkds the pair of complex roots r3,rq = —1 41, with
fr= -1 and v = 1. Consequenthy, the complemantary funciion is

b= A e+ Apte ™ b e WAy onst 4+ Agsind)
and the general sollion is
WO = A1 + Aste™¥ 4 ¢ (A cont + Agsint) + 3

The four constants Ay, 4;, 43, and 4y can be definitized, of course, il we are given four
iri kal <o iKions.

Mote that all the characterstic roots in this example either are real and negative or arg
complex and with a negative real part. The time path must therefore be convergent, and
the intertem poral equilbrium is dynamically stable.

Convergence and the Routh Theorem

The soluticon of 4 high-degree churacicristic 2quation is o always an easy k. For this
reason, it should be of iremendous help il we can find & way of ascentuining the conver-
sence of divergence of & tme path withow having to solve For the characionishe roots.
Frrturatels, there docs exist such a method, which can provide a qualitative {ihough nen-
araphich analysts of A diffescanal cquation.

"This methad is to be found in Lhe Routh drearem,’ which states that:

The real part ol all of the rogws of the ath-degres: pohmomial equatbon
g bty g+ an =0

are nesative F and only i¥ e lirst o al te following sequence of delcnminanis

o dy #Ha IS'?|

I . (g3 Oy ds :
YTy . i dz gy
len |z - o |we MoAg g :
1o I!T"'l §] o3 oy
0 o 3 1
0 ey B iy

alk arc posibive.

In applving this theorem, it should be membered that |a| = . Furtber, 17 is 0 be
understood that we should laks e = 0 for 211 s = 2. For example, given a third-degree

| For a discussin of this thearem, and a dketch of its proaf, see Paud &, Samuelson, Feerdehons of
Econarmic Aralyis, Harvard Linmeersity Press, 1947, pp. 429-435, and the references there ciled,
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pobynomial equanion i+ = 1, we nead te caamine the sipns of the fisst e determinants
listed 11 the Roodh theoremy; dor thal purpose, we shoutd 5281 0y = a5 =10,

The redevanee of (his theorem o the convergenee problem should become self-evident
when we vecall that in order Far (b timw path kir) 10 converpe mpardloss of what the ini-
tial conditions bappen to be, all the chiamoteristic rods of the differenna squatien must
have nepative ecal patty. Since the charactonzte cquation | 16.31°) is an sthederee polynoe-
mial equation, wich ag = 1, the Fouth theenem can he of dircet belp in the esting of cun-
vergence. In [act. swo note that the cocllwients ol the charactonstss cquation ¢16.51°) ans
wholly identical with thoge af the given differential equation (16311, o it is perfectly
gcceptable o substitte the coefficients of [16.31) diresty ito 1he sequenoc of determi-
tands shoaen i the Kouth theorem lor testling, provuded that we alwoys fabe o, = .
Inasmnch as the eondidon ciied in the theororn i gven on the i1 aml ondy if asis. it
obvinshy comstoates 4 necessary- md-sufficieat conditien,

m Test by the Bouth theorem whether the differential equation of Example | has a convergent
——— tline path, Tis equation is of the fourth order, so 7 = 4. The coeflickert e gy, = 1, o = 6,
;=14 @ =160 =8 and & = ag = 07 = 0. Subutiluting these mto the Tirsl four deter-
rrwnants, we lind Cheir valuet to be &, 68, 800, and & 400, respectively. Because they are all
psilive, we can conchede that the time path 15 convergent.
EXERCISE 16.7

1. Find the particdar integral of each of the oliowing:
(@) v {0+ 2y b+ P+ 2y =8
(B O+ + 3y =1
{gy 3D +9" =1
i} M+l =4
4. Find the vy andd the g (and hence the general sclution] of;
{o} ¥ it -2y (- ¥t + 2y =4
[t r® - 2o er kT =de = D5 + 1K — )]
(B 420+ Ty {4+ 9y =0
[t rE 4+ 202 £ 15+ B =dr — 1} 4 6r | WY
(e ¥+ 6 () + 10y N —By = 8
[Mint: r + 62+ 100 +8 = {r —4){e? + 2r + 2]
3. On the batis of the signs of the characteristic roots obtained in Prob. 2, analyze the
dnamie stability af equilibrioen. Then check yaur anper by the Rowth thegram,
4 Withaut linding thesr charaeteristic rooks, delermine whether the Following diferential
equations will give rise to convergent time paths:
fa) ™) = 10y {04 27y (- 18y = 3
({0~ 119 (04 3y [ 4+ 24y =5
fc} y™{8) + dp"(T) - Sy} - 2y = -2
5. Deduce from the Routh thegrem that, tor the secong-order inear differential equation
¥ Ly ({) + gz = b, the solution path will be convergent regardless of inltial con-
Jditicns I aendd anby if the coeffickents oy and oy #re both positive,
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Discrete Time: First-Order
Difference Equations

In the continuous-time context, the pattern of change of g vanable y is embodied in the
derivatives (1), 177r), ete. The time change involved in these 15 oCoprming continucusly.,
When i 15, instesad, taken to be o discreie varable. so that the vanable ! is allowe] o lake
imteger valuas only, e concept of the denvative obviousky will oo longer be appropriale.
Then, a5 we shall set, the pattern of change ofthe varible y must be describad by so-called
differences, vather than oy desivatives or differconals, of W), Accordingly, the lechmigues
of differential equutions will give way o thise of difference eguations.

When we are dealing with discrete tione, the value of variable - will change only when
the variable ¢ chanees from one wieger value 10 e next such ay from r =1 =12
Meanwhile, nothing is suppusced to happen ta 3. In this lighe, it becomes more comeement
(o aicypret the viloes of ¢ s refomng to pededs—rather than peirts—uoflime, with § = |
denoting pericd | amd ¢ = 2 denoting penud 2, and 30 foruh. Then we may sunply repard y
25 having onc unique value in cach lime period. ln view of this interpretation, the discriic-
timig verspon of counomae Jynamics is often refermed to as period anafivis. [ shouald be
emphuzized, Mowever, that “period” is being used here not in the calendar sense but i the
analylical sense. lence, o peood may involve one extent of calendar 1inw in o pactcid
coenomic model, bun an aligeher Jifferent one in gnother, Even inthe same maodel, more-
o, eavch successive period should not necessarily be construcd us meaning egual calen-
dar timwe. In the analytical sense, 4 period b= menely 2 length of time wthat elupsas before the
variable v undergoes 4 change,

17.1 Discrete Time, Differences, and Difference Equations

The: chianyze [eom continaous ame ko discrete time produces no cffeet on the fundamemal
nalure of dynamic analysls, althoush the formulation of the probiem must be allered. Basi-
cally. aur dynaviuc problens is 56l1te Grad a tme pathdrom sme given patiern of change of
a vartahle v over time. Bot the patiern of change should now be repessented by Lhe differ-
ence guadient A/ Ar, which s the discrete-time coanterpart of the derivative oy /o'
Recall, howaver, that 1 can now iake only inbeper values; thus, when we are comparing the
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values of yin fwas conseculive periods, we must have A7 = 1. For ihis reason, the diffaroace
quatkent Apr/Ar can be simplified t0 the exgression Ay ths s called the firm @difference
of ¥, The symbel A, meaning difference, can accordingly be mterpreted as a dirgetr ta
take the first differonee of | F) As such, it constimmes the discretedme countorpant of the
upeTdber syimbaol & /et

The expreditom A p can take vanous values, of course, depending om which Lo coise-
ubve wme periods are involved in the difference-taldng (or “differencing™). To avoid amba-
guity, L2t ug 2dd a ime subsetipt to ¢ end define the firse difference more specilically, a5
follows

AV S KL R {17.1)

whers v, nieans the valee of'y in the 4th period, and 1, s its value in the period immedi-
ately following the fh period. With this symbiel oy, we may deseribe the pavem of chanpe
of ¥ by an cquation such as

Ar =1 (17.2)
or

Av, = -y (17.3)

Equations of this type are called differcece eguations. Note fhe striking resemblance
betwoen Hhe skt egwatinns, on the o band, and the differential squations dvfds = 2
and dv/di = —0. 1y oo the other,

Even though dilference equations derive their neme from dillerence capreasions such ax
Ay, there arg abiormate squivalent forms of swch equations whuch are completely free of A
expressions amd which are more comvenient 10 nse. By virme of (17,1 we can rewrile
{17.2) a5

Vel — k=2 (17.2°)
ar
¥ =xt2 (17.2")
For {17.3}, he conesponding zleemate equivaleat fovms are
P =08y =1 (17.3")
or
I AT {17.3")

The double-prime-numbered versong will prove convement when we are caleulsimg a
¥ willoe from 4 knéwn v vahue of the preceding period. [n |ater discussions. bowever, we
shall @mpley mirslly the simghe-prime-mumbered versions, 1.¢., those of (17.2') and {1 7.3,

1t 18 imuporiant o nate that the chege of tne subseripts o 0 difference equabicn is some-
whal artitrary. Fot mslance, without any change in meaning, {17.2°) can be rewninen as
o= =2 where (t — 1) refers w the penad which immediately precedes the ah. Or,
we meay express i equivalently as yap — by = 2.
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Alsa, it may be pointed o that, althungh we have consistently used subscripted ¥ xyim-
bols, it is also acceptable 1o wse w2, wir 4 1hand M — 1) indhedr slead, 10 order i avoid
using the notation »{f) for both enmtineouws-tire and discrewe-ime cases. bowewer, we
shall, it the discussion of period amalysis, adbere to the sulscnpt device.

Analogows to differential equacicns, difference equations can be ither linear or nunlin-
ear, homegeneous or nonhomageneous, and of the st or seeond {or higher) orders. Take
(172" for instance. W ean be classified ag: (1) linear, fa no x lern (of 2oy period ) is rised
t the sceomd (o higher) power or i muliiplisd by 2w term ol another penod; (2) nonho-
mugeneous, since the right-hand side (where thore is no v term} is nenzemy; aod 39 of the
first order, because thene eisls oiily a ferst difference Ay, involving a one-period ime lag
only. (I comtrast, a sccond-arder difference equation, o be disewssed in Chap. 13, I ves
a two-period lag and thus cntails three ¥ lerms: w 4o, ¥y 1. 35 Bl ws v )

Actually, {17.2) can also be characterized as having constant cocficients and a constant
term = 2%, Since the constani-coetficient case 15 the only one we shall conader, this char-
acternzation will hencoforth be implicitly assurmed, Throughout the present chapter, the
constt-term feature will also ke retained. although a method of dealing with the variable-
lerm cass will be discussed in Chap. 12,

Check that the cuualion {17.3y is alse linear and of the first orders but unlike (17.2%, u
i5 homozeneons.

17.2 Solving a First-Order Difference Equation

I sobving a differenutial cquation. our obycetve was 1o find a time path vi£), As we know,
such 4 time path is a fnction of iime which is totally free from any denvative [or differen-
tial) expressions and which is pecfectly congistent with the given differential equation us
wel| as with its initial conditions, The time paih we s2ek from a difference equation 15 gim-
ilar in nature. Again, it shoold be a function of r—a ol detining te valves of p in
overy Line periad—which is consistent with the given diffarence cquation a8 well 4% with
i initial conditions. Besides, it wust ot contain any difference eapressions such as Ay,
(or expressiony bike w4 — 1

Solving differential equations is. i the (inal anakvsis, 3 matner ol intsgration, Huw do we
s0]ve g differenee equation”

Iterative Method

Belore developing 4 general method of atteck, let ws first explain a relatively pedestrian
method, the iferaive methed—which, though crude, will prove immensely revealing of the
sxseritiat nature of a so-called solution.

Ini this chapter we are concerned only with (he [irst-order case; thus the difference cquy-
fion describes the pattern of ¢hange of 1 berween Mmoo conseeutive periods only, Onve such
a pattern is specificd, swcl as by (17.27), and once we are given an inrizl volue w, 1tis oo
problem (o find p, (rom the equation. Similarly, once p s found, vz will be immediately
obtminahle, and so forth, by tepeated application (iteratien) ol the patern of change
specificd in the diillerence equation. The results of iteration will then paanit us fo mler a
time patl,
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Example 2

Example 3
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Find the solution of the diflerence equation ¢17_2), assuming an inibal value of vy = 15. To
cay out the ilerative process, it Is more convenient to use the alternative form of the
difterence equation {17.2°), namely, prpi = ¥ + 2, with 3y = 15, From this equation, we
can deduce step-by-slep that

B=t+2
r=nt+2={p+2)+2=p+AH
vu=yr+2=[w+ X2+ 2=+ A

..........................................

and, in general, lor any period ¢,
Yr= gt a2 =1542¢ {17.4)

This last equation indicates the y value ol any time period {including the initial perlod
£ =10% it therefore constitutes the salution of {1 7.2).

The process of Ueration is crude- 1L correspondy roughly 1o golving simple difterential
cquations by straight integrarion—bur i gerves 10 point s ¢learky the manner in which o
tme path is generated, In general, the value ol », will depend in u specified way on the
value of v in the inmediately preceding period (¥ ); thua 3 given initial salue 5y will
suevessively lead to v, =, L via the peescribed patiern of change.

Solye the differsnce equation (17.3); this time, let the initial value b onspecdied and
denated simply by . Agaln It i moere convenient 1o work with the altemative varsion in
(17,370, namely, y = 0.9y, By iterabion, we have

¥ =054
¥z = 0.9y =0N09p) = 0.9y
¥y = B9y = 009 jp = {09 1

These ¢an b surmmarnized into the solution

v = {19 'w {17.5)

To heighten interest, we can lend some economic content 1o this example. In the simple
multiplier analysis, a single investment experditure in perind 0 wifl call forth sccessive
rounds of spending, which in burn will bring about varying amoants of incame increment
in succeeding time pariads. Ldng p 1o denoke Moome increment, we have w, = Lhe amount
of imeestment In period 0; but the subjsequent income incremenzs will depend on the
margind propensity to consume (MPC), IF MPC = 0.% and if the Income of axch period
s consumed only i the next perodd, then 90 percent of g will be consumed in period 1,
resulting in an mcome incrermenl moperind 1 of yi = 0%g_ By amilar reasoning, we can
find 32 = 0.9y, etc These, we see, are precisely the results of the iterative process cited
previgusly. In other words, the multiplier process of incame generation can be descnbed by
a difference equation such as (17.3°}, and a solution like {17.5) will pall us what the magni-
tude of inCome increment is 10 be i any fime perlod I,

Salve Lhe homogeneous difference equation
My — My = 0
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Upan normalizing and wanspoging, this may be written as

L

Yisl = (% )}"r

which i [he same as (17.3") in Example 2 excepi for the replacement of 0.8 by rifrit. Hence,
by analogy, the salution shoukd be

o
Yi= (E]J HH

Watch the term {g}i It is through this term that various values of ¢ will lead io their

corresponding values of v, It theiefore cormasponds Lo the expression ¢ in the solulions ta

diflerential equations. Il we write it mare generally as &' (b for base) and attach the more

general multiplicative constant A (instead of ) we see that the solution of the general
hampgeneaus difference equation of Example 3 will be in the form

= Ab'

W shall fing that this axprestion Ab® will play the same importand role in difference equa-
bions a3 the expression Ae'! did in differential equations,’ However, even though both are
exponential expressions, the lormer is ke the base b, whereas the latter is 1o the base e IL
stards bo reason that, just as Uhe lype of the conrinugus-time path [} depends heavily on
the value of r, the discrete-time path v hinges prncipally on the value of &,

General Method
By this time, you musi have become quite Dnpeesscd with the various similaritics between
differential and difference equations. As might be conjectured. e general mithod of solu-
fion pre=colly 10 be explained will paratle] sha for differential equanons,

Supese that we are seeking th solation 10 the fest-order differcnce equation

iy o0y, =0 {17.6}

where 2 and ¢ are two constunts. The peneral solurion will consist of the sum of ) fotm-
ponents: a perticrelur sofuton v, which is amy soluton of the complete nunhamegeneous
equaten (17068), and a complementary funcgion F.. which is the gongral solulion of the
reduced cquation of {1T.R):

gy 4w =0 arn

The ¥, compenent again rpresénls the interternporal equiliorium Jevel of v, and the x.
compunent, the deviations of the lime path from that equikibrium. The sum of v, and 1,
constiluts the gewered solution, beeause of the presence of an arbitrary constant, As before,
in vrder W definitize the splution, mmotial conthting i needed.

Lot us fitst deal with the complementary fumetivn. Cur expengncy with Example 3
suggests Uhal we may by 2 solution of the form g, = A#' (with AY £ 1, for olherwise 5
will Luen out simply to he o horemial strsght line lyng onthe ¢ axis; in that case, we also

* ¥gu may chiect o (s statervent by painting sul that the soluton (17.4) in Example 1 does mat
conitain a Lanm i the form gt A1, Thie latter facT, howsevsr, arses only because in Example 1 o have
b= nim="1/1="1. 50 that the term AL" reduces bo o conslant
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have 141 = A IF ihese values of v, and 3,y hold, the homopeneous equation {17.7)
wil| rerome

AD' ! adh’ =0
which, upon eznceling the nonzero commion factor 447, vields
b4a=t w A= —a

This means that. for e idal solwiier o work, we must sct & = —g; then the complenien-
tary Tunciion shouwld be wrilten as

Iel= 40 = .*H—-e’!'}r

Mow et us search for the particular solwion. which has 1w do with the complete equa-
tion (17,60 In this regard, Exampie 3 is of no belp at all, because that example relates only
to a homogeneous equarion. However. we nole Lhat Ior 1, we can chaeae aie sulution ol
(17.6); divs if 2 il solurion of the sinptest fm v, = & (4 constml) 3o work eut. no teal
difficubey will be enconntered, Wew, if v, = &, then v will mainiain e saome constant v lue
eneer fime, and we must have v, = & nlso. Substintion of these values o (17.6] yields

-

Etok=¢  amd k=
l+a

Sines this particular £ value sabsfies the equation, the partcular integral can be wrigten as

o .
wi=k)= T {a £ -1]
This being a constand, o satianary equilibrium is indicated in this case.

Ifit happens thata = —1, as inExample 1, however, the particadar salution /1 + ) s
nit defined, angd some other solution of the nonhomoegeneous aquation {1 7.4) must be
soughi. [o this event, we employ the pow-familiar iick of trving a solution of (e forin
v = & This implies, of course, that ;.o = k¢ + 1) Substibaling iese it (17 .£6). we find

i
A+ D +mii=e il b= ——— =¢ [t g = =1]
t+ L 4t
1hus ko= A) = o

Thiz brin of the particolar selwton 38 nongenstant Iuncton of ¢; i€ therefare represents a
rdving equibibriam.

Adding v, and v, topether, we iy nuow wrile the gencral solution in one of tha twe
tollowing forms;

= Al—a) + ILﬂ [genieral solotion. case ofa 2 —1f (178}

p=dl—al o =d+uor [eneral solution, casz of @ = —1] (17.9)
Merther of these 18 completely determinate, i vicw of the arbiteary constant 4, Tooeliminate
this arbilrary constanl, we resort 10 the moial coadibon that v = pp when f = 0. Letting
=0 (178, we have

o
1+a

wm=A+ an Ad=1w-

|+
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Example 4

Ciomsequently, the definite version of (17.5) 15

' ¢ ; £ . - i
et IRV , _1} (17.8
* (.,n I+a)t w) + _p [dedinite zoheion, case of a 2 — 1] [17.5)

Letiing ¢/ = 00 in {1790, on the other hand. we fid w = A, s¢ the delinite vorsob oF
ARAUTT:

o=y +ct  [definie solugon, case of o = —1] (17,9

I 1his Tast pesulr s applied 1o Example L, the solution thar emerges s exactly the samg as
Ihe iteralive solwion {1 7.4).

You cim check the validicy of each of diese slutions by the following hwo steps. First, by
betting ¢ =0 in [ 17-8'), see that the latter pquation reduces to the idenTity 1 = vy, $ignify-
g the sansfaction of (he initial cundilion. Seoond, by substiwting the J: formula (17.57)
aad a similar y; g formala—obigined by replscing fwath (7 + 1) md 178 p—into [17.8], wee
that the lanzr rechaces o the identity ¢ = o, signifyme Lhat the ume path is consistent with
the given difference couation, The check o the validiy of solumion {§7.% 4 13 analegous.

Salve thie First-order differance equanon
beat — ¥ =1 (H=%}
Following the procedure used in derving (17.8'), we can find . by lrying a solution

¥ = Ab" {which implies iy = 4651} Substituting these values inte the homogeneous
version vi_1 — 5w =0 and canceling the common tactor A%, we get b = &, Thus

¥e = ALS)'
To find ps, by the solution p = &, which smpRes . = k. Subcliluting these into the

complete difference equation, we find k = —1. Hence

1
¥ =3

Ik fallowes that the general solutian i
b= e+ pa= A5 — 5
Letting ¢ = © here and utilizing the Inlllal condition y = £, we obtain A = 2. Thus the
delinitg solutlon may finally be writben as
=5 -

Since Lhe given diference equation of this example is 3 special case of (17.6); with
g=—5 c=1 and = %, and snce {17.8) i5 the solulion “toepnula® for this ype of
difference eguation, we (oukd have found owr sofubion by inserting the specific paramster
vilues inta 17,87, with the result that

71 A I,
v=(5- )+ =200 -
which checks perfeclly with Lhe earlier answer,

1
i

Mute that the w4 termn in (L7.6) has o unit coefficient. 10y given dilfercace couation
his @ nenunit coelficient for this cenn, it must be wormalized hufore wang the solution
el (17.2').
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EXERCISE 1/.2

1. Converl the following deffarence equations into the torm of [17.27);
{at Ap =7
(I Ay =03
) Ay =2 — 9

2. Solve the feltowing diflerence eguations by iteration:

(8] mar=n-—1 {vo =10
(D) yra =ow {0 = 5)
() pa=aw—f (= yawheni=10)

3. Rgwrite the equations in Frob, 2 in the form of {17.6), and solve by applyvng formula
(17.87 or (17.97, whichever is apprepriate. Do your answers check with those
abtained oy the erative method?

4, For each of the foflowing difference equations, use the procedure Rlustrated in the
derivation of (178 and {17910 lind v, ¥p. and the detinlte solution:

(@) p1 43y =4 (m =4
(B 2 —p =6 ¥y = 7}
) o1 =020 +4 (W= 4)

17.3  The Dynamic Stability of Equilibrium

In the continuous-teame case, the dymaanie sigbility of squihinun depeds on he Ae™ term
o the complemnentary funciion. (o perigd analysis. the correspondme mele is plaved by the
A" oo in the complementary funclion. Since its interpretation is somewhat marne eon-
plivaatge thue Ae™, bgt ws Ity 10 ciatily ot before proceeding lirther.

The Significance of b

Whetker ibe equilibriom is dvnamically stable is @ question of whether or not the comple-
menlary funaiion will wnd & zero os F — oo, Basically, we must analyze the path of the
term AB as £ g increasad indediniwely. (Hwimuﬂy. ther walue of B {(he base ol bis LXPCR-
tial teem) is of erucial imporance in this ropard. Let us firecconsider its sipnificance alone,
by disregardmy the coelficenl 4 [y assoming 4 = |},

For analytical purposes, we can divide the range of possible values of &, {—oc, 420),
it seven disimct regions, as ser forth in the firse tvo columns of Table 170, arranged in
descending arder of magnitude ol b, These regions are dlso marked off in Fiz 171 ona
werlical & scale, with the poine +1, O and —1 as the demarcarion podnts, In fagcr, these bt
ter threr points in themselves constitule the cegions 1T, T and VT, Begions T and ¥ on the
ofler hand, cordespand @ the serof all posinee fractions and the set ot all negative frac-
tions, respectively. The remaining two reglons, 1 and Y11, are where the nuwmerieal value of
B escveds urity.

I cach regwon, the exponential expression &7 penerabes a different type of ome pah
These ans exémaplihcd m Table 17.1 and dhyswated in Fig, 173, bnoregion | iwhere &= [,
& must increase with £ al an mercasing pace. The peneral configuration of the time path
will there fare assume the shape of the o graph o Fag, 17,1 aee tat this graphos shasn
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TABLE 17.1

& Classibicatinn
of the Vakaes
of b

Value of &' in Different Time Pariods

Reglon Value of b Vake o [l i=] (=2 tmd Imd...
I h=1 (=1 eq, {2 1 2 4 & 16
N b=1 (=t {1 I T B 1
W o<bel fH<b en (U} b §
I"i." b=0 (M =0) {5 L { 0 0 Q
v —1<b< (o<b eg (1) 1 -t 1 <l &
b= -1 (M =7 0 LHN T B B i
Vil b -1 {H=1 eg, (-2 1 -2 4 -8 16

a5 2 step fanction rather thion as o smooth curves this s because we are dealing wilh period
analysis. Inrepion |1tk = 1), & will remain at unity for alb values of 1 1t geapb will ths
be a hotizonal sivaight line. Next, in region W, & represents a wsicve Traction raised ©
imteger porvers. As the power i increased. B mu decrease. though it will always rennain
positive. The next case, that of & = 0 in reygion 1% is quite similar w the case ol b = L b
her we bave AT = 0 mather than & = | so dis zraph will comeide with the honzontal axis.
Horwever, this case b of petipheral inecst only, simee we have earlior bopled Qv assunm-
ton thal AR 21

When we move inlo the negalive regions, an interesting new phcnomenon veeurs: The
value of I will afternate between positive and negative values from peniod 1o period! This
Fuct is clearly bramght awt i the st thee owes of Table 171 and in the Inst thees graphs of
Fig. 17.5, In region Y, where & i3 o negatios (rcton, the alisrnating e path tends o gel
closer and chwser 10 the harizental axis (of, the posidve-iraction regiom, 13 I conicast.
when &= — 1 {region W10, a perpetwl sleernation between —1 and — 1 resubs 4nd finally,
wlhen & = —1 {region Y1), the afternatiog time path will deviate farther and Garther from
P e Avwilal anis.

What iv ariking 15 thet, wheress the phenomenon of a Nuctwating tims: path cannot pos-
sibly arisc feom @ single Ae™ term (the complex-ranl case of the second-order differental
equation requires a gair of comphes foots), tuctuaton can be genetated by a single »
{ur A5 temm, Mole, howevier, that the charecier of the flucation 5 sonewhac diftereot,
unlike the circutar-function partern, the ductvation depicted m Fizo 171 15 nonsmosith,
For this reason, wo shall employ the word esciffation to denote (he new, nonamoodh e
of Auconulion, even thoush muny wrilers da nse the derms Huctuation and oscillauton
inter hangeably,

The exsence of the preceding discussion can be comveyed in the following gencral stale-
ment The Lime path of & {fr 2= 03 will be

Nomosei larary . A=)
sl larory B b

LI

L&) =1
[t is frmpoiiant to note thal, whercas the convergence of the cxpression e ™ dopendy on te sivs
of #, the copvergenee of the b capressaon hicpes, instead, on the afofute valee of 6,

Dhcrpent
Convergen
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The Role of A

Sa far we have deliberately left out the multiplicative constant 4. But its effects—of which
there are two—are relatively eagy 10 13ke into accound. Fin, the mageinide of A can serve
to “blow up™ (it say, 4 = Ipor “pare down™ (i, say, 4 = éj the values af &', That s, it can
produce a seile effect withow changing the basic configuration of the ime path. The sign of
A, on the other hand, does matzrially afect the shape of the path because, it ' is inubliplied
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Example 1

Example 2

by A = -1, thetr each time: poth shown in Fig. 171 will be replaced by its owm mirmor
image with refarence to the horizonlal axs. Thus, a negative A can produce o mireor gffect
a5 well as a scale effect,

Convergence to Equilibrium
The preceding discussiun presents the interpretation of the 44" rerin in the complementary
function, which, s we recall, reptesents the deviations from smne micrtemporal equilib-
rium level. i a term (%) v = 3 is dded ot 26" werm, the time path mii be shifted up
vetTically by a constany value of 5. This will in 0 way affect 1he canvergenee or divergence
of the time path, but {0 will alier the bevel wath reference to which convergeme o diver-
aence in gauged, What Fig. 171 pictures is the converpence {or lack of ith of the A#
expression we coro. When the p, is ncluded, & becomes o question ol the convergence uf
the o path v, = p, + p, (0 the eyuilibriom level v,

In thix cemnec Lo, Jed ws add 2 wend of cxplanation bor the special cascod & = Lregwon L1
Atime path such as

F=AilY =445

s dhe impression that it converges, hecanse the muoldplicative erm {17 = 1 produces
o explogive effaet, Obwerve, however, that b, will now take the value (4 -+ 1,] rather fhan
the equilibriam valuc v,; in fact, iean never reach po, {unless A = 01 A< an illustranon of
this type of situation, we cai cite the time path in (179, in which & meving equihibrivm
1, = et is involved. This time path is to be considered divergent, not becawse of the
appearance of f in the purtoulir solution but begause, wilh 3 nonzero A, there will be 3 cot-
stant deviation from the moving equilibrivm. Thi, instipalating the condition [or conver-
gence of 1ime path v t the equilibrium y,. we st rule oor the case ofh = 1.
In s, tha solution

I_:I-'.I -— .‘ibl 4+ r|"'!|
is a convergent puth it and onlby i |#] < 1.

What kind of e path is represented by i = 2{— 1) + 97 Since b= -} = [, the bme path
is ostil latery. But snce 0] = % = 1, the oscillaton is damped, and the time path convenges
to the aquilizrivm bevel of 9,

Youl shionbd exercise care not to confuse 5 — 1§ with —2[%}": thew reproscnt enlirely dif-
feremi time-path configuralums

Hemw dlo you characterize the time path ye = 3(2) + 47 Since = 2 > 0, no oscillation will
ogcur. Bul since [B = 2 = 1, the time path will diverge irom the equilibrium kevel of 4.

EXERCISE 17.3

1. Discuss the nature of Lhe following time paths:
; ¥
@p=3+ (@ p=5(-7) +3
! oy b
) i =2(}) Wy =—3(1} +2
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2 What is the nature of the time path obtained from each of the difference equations in
Beercise 17.2-47

3. Find the solutions of the following, and datermine whether the time paths are oscilla-
Tery andd convergeni:
@ %1 - =6 (w=1)
o i =2 {m==5
@ ra+in=s (W=23
Wy -n=3 - Ga=5"

17.4 The Cobwebh Model

To illustrate the wse of first-order difference equatkons in ceonomie analysis, woe shall cie
twa variants of the market model for a single commodity, The first vanant, knewn as the
coteh model. dilfers froon our earlier markel models in that it treats €, 2s 3 funetion not
of the current price but of the price of the preceding Hine period.

The Model

Condader 4 seluahon in which the praducet’s output decision must be made one peniod in
advanee of the actual sale—such as in agricuttural production, where planting must pre-
code by am appreciahle kengrh of time the Davesting and saie of de ourpur, Ler us asswie
that the owlput devision i periged 1 i3 dased on the then-prevaling price £ Sinee this
eutpnt will not e available for the sale until period {r + E), however, £ will determine
ot {7, bt Oy Thos we now lave a ™agged” wipply function '

2o = S F)
ur, wopui valenily, by shiftog back the time sihscrpis by one percd,
Q.u = 8 F )

When such 2 supply fenction inleracts with g demangd funciun of the fonm
Qn’r = ‘r-"':: F:]

inleresting dynamic price pallerns will resoll.

Taking the msear veraons of these (lagged) supply and {unlagred) demamd funetionss,
and assuming that i 2ach fume penod the market price 15 always st al & level which clears
the market, we have a market model with the tollowing 1hres equations:

Q.:.l.l = ﬂ.\.‘
Oy =uw-fP o, = 0) {17.1¢)
Q:r ==Y +':5Pr—l l'}’-ﬁ = II-".]

T W are miaking the implicil azumplion here that the entire output ol a period will be placed on the
markel, wikh no parl o1 it held in slorage. Zuch an asumption & appropriale when The commodityin
questinn is perishable ar when g inventony is ever kept, A model wilh inventory will be cortidered
in3ec. 17.5.
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By subsiuting the lust twa equations into the first, hiwever, the model can be redoced 10 4
singhe firsr-order difference equalion as follows:

Al tafii=uwty

In wrder to sobve ¢his equation, it is desirable firsd to nammalize 1L and shitt the time sub-
suenpts ahead by one perivd [ulter 110§t 4 1}, e The result,

Wt

4
frg+=-B= 17.11
I+ . ( )
will then be @ replica of [ 17.6), with the substitution;
»= i a= E and = m
Iy ft

Inasmuch as & aml f# are both positrve, it follows thar e 8 — 1. Congeguenty, we can apply
tormula {178, 1o ger the ime path

_fp_at¥h 8y ety
Fa-[Fu ﬁ+£)( ﬁ)+,ﬁ+ﬁ (17.12)

where £y represents the initial price.

The Cobwebs

Three points nizy be observed in regard 1 this time path. [n the first place, the espression
{o 8+ 8], which constitutes the panticular integral of the Jifforencc equation, can
be taken as the intertemporal equilibrivin price o the model:”

Beeause this 15 2 constant, 115 a slationary equilibeium Subsliluting £ int mur solution,
we cafl exprass the time path £ altecoatively in the form

F=if—F) (— %J +F (17.12%

This leads us 1o the sacond pont, nemely, the significance of the BAPTESSION [y = ﬁj.
Sinue this corresponds to the constiml 4 10 the 48! term, itz sign vall bear on The guestzon
of whether the ime path wilk coommence above of below the cyuilibrum {mirtor effect),
whereas ils magninade will deaide how Far nbove or below {scale ellect), Lastly, thees is the
capression [—§/ @1, which cotroiponds te the b compenent of b’ From our mods| kpec-
ification that A4 = 0, we can deduce an oscillory ame path. W is this fact which gives
s ie Lhe cobweb phonomenon, as we shall presently e, Thera can, of caurse, anise firee

P As far as the markel-chaaring sense of equikbmnuim is concemed, 1he price reathed in each peniod i3
ary equilibriem price, because we Bave asunmed that O, — (h 1or every 1.
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=g b=p
£ {5 sleeTer thum 20 . 14 flarter ham 0|

possitle varietias of ascillatio patterns in the model, According ta Tuble 17 1 or Fig, 17.1,
the pacilkaoon wall e

Explosrvee
Unifonm } it 52 p
Damped

where the term wniform oscilfecier relars 1o the type of path in remon VI

In order to visualize the cobwebs, let us depict the model {17, 107 in Fig 17,2, The seg-
ond equation of {1710} plots as a downward-shopiog lingar demand curve, with its slope
namencal ly equal o 8. Siimilarly, a linear supply curve with a slope equal 10 & can be dravn
Erom the third equation, i we let the Qaxis represent in dhis instance i leoeed quaniity sop-
pliad. The ¢ase of & = # {5 steeper than D7 and the cass of § < # (5 flutter than 1)) are
Hlmstratad i Fig. | 7.2 and b, respecively. [n either case, huwewer, the intersection of £
and & will yield the intertemporal equilibrivm prics 7.

When d = 8. a3 Fig. 17 2, the intevaction of demand and supply sill prodoee an
explosive gscillation as fellows. Civen an initial price £y (here assumed above P, we can
fullow the arrowhead and read off on the & curve that the quantity supplicd i the nes
pericd {pencd 1) will be (). Inordet to chear the marke!, Lhe quantity demanded in period
I maust also be 4, which is possible if and only if prece is set ot the level ol P tsee duven-
ward arrow). Now, via the 5 cerve, Lhe price 2 waill Tead to {37 as the quantiby supplivg] in
persd 2, and to clear the madsel in the faiter period, price must be sct at the fovel of £
wccording to the demand curve. Repeating this reasoning, we can trace out the prices and
quaniities in subsequent periods by sooply following the arrewheads in the deagram,
thereby spinning a *cobweb™ around be desand and supply curves. By companng the
price levels, Po, Py, Frooo., we absarve o this case not onby an oscillatory patiern of
change bul alo 2 wndency for price to widen its deviation from F as vime goes by.
With the cobweb being spum fromm inside out, the time parh i divergent and the osedllaton
explosive.
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By way of contrast, in the case of Fig, 17,24, where § < fi, the spinning peocess will
ereate a cobweb which is comripetal. From Py, of we ollow she armowheacds, we shall be
Yed cver closer 10 the tersechan of the demand and supply curves, where P s, While sill
oseillatory, this price path is convetgen.

InFig. §7.2 we huve non shown a thied possibility, gaimely. thar of8 = . The procedure
of praphical analysis involved, however, is perfeetly analoguus 1ot other Pwo cases. B
(herefore lefi w o g an exetise,

The preceding discussion has dealt only with the tme path of Fithal 15, £); afler £ ix
Found, however, it Lakes b o short step Lo get foche e path of @, The seeoind couaticn
of 1700y melates Oy to £, so il 17120 ord 17012 5 substiuted oo the demand cqua-
tiom, the time path of Oy can b obrained immediaiely, Morotver, stnce £, must be cgual
M {1 cuch time period {ctearanve of marketh, we canimply refer tir the Lime path a5 €7,
rather than £2,.. On the basis of Fia 172 the rationale of this substifulion is vasily seen.
Each poant an the £ curve rekales o F; toa €h peraining o the sare fine pargd: thersiore.
the demgnd function can serve to map e b path of price mte the time path of quaniny,

You should nole that the graphical wechiique of Fig. 172 s apphcable even when the O
and 5 curves are nenlinear.

EXERCISE 17.4

1. On the bases of (17,10} find the tme path of (), and analyze the canditon for s
COFVErgeace.,

2. Draw a diagram simdar to those of Fig, 17.2 to show that, for the case of §= g, the
price will pscifate uniformiy with nelther damping nor explasion,

3, Given demand and supply for the cobweb model as foliows, nd the ntertamporal
requilibrium peice, and detenmine whether Lhe squilibrium i stable:
(@) Qo =18 - 3F Qu=r-3+4P_4
(b Qe = 2236 Q=2+ P
iy Q=19 - 6F, Q=58P0 -5

4 inmadel {17.19), et the Qx4 = Oy condition and the demand hund tion remain as they
are, but change the supply function o
Q= —y —&F/
whete P denotes the expected price for peniod i Fuclhenmone, suppose that selfers
have the "adaptive” bype of price expectalicn *
Br=Py+hlP —F4)  (D<ca=l)
where 1 {the Greek letter eta} is an expectation -adjusument coefficient.
{o) Give an ecomdmic interpretaton to the preceding equation. In what 1espects s it

dmilar to, and different from, the adaptive expectations equalion (16, 54)7

{8) What happens if o takes its maximum value? Can we consider the cobwab meodsd
a5 a special case ol the present mixlal?

" Cge harg herlove, “Adaplive Expeclacions and Cobrrel Phenomena,” Quarlerly fama) of
Economis, May 1958, pp. 227-240.
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¢t Shose thad the new moded can be represeried by the first-order difference squation

T i + )
Fr-l [1 f F ) P = F
{Hint: Sohee the supply function for P°, and then use the infarmation that
dy=0p=n '".fipr-]
¢ef) Find the time path of price. Is this path necessaifly oscilatory? Can 1t be oscHatory?
Uncler what Circemstances?
fed Show that the Lime path F., il oscillatary, will conwerge anly if 1 - 270 <« —4¢f. As
conmparad with the cobweb solution 017,123 or(17.12), does the new model have
a wlder or narrtwer rngge for the sability-nducing valees of —§/§7
5. The cobweb model, lke the previpidy encountenred dynamic market models, is assen-
tigtly based on the static market madel presendedin Sec. 2.2, What economic assump-
tion B the dynamizing agent in the present case? Explain,

17.5 A Market Model with Inventory

In the preceding model, prive 15 assumed 1o be 52t in such a way as @ ctear the curvemt ow-
pul of every T period, The implcation of thal assumplion is cither tat the commuodity
15 3 perishalle which cammet be stocked or thal, though il is stockable, oo oiventory s ever
kept, Mow we shall consruct g madel in which szlbers do keep an imvencory of the
commadity.

The Model
Lel ws assume ihe [olboaing:

|. Both the quantiiy demanded, (3. and the quantty currently produced, (. are
unbaggedl liear Junctions of peice £,

The adjusiment of peice is etfected now theough market clearanee in cvery poriod, but
through a provess of price-cefting by te sallers: Al the bepinning of cach perivd, the
sellers set a price for that penod after laking into considenation the invenrory sifustion.
If, 2& & resule ol the praceding-peniod price, inventoty sccumubaed, de current-period
price s set at g lower level than before, in onder 1o “move™ the merchandizc, bat if
irventary decumulated instcad. the curront pnve is ser hivher than before.

3. The price adpnestment made from penod 10 period 15 mvessely proporional o the

observed chanpe n the inventory [stock ).

Tt

With these assumprions, we ¢an write the following cquations:

Ju=o-pghk fee, B = ()
Pu=—-y+i8 (. 6= O} {1713
Pl'""| = -Pr - J‘_Q.'.‘I - gn'.'_] [,'d = ﬂ}
where o denoles the yioph-induced=prive-celiesiment coefTivrent. Note that (17,13 s really

nuthing but the discietz-dtne counterpaet of the market model of Sec. 152, alihouph we
lave mow conched the price-wd fusionent prowess iy 1etns of saveprery (O, — O ralber
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TABLE 17.2
Types of Time

Path

than excers domamd (O — ;). Neveriheless, the analytical results will frn out Ju he
much different; For ote thing, with disocte time, we may enceunter the phanomenon ol
osciblations, Let us derive and analwre the time path £

The Time Path

By substiniting the fimt two equations meo the third, the madel can be condensed inlo &
single differsnce cqualion:

Foi =1 -l g+ 8NP = gia — y) {17.14)
and its salution is given by (17.87):
_ _m B ; o+ )
R= (P - o + 5
={P-P)l =i+ 8] +F {17.1%}

Obyiousdy, therefors, the dynamic stability of e model will hinge on tw cxpression
1 — o fi + §Y; lor convenience, Jot us refer w this expressien as b,

With reference to Table 17,1, we see that, in analyzing W eéxponential expression &',
seven distinet regions of b values may be dethied. However, since our model spreitiatoos
{a. 1,4 = ) leave effecteallty ruled oot che first twa ropions. there remain endy five possi-
We cases, as listed in Tablc 17.2_ For each of these negions, the b specification of the second
column can be wanslased ioto an equivalent o specificalion, as shown i the thind cobstn,
For wstance, For iepion N1, the b specification 150 < b - 1d therefore, we Lin write

Oel-a(f+d =1

—|l < —atfd+8 =0 [submracting | from all Usee pars]

1
and 'Y o =0 [dividing throwgh by —¢ A + 1]

Value of :
Region bm1—alf+d) value of o Mature of Thene Path P,
A Reb<l 0=w ﬂ-ﬂlﬂ' MNoncscillatory and convergent
v b= = ﬂ%a Rematning |n equilibrium’

. 1 2
¥ =1 < Bl ﬂ_l_s{ﬂ'{m %dﬁﬂp&dﬂﬂlhﬂm
.
-— = i Whth Natl

vl b= -1 T Iy uritorm cscillatlon
Al - bhe -1 .:I::ﬂia With explosive oscillation

. fu Tt Pt Wik bt Tomurring dw el e in 1bl eaa can alin B soen Smeady dom (7340, Wiho = 194§ 8L g
coutllcinnd of £, bwcemney zeeo, oed | 1744 setuoma b Py = oo+ vl = 6+ f R Sl B



Example 1

FIGURE 173

Chapter 17 &3ecrenc Tiiwe First (e Digfesive Fyamions 561

Thas last gives uy the desired aquivalent o spacification {or region 100 The trmslation for
the wther regions may be carried out analopeusly. Since the type of tine path pertanmg, [¢
each regivn s already known from Fug. 171, the ¢ specilication enabkes us to tell from
piven values of =, 8, and 4 the general natore of the fme path £, & outlined in the last eol-
winh of Table 17.2,

If the sellers in our model alway: increase {degrease) the price by 10 percent of the amount
of the decreasa increase) in inventory, and il the demand corve has a dope of -1 and the
supply curve a slope of 15 {(bolh shopes with respect Lo the price axis), whal fype of fine
path £ will wee find?

Here, we have o = 0.1, 8 =1, and & = 15, Since 1708 + 6} = L and 21(8 + 5) = |, the
walue ol 7 {= ﬁ] lie: bietween the former bwo values; itis 1hus 2 case of region V. The time
path #; will be characterized by damped oscillalion,

Graphical Summary of the Results

The aubstance of Table 17,2, which contains 25 many as five different prrsable cases of g
specification, can he made mueh cagior 10 geasp if the resuls gre presenmed graphically.
Inastnuch 45 the o specification involves essantially a comparison of the reldme -
mudes of the parameters o and { £ + 54, tot s phot & aguinet {# 4 53, as in Fig. 17.3. Noe
thal we need only concemn ouvselves with the positive guadrane because, by model specifi-
cation, o and (f + &) are both poslave, From Table 171, it is clear that regions IV and ¥I
are specified by the equations ¢ = 1/(§ + 3} andr = 2B + 5, respectively. Since each
of these plots as a rectangular hyperbola, the twn regions are graphically represenied by the
[wo bypetbolic cutves m Fig. 17.3. Onee we huve the twn hypetbolas, maoreaver, the other
three reguons immediately fall into place. Region T, For instance, is merely the set of poinis
lying below the Jower hyperbola, where we have s less than 1706 + §), Similady, cegion ¥
15 represented by the sel ol poimds Falling Detwesn the o vpeibolas, wheesas all the poinis
lowcated above Lhe higher hyperbols pertain to region Y10
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Exa—mple 2 lta= ir f=1,8nd &= % will our eodel §17.13) vietd 3 convergent tme path £,7 The
——————  given parametric values commespond 1o point A in Frg. 17,3, 5ince it falls within regien ¥, the
time path is cormergant, though gscillatony.

You will noe that, in b (a0 mewels just presented, ocur analytical results are in cach
instance stated 25 8 get af allenative possible cascs-— oo dypes of oseillntory puth for
the cobewchs, and five types of time path in the myventary model. This nchness o amalylical
results stems, of gourse, Thom the pacametric fornulalium of 1he models, The fact thal car
cesull cannot be sated in @ single uncquivocal answer is. af course, @ marit rther than 4
wioakness.

EXERCISE 17.5

1. In solving (17.14), why should formula (17 87} be used instead of {17.877
2. On the basis of Table 17.2, check the validity of the ranslation lrom the b spedification
Lo the m specification lor regions Y through VI,
3. K madal (17.13) has the fodlowing nurerical fonm:
Tar =21 -15
Q& =-3+6R
i1 = P - 0.3(Q ~ Oa)
lind the bme path P, and getammine whether |E & comsangent.

4. Suppose that, in model (17.13), the supply in sach peried is a fised quantity, say,
Qe = k, ingtead of a function of price. Analyze the behavior of peice over time. What
restriction should be imposed on k to make the sobution economicaly meaningful?

17.6 Nonlinear Difference Equations—The
Qualitative-Graphic Approach

Thus far we have only utilized fipear differencs equations i our models; o the facy of
economic life may fiel always acquicsee o the comvenience of lineanty. Foriunalely, when
nonlimearity occurs in the case of fost-order diiference-equation models, there exists an
easy methed of anabysis that is applicable under faidy general conditions. This micthed.
graphic i nanme. closely resemides thar of the qualitative aalysis of firs-onder differer-
lial equations presented m Sec. (5.4

Phase Diagram
Nonlinear difference equations in which only the variables ¥, and 13 appear, such 23

b _l'..j =5 o Y=l + gin =Inp =3
can be categorically ropresented by the equitxon
Y1 = f1) (17.16)

where fan bea tunchion of any degree of complexity. &5 long as it 15 2 fanction of y, alone
without ¢ 45 another argument. When the two vatsbles . and v arc ploted saing cach



FHLURE 174

Chapter 17 Disrrome Tie: Firei-ceeder Differcnce Eguentirrs 563

other in a Canesian coordinale plane, the resulting diagran constinites a phese dirn
and the curve corvgsponding w0 /15 a phase fne From these, it 15 possible to analyze the
Limw: path of the vanahle by the process of iteration,

The terms phase diagram and phase line are uscd here in analogy to the dilfereonal-
cquation case; but notg one dissinilaciey i The construetion whihe diggram. [ the differentizl-
ciuation casc, we plotted Jdy/dY against y as in Fig, 15,3, »0 thay, in onder o be perfecily
analogous i the present case, we should have Ay ondwe vertical axis and s, o0 the hori-
zontal. This is et impwssible 10 do, but atis nnch mese convenien 1o place v, onthe ver
tical aas matead, 45 we have donc in Fig. [ T.4 where the samz scale is used on hoth axes.
Matz the presence ol a 45% ling n cach Jiggram of Fig. 17.4; this tiee will prove 1o be of
areal Service In carying oul our graphic anilyss,

Lenws illugerae the procedure mwel ved By means of Fig- 170, whets we han drawn o
phase line {labeled )} representing a specific differcnce equation 1) = f0 b 15w are
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wiven an inilial value po (plotted on the honizontal acis), by itcration we can irace out all the
subsoquent salues of 3 as follows. Firsd, since the phase line fi maps the inital value
it 1) according (0 the equalion

¥ = filln)

We tan g0 seright up fom vy w the phase line, hit point A, and resed it3 heighl on the ve-
tical 4xis as the value of ;. Next, we seck w map § inlo s according Lo the equation

Ye= filF)

For thiy purpose, we must first plod py on the harizontal aass - -similary o v during the
first mappivg. This equired transpledting of ¥, fiom the verical axis w0 the honzontal
most easily accomplished ty the wse ol the 457 Jine, which, havinp 4 slope af +1. ix the
locus off points with Wdentical sbscisza and ocdinate, such as (2, Xand (5, 3). Thus, o
dransplot vy Teow the vertical nxis, we can smply go across o the 457 hne, bl poimt &, and
thety tum atraight down to the honzontal axis to Jocate the poiot v, By repeating thus
Process, we can map ¥ to ya via pernt O on Lhe phase ling, and then wse e 437 hine fot
canspladLng i, 8t

By thar the nature of The steration is chear, we gy olserve tiat the desired iteraton can
be achieved simply by following che arrowheads from wy o A (on the phase Tine], 40 8 {(on
the 457 line}, to C (om the phase lse), elc—always alfvrnating hetween the two lines—
withoul il ever being necessary 10 resort 10 fhe axes agan.

Types of Time Path

The graphic vrerations just oullined are, of course, equally applicable to the ather three
diggrams in Fig, 174, Actualle, these fonr diagrrams serve 1o iltusirave Foor basic varichics
ol phease lines, each implying a different type of timee path, The At twa phage lings, f and
fr, are characterized by positive shopes, with ene slope being less than univy and the oher
one gruaier than unigye:

0 < fiir)y =1 aml  fe) e
The remaininyg two, on the other hund, anc negalively shoped; specifically. we have
—le b <@ and i) < -1

In cach diagram of Fig. 174, the miertemporal equilibriom value of p fnaumely 3) s
locared a1 the intersection of the phase line and the 437 lime, which we have labeled £ Thes
is 50 becanse the pomt £ on the phuce ling, being simultmectsly o point o the 45° line,
will map a v, into a .y of ientical vafue; and when v = y,, by definigon y nust b 10
e ilitmiam wtertempoally. Crure principut tek 15 1o delermine whether, gven an anitial
vilee vy 2 ¥, the puttern of change implied by the phase line will lead ve eomsisienly
toweard T (convergenth ot away from it (divergent)

For the phase line f). the iterative process leads from 1y 0 ¥ in g steady path. withom
oscillaton. You can verify that, 11w 15 placed 0 the right of . there will abin b 2 sicady
TOVEmetn (o ¥, nlllmugh il will be in the leftweard divection. These Lime polhs gie con-
vergent o equilibrium, aod ther general configurasions would be ol the same gype as
shvwn o repion 111 of Fig, 17.1.
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Given the phase linc f. whose slope exceeds unity, however, o diverpent time path
ernerges. From an anitial value wy preater dhan ¥, the armowheads Tesd steadily away fom
the equilibriem to higher and hivher ¥ vals. As you can veridy, un inifial value lower than
¥ v Tise 10 4 smilar skeady drvergent movement. though in the opposite direction.

When the phase ine s negatively inclined, as in f1 and [, the steady mossment wives
wary 1o oscillation, and there appears now the phenomencon ol overshooring the cquilibrium
roark. In didgram o, pp leads to 4, which gxceeds ¥, only 0 be [olbowed by 1p, which Fulls
short of ¥, 2t¢. The comvergence of the time paih will, in such cases, depend on the slopu of
the phase line baing less than | m 115 absoluly velug, This is the case of he phase lios £,
where the extent of overshooing tends to dminishin succezsive periods. For 1he phase line
5. whose slope exceads | numerically, on the other hand, the opposite tendency prevails,
resuliing ip g diverpent time path.

The esenl latory time paths genecaled by phase lines # and # are reminiscent of the cob-
webe m Fig. 170, In Fig, [74¢ or o, hewgwer, the cobweb iz spun around a phase hne
{which contsins a lag) and the 457 line, instead of ground o demand corve and 2 {lagesd)
styaly eurve, Here, 3 45" hoe 15 wsed a5 2 mechanical awd for transplotting & value of v,
whertus 1n Fug. 172, the £ curva (which plays g role similar t that of the 45 ling in
Fig. 17.4) 1 an imtepral part of the model iselt. Specifically. eneg {1 13 determmed on the
supply curve, W [t the arrowheads hiv the If curve fot the purpose of finding a price that
will “chear the market,” as was the rule of the game in te cobweb nusdel Consequently,
there 15 a basic diforence in the labeling of the axes: in Fig. 17,2 thews urg twr ennireby dif-
ferent variables, Fand €3, butin Fig, 174 the axes represeml the valoes of the same variable

¥ In owo consecutive periods, Motz howevar, that if we analyze the graph of Ihe difference
n:qummn {1711} which summanzes the cobweb model, rather than the separate demand
and supply functions in (1710, then e resulmmg dizeram will be 2 phase line such as
dhown m Fig. 174 [n other words, there really exist lwo alternative ways of praphically
analyzing the cobweb model, which will yield the identical resulr,

The basic rule emerging from the preceding consideration of the phase line is that the
afgehruic sign of its slope determines whether there will b aseitfotion, and the ahvodure
vedfper 0 115 slope guverns the question of comveryence. 1 the phage line bappens 1o contain
bolh positively and negatively sloped seymsents, and if the absolme value of s glope is at
s0me poinks greater, amd clsowhers less, than 1, the tine patl will naturally bevome more
comphicated, However, even in such cases, the graphic-iverative analysis can be employed
with equal gase, O couwrse, on initidl value mus be given (o us before the ieration canhe
duly started. Indeed, in these e eomplicated ¢ases, a dilferent mitial value con bead 1y g
time paih of an allggether different breed (see Exercises | T.6-2 and 17.6-3),

A Market with a Price Ceiling

W shall now it an econonmc example of a nonlines diference cquation. [nFig. 174, the
fuur nunlincar phase lines abl happen te be of the smooth variety: in the present example.
we shaal] xhow o nensmooth phase line,

As a point of departure, let us take the Seerr 0 Terence couation (1711 of the cobweb
el and rewriee i o

L ol 3 )
= - = « =0 1717
a=Eece (5 (17.07)
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FIGURE 17.5
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This i in the fwmat of F,y = f{F], with f'{F}= =i/ = 0. We have plotted thas
linent pheass Bine mi Fig 17,5 on the assunypdion that the slape is greater than 1 in absoluts
value, implying explosive escillatien,

Nonw let dhere be imposed 2 legal price ceiling P (read: “ P caret”™ or, bess formally, 7
hat™. This can be shawn in Fig, 7.5 as a honzontal swaight kine becawse, irrespective of
the level of £, £ iz now forbidden o exceed the level ol F. What thig dees is 1 imali-
datc that part of the phase line lying above & or, to view u differently, 10 bend down the
wpper part of the phase lme to the bovel of B, thus resulting b @ kanked phase finc. " In
view of the kink, the new (heavy) phase Tine s nod only poalincar but nonsmooth as well.
Like a step functeon, this kinked ling will require more than one equation to express
alzebraically:

F (for £, = &)

P, = {HF_%F’ tfor P, = £) {17.17)

#

whese & denoies the value of P at the kinke

Assuming an initial price B, lefus race o6t e ting path of price iteratively. During the
firsr stage of jteration, when the downward-sloping wegment of the phase line is in effeer,
the explosive pscillatory rendeney cleardy manifesns isell. A fler o lew penods, howevar, the
arrowheads begin to hit the ceiling price, and thereafivr the time path will develop nto a
perpetual eyelical movement between # and ap effective price focor £ [read: “Ff elde”
ot, leys formally, “P wiwale™). Thus, by vetue of the pnce geiling, the ininnsic explosiee
tendency of the mode) is elfectvely contained, and the ever-widening oscillation is now
1zmex] 1t a wniform oscillanon producing 2 so-called Timit cvcle.

* Strictly speaking, we should also “bend” that part of the phace ke bing to 1he right of the point
F on tha homzomtal axis. Bat it dowes no haem to leava 1195 il 15, a5 long s the odber end has already
been bent, becauss the transplotting of #141 te the herizontdl axis will carry the upper [Imir of P
over [0 the Py anis aulomakicalhy,
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Whar 13 swgmifican! ghout thix result is that. whereas in the case af a lingge phase Line a

uniformly oscilltatory path can be produced if aod omly if vhe slope of the phase Line is —1,
noy afer the intraduotion of nonlingarity (he same analybcal tesult con arise even when the
pliazs hne has 8 slope other than — 1 The econontic implicanan of this iy of congidersble
impon. IFone observes 2 mare o legs whifen oscillandod in ke acbual tme path of 2 vani-
ablc and atempls 10 explain ik by mcans of 2 fFeger model, vtke will be forced torely on the
raibier special—and implausible  nwedel specification thae e phase-lime slipe is cecly
—|. Butif nonlinearity is introduced, in cither the wnooth or the nonamooth varety, theo 2
hoest of miore reasonable assunptions can be wsed. each of which can eguedly sceonn Lar
the ohecived fearre of wiform oseillaon,

EXERCISE 17.6
.

in difference-equation madek, the vadablke | can only take integer values. Does this
imphy that n the phase diagrams of Fig. 17.4 the variables v and pe_q mwrst be consid.
ered as disCrete variabbes?

2 As g phase line, use the kft half of an inverse U-shaped curve, and let it intersect the

45" ine at lwo points [ (ki) and & (Hght).

() Is this a ¢ase of mutlipe equilibral

(& Il the initial valyg py les 1o Ehe belt of [, what kind of time path will be obtained?
fch What if the initial value ligs between £ and R?

{of) Wihat i the initial value [ies to the nght of #7

{e) What can you conchade aboul the dynamic stability of equilibriom zt ¢ and al £,
respe lvely T

. A5 & phase line, use an inverse U-shaped currrve. Let its upwiard-sloping segrmeani mla-

secl the 45 line ar point L, and ket its downward-310pIng seg ment intersect the 457 ling
at point B, Amswer Thi same live guestions raised in the Prob, 2. {Note: Your answer will
depend on the particular way the phase line is dravwen; explore variows possibilitiss,}

. In Fig. 17.5, rescind the legal price ceiling and impose 3 minimum price P, inslead,

fa) How will the phase Hne chance?
{5 Wil it be kinked? Nonlinear?
fc) Wl there also develop 4 unitormly oscillatany movement in price?

. With reference to (17,17} and Fig. 17.5, show that the constant k can be expressed as

rey B
k:
; F




Chapter .

Higher-Order
Difference Equations

The ¢crmomic models m Chap. 17 involve dilference equations thar relae £, and K- 1o
each other. 4sthe P valug m one period can wuiquely detenmine the £ value in the pext, the
time path of P beconwes fully determinate once an imitial value Py is specified. 11 may hup-
per. [wvaeves, that the value of an cconomic variable in pehiod 1 {sa3; ¥ ) depends nol anby
om ¥i_q but abse on ¥, s, Such o sinwation will give rise o a difference cquation of the
secobd order,

Strictly speaking, 4 yecowd-order difference equation 13 one (that imralves an expressiot
Ay, called the second differeace of v, bt contiins oo differences of order higher than 2.
The syibot A%, the discrete-lime counterpart of 1he symisol i [t 15 am instruction (o
“take the second diflerence” as follows:

Alv = AfAW] = Alvy — 1) by (17.0)]
={v.2 — Ft1) —(pip1 — Jb [again by (17.0]"

— T )
=gz — eV 2

Thus 2 second difference of ¥, is transfonmable mite 4 suen of teoms involving a two-penod
lirpe lag, Since exprossions like A% and Ay, are quite cumbersome vo ok with, we shull
simphy redefine 3 seconl-order difference equativn as one involving a two-period Gime lag
in the variable, Similarly, a thicd-order difference equation is one that meobees a three-
periad time lag, ctc.

Let us Arst concentrate on the method of solving a second-order difference equation,
leaving the wencralization 1o hipher-onker equations i Saction 18.3. To keep the scape of
discwsion manageable, we shall only deal with linear difference equations with cunrlant
coc Micients inthe presen chaper. However, hoth the constant-lertn and vanable-term vari-
eties will be exanned.

! That is, we firsl mewe the subscripts im the (ry ) — 360 expression fonward by one pericd, bo get
A At EXprEssion (i .g — ¥y 1, ard then we subtract Irpm the laler the oriinal expression. Mote
thar, dnee the resoliing diffeence may be writlen as Ay - O, we may inler the Rlloeng sule
of operalion:

Al — pe) = Ahro1 — A

568 This is remmniscent of the mle applicable to the derivatwe of 2 sum or dilference.
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18.1 Second-Order Linear Difference Equations
with Constant Coefficients and Constant Term

Example T

Example 2

A simple vatiery of second onder differenve equations takes the form
Frppt il tay =« (18.1)

You will recognize this equation w be lincar, nonhomageneous, and with constant coefli-
cicnes (3, 2:] and constant teem o,

Particular Solution

As belore, the solufion of (15.F) may be axpectad 10 have two componenis: a parlicular
solution ¥, representing the interternporal equilibrivm fevel of v, and o complementary
function v specifying, for every tune period, tke deviahon from the cquilibriom. The
parbicular solubon, defned as amy solution of the complete cquation. can somehimes be
toured simply by trying 2 solwion of the form p, = & Substituting this constnd value of »
inlo {18 ), wa obtain

- {I

T + oy + otz

Thns, s long 2 €7 + @ + a0 # 0 (he particndar integral is

E4am +uk = i i
c
ra= k)= m {case of oy + a2 F -1 (8.2
1 i

Find the particular integral of yr.s — 3w + 4w = 6. Here we have iy = -3, @z =4, and
C= 6, Since M+ a £ =1, the particulsr solution can be obtained from (18.2) as follows:

In case @ + a2 = — |, then the trial solution p = & breaks down, and we con try
¥ =4t instead. Substituting the Tatter into {18, 1y and beaning in mind that we now have
Verr = K[54 11 and 105 = A + 2, we Fnd that

K+ +akit+ 1+ akr =2
[ [

'ﬂ"‘d k = = I = —|
(1+a + o+ +2  a +2 [sinec oy + 4; = ~1]
This we can wrile the particular slution as
i . .
Fpl=4kr) = <t (easeola +ax=—1;m £ -2 (18.27

I!I| + A
Find Lthe particular salution of v + pa -2 =12 Here. i =1, ;=2 and ¢ =12.
Obviously, formula (18.2] is not applicable, bul {18.2'y is, Thus,

12
=——1=i
=11z

This particular salution representls 3 moyig equikonum.
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Example 3

Ifa) + a1 = — 1, butat the same time ) = —2 (that is, ifet) = —2 and a; = 13 then we
can adopt a trial saluwion of the farm p, = ki? . which inmplics 3, = &/ + 1%, oie. Az you
may verify. in this case the particular selulion ens out to b

b

¥ = hz = ;I [Case ol = -2id-= 1} {l-ﬂ-?r}

However, mince this formula spplies ondy to Me umaue case of the difference 2quation
Fran = 2oy + 3y = o, ils uselulness 15 rather broted.

Complementary Function
Tor fitw] the complomentary funetion, we must concentrate oo the reduced equation
ez + ey +iny =0 (15.3}

Our experiance with firsi-order Jiffurence cquations has taught ns that the cxpression (Y
plays a promincnt rolg in the peneral selubion of such on equation. Lel us therefore try 4
soluiion of the form g, = AR which naturally implies that vy = A¥ 1wl sooon. It s
our task now to detenming the values of 4 and &,
Upan substitution of the trial solution mio {18.3), the equation bevowm
AR g AE W =10
o, afier caneeling the (nencero) commeon factur A4
Frabta =0 {18.39

This quadratic equation -the charemerericic copuanion of {18.3 por of (18, 1)—which is com-
porable to 16,47, possessas the two characieristic Fxvs

- :I? - 4«!1]
b b = 3 (15.4)

vach of which is acceptable in the solution A4*. In Bacl togh by aad th should sppear in the
pengral sulution of the humogeneous difference ceuation (14,3 because, josl as i te case
of difterential equations, this generak solutivn must consist of two freprly indcpendent
parts, cach with its own mulliplicatie arbimary comstanl,

Three possible sitwations may be encountered in regard o the characteristic mots,
depending on the square-root expression i (18.4). You will find these parallel very closely
the analysis of second-order differemtial cquations in Se, 16.1.

Cast: 1 (dlstinct real reots)  When a; o~ 4z, the square root in {184} i 2 real mumber,
and fy and P are real and distinet, T chat event, &) and &5 are liearly independent, and the
complemenlary function can simply be written as a linear combinabion of these expros-
sioms: that is.

¥, = Ayf 4+ Aah {18.5)
You shoukd compare this sath (16.7).

Find the solution of yi,3 + ¢ — 2 = 12. This eqjuation has the coefficients o =1 and
a; = 2 fegm {18.4), the characteristic rogls ¢an be found to be &y, bz =71, - 2. Thus, the
complementary function is

¥i= MOF+ A2-2" =4 4+ A -2
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Since, in Exarnple 2, the particular sulution of Lhe given difference equation has already
been found to be ¥ = 41, we can wnle the general solution a3

Fr=dc+ pp= A+ Ax-2)0 4+ 4

Theare are sill twio arbiirary constants 41 and Az Lo be defnitized; bo accomplish this, ko
inlual conghrsons are necessary, Suppose Ihat we are glven vy = 4 and 1y = 5. Then, since
by kettitg ¢ = 0 and ¢ = 1 successively in the general solution we find

W= A1 + Az (=4 by Lhe first initial condition)
¥io=d1—Z24:+4 (= 5 by the sacond initial condition}
the arblirary (ongtants can be delinitized 1 4 =32 and 4; = 1. The dafinite sphition then
can fmally be written as

W=34{-2+4

Case 2 (vepeavid real copls)  When uf’ = duz, the sguare ™ot in {18.4) vanishes, and the
¢ haretenstic ronts are repealed:
)

h{=h1=ﬁﬂ=-3

Noww, 1f we express the complenientary [unction 1n the furm ¢ {18.5), the two conponenis
witl collapse into a single term:

-'!|f|'r| + .-"IgurJE ={d + .-‘IQ_:III:'] =4

This will et do, Decause we are nows shozt of one costanl,

T supply the niizsing companent—which, we recall. shoubd be linzarly independent of
the rettn qfb" - the old trick of mulliplying & by the vanable ¢ will again work. The new
component terr is therefore to take the form 4,08 Tha this 15 linearly independent of
A1 stwould be alrvigus, for we can never obdatn the expression 454" hy attaching a con-
cignl oo fiekent b At Tt Ay b’ does indeed qualify as a solulron of the heamopene ms
equation [18.3), just a3 420 does. wan easily be verfied by substiuting v, = A48 [and
Frp1 = gt + 16 ete] ima (18397 and seeing that the lateer will reducs to an idemtity
=0

The complemeniary function lor the repeaicd-root case is therefore

po= AD Ayl {18.6)
whch vou should compare with ( 16.9),

Fird the complementary function ol yi_: + 4y + 93 = 4. The coeflicients being m = &
and @z = 9, the characteristic rools are found 1o be by = by = - 3, We Uwrefore have

o= Ayl 4+ Aun-3Y

If we proceed a step further, we can sasily find v, = . 50 the general solution of the
given difference equation Is

e A= 3t A3t ]
Given hwo initid conditions, Ay and A4 can again be assigned definite valpes,

! Inabvis subsstitutlon it shoukd be bept in mind that we haws i the present cate o = o and
b= —|'.'I1,-'I.
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Case 3 (complex roals) Under the remaining possibility of T < daz, the charsteristic
FOOS arc comjugale complex, Specifically, they will be in the frm

h.ohy=h2 v
where
-d-ﬂ_g—ﬂz
h=-9 and D:Q (18.7)

The complemeiany function iself thus become s
Vo = A+ Ak = Al it + Aefh — i)

A it stands, 1. is not easily interprated, But formnaely, thanks w De Moivre's theorem,
given m { 16.23°), s complementary function can easily be mansformed inlo rigonotaes-
rie terms, which v have learned to iterpret,

Aggordimg 1o the said theotem, we can amite

(h +wi¥ = R'{cosfr £ 1 sini}
where the value of # (always 1aken 10 be positive) is by (16,10,

2 i
R=vF o= ﬂ.{:‘P =J& {18.8)
and # is the tadiom measure of the angle in the intereal [0, 271, which satisfies the
conditiong
h —il | . i ! cIJ
= —=—— il =—=Jl-- 18%
oosf = = e a sin # 7N s (18.%)

Therefisre, the complementsry fumction ¢an be ransformed as Follows:

¥, = Ay A eos @ 4 isnti) + AR (uosdt — i sin 1)
= R’[L-h + A dcosf + (A — A Ringd)
= R Asomde + Aqsindd) {18.10)

where we have adopted the shorthand syimbols
de=d, + Az and Av=(d) - A1k

The complementary function (18,703 diiters from its differemtial-equation counterpari
(16,24} im0 two impoctant respects, First, the; cxpressions cos @ and sindte have replaced the
meeviously used cos ve and sin o, Secomd the moluphcative factor &' (an exponemial wath
base A1 has replaced the natural cxponomial expression e, In shotl, we have swuched
from the Cartesian coordinates (& and b of the complex noog oy their polar coprdinaies
{® and 8. The values of R and & can be determined from §18.8) and (13.9) once froamd
become known. Tt s also possible to calculate B and # dircetly from e parimeter values
a and 22 via { 18.8) and {1%.97, provded we first make cortain that & < da; and hal b
roots ars indeed comples.
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Find the general sohution of o+ 1w =5 With coefficients @ =0 and @ = 1, i
constitutes an illustration of the complexroot case of af < 4. By (18.7), the real and
imagerary parts of the roots are h=0and v = % Nt Folleves froem {FE.8) that

| - ey
! 1 1
Rz ﬂ - = =
y +{52) 2

Sunce the value of # is that which can satisfy the fwo equations

h T
T: —_ = i = — =
CO5] 2 0 and sindg = 1

it may be conchaded Irom Table 161 that
a
B="
Z
Consequently, the complementary fundg o is

[ r
¥ = (%) (..11.5{&5.;.!—} Aﬁsln%[)

Ta find ¥, fet us try & constant solution ¥ = & in the complete equation. This vields
k =4; thus, vy = 4, and the general solutlon can be written as

..li,n_ ﬂ-r.ﬁ':{:a# 1811
¥ == P 5.1:1:::-2 + f.SﬁE + ( )

Find the general sdution of p, z — 4,1 + 16% = 0. In the irst place, the particular solu-
Lon & easdy found to be v = 0. This means that the general solution y (= ¥ + ¥) will be
identical with y.. To find the latter, we note that the cosffickents m = —4 and a; = 16 do
produce complex rools. Thus we may substitute the & and & values directly into (18,4}
and {189} o abtamn

R=v16=4

& A
H;—:— :I!l -_—— - = —
Wif=s— =3 and  sind 'lr1 T e=Vi= 3

It folkws that the complementary funchon—which Aso serves as the general selution
here—is

Jul= i} = 4*(;45 :ﬂs%t + Assin %t) (18.12)

The Convergence of the Time Path

Asnihe case af fisd-urder difference equations, the convergence of the time path v, hinpcs

solely ooy whether .. tonds toward zer0 a5 1 — oo, What v learted about the: varinus oun-

fignrations of the cxpecssion &, in Fig, U7.), is therefore still applicable, afthoueh in the

present contexl we Shall have tocomsiJer o characteristic roots racber tan omk.
Comsider Hirsl the case of distinct read rosts: & £ b, I 1] = | and [z == 1, then

both component ierms i the complementary functien {185y —A4 8 and A28 will he
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ExamEle 7

explogive, and thus 1, must be divergent. In the opposite case of b | < 1and [fa] < |, baoh
terms in 1, will converge toward zero a5 7 is indefinitely increased, as will v alse, What i
1B,] = 1 bt |B] = 17 Inhis inrermediare case, ft is evident that the 4245 werm tends o
~die deown while the oibes term tends 1o deviate Farther Toom zero, 1 follows that the 4 &
term st eventually dominaie the geeze and rends the path divergent.

Let v call the rool with the higher abdsofite valu the dominait rood, Then i appears that
it i5 the dominan ool &, which really sets the tome of the e path, at beast with regaed to it
ulingte convergence or divergence. Such is indeed Lhve case. We may stalc, thus, that 2 time
parh witf be comengeni—whatever the initiad condiions muy he—famdonty if the dominant
roitt i fss than 1 i abeofire wedwe, You can verily that this statement is valid for the cases
where both roots are prealer than or less than 1 i absolnte vabe {discussed previously), end
where one root has an absobite value of 1 cxactly (e discussed peovioushy), hote, awever.
that even chough 1he eventual comvergence depends o the dominant voot alonc, the nove-
durminanl rocl will excrt 2 definite influence ot the tine path, tou, 31 least in the beginnimg
periods. Therefore, the exact canfigw stwn of v, is siill dependent on both roots.

Tumning to the repeated-root case, we find the complementary fanction to conxist of the
tertns Aqf' anel 4468 as shown in {18.6), The former is already fatmiliar fo oy, bal 5 word
of explanation is still needed for the laller, which iavolves o mulaplicatve «. IF6l = L, the
B term will ke eaplosive. and the multrpheateve 1 wilk samply serve 1o infensify the explo-
SIveness as ¢ increases. IF| | = 1. anthe other hand, the B parl (which tends 10 2ere as £ in-
creasesh and the ¢ pact will run counter 1o cach other; i, the value of ¢ will oifset rather
than reinfirce & Which force will pmove 1he siranger? The answer ix that the damping
Force af I will always win over the exploding foree of & For Uns reason, the basic require-
tent for pomvergence i the repeated-roat case is still that Ik root be Tess than 1 in absolub:
value.

Analyze the convergence of the solutions in Examples 3 and 4. For Example 3, the solution is
¥ =3-{-2)" +4f

whetg the roots anz 1 and =2, respectlvety [3(1) = 3], angd where there IS a maving equi-
litiriurn 4¢. The dominant root being —Z, Lhe time palh is divergent.
For Exarnple 4, where the solulion is

1
= Al-3 + A-3 + 5

and where 8| = 3, we also have divergence

Let o5 now consider the complex-roar case. From the senerab farm of the complemen-
taey Function in 13,109,

¥ = R A5 cOSH0 4 A, 5inei)

it is clear that the parenthetical expression, like the one in (16.24'), witl produce a Auctual-
ing patiern of 3 periodic nature. However, sincé Ihie variable 3 can only take integer values
0, 1,2, ... in the presemt context. we shall cateh and wtilize only 3 subset of the points an
the graph of a ciecular function. The ¥ value a1 each such peint will always prevail Jor a
whaole petiod. 1ill the next relevant pointis reached As illushated in Fig. 1.1, the resaling
path is naither the usial pseillarory 1vpe (not allernating between values above and below
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¥u i oonsecutive penods b, mor the wswal fictuating wpe (ot smoch]; rather, it displays a
sart of wopped luciustion As far as convergence is concemed. thowgh, the decisive Bactor
15 really the £ teem, which, like thi e term in (16.29°), will dictate whether ihe stepped
Rucruation is to be intensified o mitigated 3 7 ioceeases B the present case, the fluc wa-
tion can be eradually marrowed doven if and oaty it & = [, Siuce & s by definition the
absolute value of the conjugale complex roms O £ vi, the condition For comvepence is
ggain that the characteristic roots be less tin uaity jin gbsolule valne.

To summarizz: For all three cases of charactenstic reats. the tme path will convere Lo
a (seationary or mowingh intertemporal equilibriym-—regardless of what the initia condi-
tioms may happen to be—if and oaly if the absehme value of every roat is less than 1.

Are the time paths (18.11) and {18.12) convergent? tn (18.11) we have f = 1, therefore
the tme path will corwerge o the stationary equilibrium (= 4}. In (1812}, an the other
hand, we havwe B = 4, so lhe lwme path will nol converge 1o the equilibium {= (),

FEXERCISE 18.1

1. Vurite oud the characteristic equation bor sach of the toliowing, and find the character
isHc roots:

1 y 1
{a) J-’r+-!—ﬂ+1+§ﬂ=:'-' {) H+E+EH+1—EH=5
(B frer — 4 +4p =7 (@ ez -2+ 2K =4

2. For each of the diflerence equations in Prob. 1 state an the basis of its characteristic
roots wheths the wne path invalves occillation or stepped Auctyation, and whether il
15 expias|ve.

3, Fnd the particular solutions of the equations in Prob, 1. Do these represent stationary
of maning equilibria?

4. Solve the followlng difference equations;

7
fﬂl,'lfr+:+3}'r+1—iﬁ=9 {H]=Er!-"1=3}
(B} ¥4z — 2y + 23 =1 =3y =4}

1
{c) }'HE_YI+1+E}'¢=1 {ﬂ|=‘l:}"l=i}

5. Analyze the time paths cilained in Prob. 4.



526 Panl Five  Denamic docheels

18.2 Samuelson Multiplier-Acceleration Interaction Model

As arillusteation of the wse of second ~order difference Squativns in €CONDMICS, letus oite &
clagsic work of Protessor Paul Samivelson. the first economist o win the Nobel Mrize, W
reler lohis classic freterancrion model, which seeks to cxplore the dynamic process of ingome
detevmytiation when the aecelecation principle is in operation abng with the keynesian mud-
tiplier.” Among olher things, hat inodek serves todi:monstrate 1hat the mere interaction of the
et iplict and the accelerator is capable of pewerating eyclics| Muctuations cinogermusly.

The Framework

Supposc tha oational income ¥, is made up of three component expendiure simeams con-
sumption C,, investment £,. and govemiment copetidinue &), Consamiption is envisnged as
4 funetion ot of current income but of e income of he prior period, ¥, ; for simplicify.
it i assumed chat ) 15 straetly proportionsl o ¥, _; . Investment, which is of the "induced”
variety. i a function of the prevailime wend of consutmer speading. I is through this induced
investment, ol course, that the scecleration principle enters into the model. Specifically, we
shall assame f, tohewr a fixed vatio 10 the consumpiion incremem AC, ) = — £, The
third componeni, ., 4w the other hand, is ken 0 be exogenous; i fct, we shall assome
it 1 be a constant and simply denoe it by Oy,
These assumpiions can be wanslated info te following sexof cqualions:

15-} = Er + 'i._l + ﬁ{l

=¥ {l=y <) (18.13)

L=C -y de= 1)
whene 3 [the Greek letter ganwma) repwesents the marginal propensity o consume, and a
stundds for the accelerator (show for accelergtion coeffioienr). Mote thal, (1 induoead nvest-
mint 5 expungad fom the modal, we are left with a first-order difference equation which
ernbodias the dynamic mullipler process (ef. Example 2 of Sec. 17.2). With mduced
imvesiment included, howevey, we luve a scomnd=order difference equation that depicts the

inicraction of the mullipher and the weoelerator,
By wirtue of e second equation. we cun express £, i lerms of incomue as follows:

L=wirli =¥ =apll_ - Y1)

Upon subsbiuting this and the ©, cquativn inta the first equation in 415,131 and rearrang-
ing. the model can be condenscd ilo the single equation

Y= il oY +ayle o =0y
o, equivalently (after xhifiinge the subscripls forward by twa periods).
r.' .2_]"'“- + whF_, 'i-ﬁ"}-"f; = Uy [lﬂ.lq}

Because this is a second-vrder livear difference equation with comseant coetficiems and
oonstant term, Wl gan be solved by the melbod just ledimad.

tfraul A Sarnuehson, “Interactioms between the Myuliplier Analysis and the Pancipde of Acedevation,”
feviow of Econduntc Statitiics, kay 1932, pp. 75-T; reprinded in Amencan Eoonemic Association,
A i Busngis ok Thear, Richard D. Iradn, Inc., Homsewesad, (I, 1944, pj, 261-268,
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The Solution

As the particular solution, sy have, by (18.2),
g Iy

- pil+at+ay l=-—y
It may be woted that the expression 1771 — )3 merely the multiplier thet would prevail in
the absence of indoced imvestment. Thus Gaf{] — ¥ }—the exopensous expenditurc iem
times e multiplicr—should give us the equilibrium meome ¥ the sanse thal this in-
come level satislies the equilibrium conditien “tatienal ineome = ot expenditrs” [of
(324)). Being «be parttcular solution of the madel, however, it alw gives us the inteniem-
poral equilibrmam income T

With regard 1o the complomncntary fonction, tere ae threo poseible cses. Case |
(# = duy), 10 b presen contoxt, is characterized by

w1+ = dey o oyl fapf = do

¥, =

ey
(1 +af
similarky, to charactenize Cases 2 and 3, we only need to change the = sign n the L
incquality lo = and <, respectively. In Fig. 18,2, we have drawn the praph uf the cquation
p == dpf1 4 a¥F . According 1o the preceding discassion, the (i, 1) pairs thal are Tocad
exactly an thiy curve pertan o Case 2, On the edher band, the (e, 1) pairs yving abore thig
curve [invalving higher 1 valuesy have o de with Case 1, und those lving befow the curve
with Cave 3,

Thes riparpte classification, with i graphicasl representation in Fig. 182, iz of imenel
beviuse il reveals clearly the condibons under which eycheal Bucluations ein cmerec

].-"‘:r

ar= | e
iy

Ty TORMARS _?&ﬁa ,_.&*E*{

A {narginal properslry ™ consuing )

fr (acrleranar)

LC PR Soahle; ao cvckes 1T B3R Unsiable; oo cyeles

7 Siahic; nuoaetes M ™, Tieaphle e cpcles

3 G Damped sepped Moctuagien M0 2] Exphosive stepped flueiwaion
3D e, Unifarm srepped Muctwsisn
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endogenonsly from the wteraction of the multiplies and the accelerstor. But this 121ls noth-
ing about the convergence ot divergence of the time path of ¥. It remains, therefore, for uy
to distinguish, under each case, berwetn the damypedd and the explosive subcascs. We could,
of course, 1ake the easy way out by simply illustrating such subcuses by citing specific
numerical examples. But let us atiempi the moce rewarding, if also more arduous, task of
delineating the peseral conditions under which eonvergence and divergence will previil.

Convergence versus Divergence
The difference eguation { 18, 14) has the characteristic equition
Bl o) oy =0

whach viekls the v poots

b b pElFokd P20 + el - duy
1. 472 — E

Since the questivn ol cotvetgence vorsus divergence depends on the values of #q and By,
and singe by end &, in tumn, depend on e viloes of the parameters « and y, the condilions
for eomvergence and divergenee should be expressible in terms of the values of o and p.
Ta do this, we can make use of te fact thal—by {163} —the two characienstic iols are
alwoys related 1o each other by the follgwing twi equations:

b+ by = p(l + {(18.15)
bby =y {18.15%

Ome the basis of these two equations, we may observe that

(1 — &) == —ih + b} + M
=2l-pilre)l+ar=1-F (18.16)

In view of the mode] specification that 0 < o < |, it beeimes nevessary o impasc on Lhe
tww tgots the condition

IR RS N (18.17)

Let ws now examine the question of converpence under Case 1. where the roots wre real
and distinct. Since, by agsumplion, ¢ and y arc both pesitive, {18157 tells us that
My = 0, whichimplies that &, and &; possess the same algebraic sign, Furthermore. since
{1 + o) = 0, (1315} Indicates that both 5) and £y must be positive. Heme. the time pat
¥, cannot have oscillations in Case 1,

Even though the signs of &) and A are now krown, there acouallv exist under Case 1 as
many as five possible combinations of (&), b:) values, each with its own implication
regarding the corresponding values forc and ¥:

(] Dacha=fy=1 = Dap=lioy=<]

i} Q=brehy=1 = yp=1
iy Dedp=leh = po>
{fwy l=#8 <h = y=I
) | =bp=fy = Dzyazlap=]
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Mossobality £, where both &, and b: are positive feactions. duly savisfies condition (1817
and hence conforms 1o the model specification 0 < < | The product of the two fools
musl als0 be a pasitive fraction wader this possibility, and his. by [ LE.15", implies dyar
g < 1. L vontrasl, the oot three possibilities all violate condition {18,171 and 1esult in
nadmissible p values isee Exercise 18.2-3) Henee they must be ruled out. But Possibilicy
3 may siill be aceeptable. With both by wal A ereater tam one, (18,171 miy shill be satis
ficd of (1 =& 01 —&3) < 1. But this time we have ov = | {rither than «< 1 from
(13151, The upshat 5 thar (here ave only twio admissible subcases wnder Case | The
fiest- Poscability :—imvolves fractional roots by and A:, and therefore vields a comveneent
time path of F.The odher sibcase—Pessibilily v featores roots gresser than ane. and
produces a divergenctime path. As far as the values o2 and 3 are concerned, howeyer, the
cueectian of converpence and divergence only hinges on whether ey = 1 oreey = 1. This
infermation t5 summanzes in the top part of Table 18,1 where the convergent subcase ix
Eabelad 1C, and the diveryent subcase 10

The analysis of Case 2, with repeated roots, is wimitur i ngigre, The mors ace now
o= p{| +ar)i2, with o posilive 5ign because or and p arc positive. Thus, there is again no
oscifaon. This ime we may classify the value of b into three possibilies only:

(i) Dehasl = polop<l
(vl =1 = p=I
ivify b= = p<lioey =]

Under Possibilicy w1, b{= &) = b:} is a positive fraction; thus the implicanions rezasding o
and y are crircly identical witty those of Possibility  under Cuse 1 In an analepous maaner,
Possibilily Ll with hi= by = hg) greaer than one, cat sadsfy (18 Fponly 'L < h « It
il sa it yields abe sane resulis as Possibilivy v, Om the ather hand, Possibility wif vrotales
(IR1T) and mwst e valed our Thus there ure seain only two admisible subcases. The
hint—Posibility wi—-yields a convergent tiny: path, whereas the wher—Possibiiioy wis
gives 3 divergont ong, L verms of o atwl 1+, 1he convemzent and divergent subcases are apain
associated, respoctively, witho < ] aewl oy = | These results are Nisted inthe midedle pan
of Table 134, where the twvo sebeases are labeled 20 feonvergenty and 2D fdivergen).

Valwes of
-Lase Subcase «amd y Time Path ¥,
1. Chstanct red| roots

ys dr 1IC0<h; <b <1 ay <1 Honoscillatory and

{1 4 10:1 by = iy gy = | nonfluctuating

2. Repeated real roots

y = o 2C:0<h=1 ap = 1 Menosclllatory and

(14 b H BN ay = 1 nonfiuctyating

3. Complex roots
dyr R =1 oy < F With stepped

v {1 +a¥ M R=1 oy = Fluctuation
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Example 1

Example 2

Finally, in Cast 3, with complex toots, we have stepped fluctuation, and hence endige-
nous husiness cycles. Inodhis case, we should look f0 the ahsoluts value X = o
[see [ 12,8 for the clue rpy convetgence and divergence, whene oy is the coefficiend of the 1,
term in the diffcrence equation {15.1% Tn the prescor model, we have # = /&y, which
rves nae 1o the follewing theee possibalities:

] A=l = ay=l
ix] R=l = op=]
ik} R=l = ay=]

Even though all of thesc happen b0 be adumssible (see Exgroise 18.2-4), onby the B = |
possibility entails a comvergent time path and qualifics as Subcase 3C in Table 18.1. The
other 1w are thus collectively labeled as Subcase 30

[ surm, we mey conclude from Table 18,1 that a convergent time path can occur iF and
prly ife)r < 1,

A Graphical Summary

The preceding analysis has resubed in 2 somewhat complex classification of cases and
subcases, Ir waukd liclp 1o have a visual mpresentation of the classlicatory scheme. This s
supplied m Fig. 15 2,

The set of all admissible {1, ¥ ¥ pairs in the model i3 stown in Fig, 152 by the variously
shaded rectanpular area. Smee the values of 3 = Dand j» =1 are excluded, as 15 the value
& = 0, the shaded avea is 2 sont of rectangle withowd sides. We have already graphed the
equating 3 = 4 /(§ + o)% 10 mark off the threw major ¢ses of Table 18,12 The points on
that curve pertuin to Case 21 the poinis Bng 10 the nonth of the curve (represeating higher
values} belonp w Case |; those Lying t the south (with lower ¥ values) are of Casw: 3. To
distinguish between the comvergent and diverpent subsca ses, we now add the praph of oy = 1
{2 rectanpular hyperbala) os anothet demarcation linc. The joints Lying to the nortth of this
recrangular hyperbola sarsty the inequality oy = b whereas those located below it eewre-
spond ooy < i Iris then possible ta mark off1hy subcases casily. Under Case | the broken-
lina shaded repion, being below the lyperbala, cormesponds w Subease 10, bat the solid-line
shuded regon 1z associated with Subcage 10, Under Case 2, which relates tor-the poimts lying
on the cumve ¥ = /i1 4 o). Subcnse A cuvers the upward-sloping purtion of that curvz,
and Subcase 20, the downward-sloping portion. Fmally, for Case 2, ihe rectanguler kyperbola
seTves 1o separate the dot-shaded region (Subcase 3O} from the pobble-shaded regpwom
(Subs:ase 300, The Jatter, you should note, also includes the points [ocated oo the cectangular
hyperbala itself, becanse of the weak imequalioe in (he specificationey = 1.

Sinve Fla, [8.2 is the reposinory of aif the qualitative conclusions of the moded, green
any ovdered pair {o, ), we can abeaes nd the coreees subcase graphically by pluiting e
ordered patr im the diagram.

IF the aecelerator i 0.8 and the marginal propensily 16 consurne i5 0.7, what kind of inker-
aclion time path will result? The ordered pair (O.8, 0.2)is locate] in the dot-shaged region,
Subcase 30 thus the time path is characterized by damped stepped fluctualion,

¥hat kind ol interaction is implied by w = I and p = 0.5? The ordered pair (2, 0.5] lies ex-
atly on the rectangular hyperbala, under Subcase 30, The time path of ¥will again dispay
stepped fluctuation, but it will be neither explosive nor damped. By analegy to Lhe cases af
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unlfiorm osciation and amiform fluctuaion, we rmay tern this singation as “uniferm stepped
Auctuation * However, the uniformity feature in ths lalter case cannot In general be expected
to be a perfect one, because, similady o whal was done in Fig. 18.1, we can only accept
Eh s ptunls on & sine or cosne ourve that comespond to integer values of ¢, but these valisa;
of £ may hit an entirely different sat of points on the curs in each pemad of flucteabon,

EAERCISE 18.2

1. By consubting Ag. 18.2, find the subcases to which the following sets of values of v and
¥ pextain, and describe e interaction tme path qualitatively,
(@ o =35 =08 fo) o=02 =089
{He=2y=07 fd)e=15 =04

2. From the vaboes of ¢ and v given i parls (o] and {c) of Prob. 1, find the numerical val-

ves of the characteristic rols in each ingkance, and analyze the nature of the time path,
Do your rasuits check with those sbtained earher?

3. Verify that Possibsitees 7, &, and wvin Case 1 imply inadmissible. values of y.
4. Show that in Case 3 we can never encounter y =1,

18.3 Inflation and Unemployment in Discrete Time

The iterachion of mflation and unemp boyment, discussed earlier in the continuoys-dAme
iramewnwrk, can also be cowched in discrere (e, Using essentially the same ccompmde
asaum plios, e shall tesicate e thes section how fat model can be neformmlaced 85 =
differenre-eguation model.

The Model

The earlier continuess-time lTormulation (Sec. 1657 consisted of theee differential
e uations:

g=u—-T Al + g7 [expectations-augmigtited
Phillips rebation]  {16.33)

I:I—T = {p—-7) [adaptive expectations] {16.34)
dl
i —kim — p) [manetary poliy] {16.35)

Thtee endogenols variables are present: p (petual rate of infation), © {expected mie of
inflation ), and £ {raiz of wienployment), As many as six paramelers appear in the model;
among these, the parameter m—ihe rate of growth of norvinal money {or, the rae of mon-
etary exparsion—difters from the others In thar its mapnitude is set 35 a8 palicy decision,

When cast infa the period-analysis mold, the Phillips vefation (16,33 simphy becomes

= - T — B + g, fo, il = 00<g=1) (1818

In the adaptive-cxpectaiions equation, the denvalive must be replaced by a difference
EARTERSION:

My — M = flpe — ] = =1 {18.1¥)
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By the samne roken, the monevary=policy eyuation should be changed !
U|.|.| - Lrl = —Ji.{ll‘i'f —f.i'r_|.|} I:k = ﬂ'} {IE.E“}

These three equations constitute the new vemsion of the inflation-unempleyment model,

The Difference Equation in p

As the fits siep in the analysis of this new madel, we again try to condense the model il
a single aquatinn in a sigle varishle, Lot that vaniable be g Accordgly, we shall focus
our attention on (15181, However, sioee {18, |8 —unlike e cther twg eguabions  does
to by itgelf describe a patiern of change, it §s vp to us 1o create such a pattrn. This i3
accornplished by Jifferencine o, ic. by taking the finst ditference of . scvording 10 the
definifion

Ay = o) — P
Two steps are involved i this. Firsi, we shift the time subserpts in (18,18) forward one
period, Lo pot
Pyl =0 — F—al + s {13.13’}

Then we subiret (18 T8 from (18,187, w0 obiain the first difference of 7, ihat gives the
tesired patlern of chanpe:
gl — pe= Al - U+ Eimy - W)

—BHm— g 42z —m)  Dy(820ad 1819 (18.21)

Natz that, on the second line of {18,211, the patterns of change of 1he other twn vanables us
given int |3, 19) and (14, 20) have been incorporaled inic the pattern of change of the p vars-
able. Thus {5621 ) now embodics all 1he information in the present model,

Howewer, the m, tenn is extrancous (@ the study of p and needs 10 be climinated from
(| 221 To that end, we maks wse of the fact that

= — o — T4 Bl [trr {18.18)] {18.22)
Subsrieuting this imto {1821} and collecting g, we oldain
{1+ fdps — [ - A= ghlp + SBLG = Sk + flw = T} (18.23)

But there i appears a £ term to be eliminated, To do that, s differeance {15.23) 10 get
a (L — T} term and thim wse (L8210 10 elirinate the latter. Only after this rather
Lengthy process of substitutions. do we get the desired dilference equation in the p variable
alone, which, whet dioly rormalized. tekes the form

I+ gy +{1 - )l + gk) -l -g) jEkm
_a- ;= 18.24
..r‘.J = |+ﬁ.|=." .II"I"|| I+'ﬂ.{ 4] .I""ﬁlt I: }
. ! g
", i o

k\te heve azsumed that the change in U, depend on {m - @7}, the rate of growth ot real money
in period (¢ + 1). AS a0 alraitaanive, |6 |5 possdile o make & depend o the rate of growth ol real
money e period £, o — b {see Exarcze 18, 3-1}.
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The Time Path of p

The intertemporal equibibrium value of p, mrven by che partionlae mtegral of {15248,
Ak
e L Im e hei182]
4o 40y fky
A3 in the continsous-time model, therefore, the equilibrivm eate of inflatien 1x cractly
cqual to the rale of monetary expansion.
As 1o the complenwirtary function, thera niay ans2 eather distinct real rools (Cage |y, or

repeated real roots {Case 2), or complex roods (Case 3. depending on the celative ragni-
wdes of af and diz;. [n the present model,

al Zdmy M [1gi+(L— K1+ BT
S4l—jii — g1+ Ar)  (18.25)

F=

Hg=1ji= % and A = 5. for ingtance, then a] = {Sal"l‘3 whereas 42; = 20 thys Case
results. But if g = f = I, then a7 = 4 while 4ap = 461 + &) = 4, and we have Casc 3
nsiend. In viaw ol the Jarger nomber ol pocamcters 10 the presend model, howewer, it nod
feasible to construct 4 elassificaiory graph ke Fig 182 m the Sumyelson model

Mevertheless, the analysis of convergence ¢an aull proceed along the same line a5 m
Rec. 18.2. Spacthcally, we recall frosnd U661 that Lthe two charactenstic rots by and B mst
sakisfy the Collowing two relations:

b|+fﬁ=-a|=::§;+l—j>ﬂ (1826}
= = [see { 16.24)]
i ‘
by =ay = T+ Bk E 1) {18.26")
Furibermore, we have m e present made]
. Bik
L =801 — el = L— b hn=—— =0 (18.2
(L= 8))(1 — ) (b + b+ b YT (18.27)

Now consider Case |, where the nwo roots &) and #: are real and distinct. Since their
product by is positive, by and B; ranst (ake the same s Becavse ther surm is poditive,
moregver, b and by must both be posrtive, implying that no oscillation can oeeur,
From (18.17), we can infer that acither £, nor £z can be £qual to one; for otherwiss
(=5 W1 — ) woudd be 2ev, i viclaton of the indwated igequaluy. Thiz aseans that, io
term of the various passibilmies of (hy, &7 combinations enumeraeed in the Samuelson
mdel, Poskibalities & and 2 canpot anse bere. b 13 also unacceptable 1o have one root
yrepler, and the other o e, than gne: for otherwisa {1 — & W 1 — b5 would be negabive.
Thas Possibiliby &0 13 moled oui as well, It follows that iy amd £ noust be eivher both greater
than one, ar both less than e, Iy = | and By > 1 {Possibility £), however, {18.26%}
wirlthdl b violybed. Henee the only viable eveniuglity is Possabiliny 7, with by and by both
being positive fractions, so that he Gme path of p is conversent.

Thes aoalysix of Case 2 s basically mot much different. By practically wdenfical reasm-
ing, we can conclude that (he repeated root b can only tuen oul o be a posilive fienon
1his model; thas is, Possibiliy v is feasible, bat not Possibilitics eff and vifi. The tme path
of 7 e Case 2 is again nonoscillatory and convergent,
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For Case 3, culverpence taquires that £ (the absolute value of the complex roots) be less
than cue, By {13.8), & = [/T;. Inasmuch 48 oy is & positive fraction [see (i8.26']], we du
have R = | Thus the tome path of g in Case 3 is also convergent, although this fime thers
will be stepped Aucluation.

The Analysis of U/

If we wish 10 anakyze instend the time path af the et of imenployment, we may take
{18.20 22 the poinl of deparare. To met nid of the g benm in that equation, we first subsii-
tules (15,15} oo get

(1 + g5 — L) = A = T —wm) + kgm {18.28)

Next, to prepare for the substitetion of the other equation,, (18.19), we dilterence (15.28) o
find that

(L4 ARy — {24 gt + Uy = kglmp — ) (1829

In vicw of the presence of 2 difference expression in v on the right, we can substitute for i
4 Jorward-shifled version of the adaplive-¢speciations equation. The resull of this,

(8 -+ PRl — (24 BG4 O = hgfipen = Tay) (18.30)

1z the ermbadiment of all the infermation in the madel.
Honarever, wee must elimnnate the o and m variables belove 3 propar difference cquanon
in L will emerge, For this purpose, we 1o1e from (18.20) tha

Morcover, by mmbtiplying (L8.22) through by « —kf ) and shilbing the time sulseripls, we
can wrile
—kfem = —Kip H e - T — BAsLL
= — (L0 = I+ kmeh o+ Rl - T - gL
[by (18.31}]
= —j{1 4 Bl + fU il — T — m) {18.3.2)

These two results express poy; and 7,40 in s of the £ variablc and can thus enable us.
an sobstinttion into (15.30), o obigin—it long las!—the desired difference equation in the
L vanable along:

, VT4gi+ - jHI+ 88 I—F”—E?{_,
I+2Z ]+.ﬁl‘-’ 1+l t-l-—ﬁ.ﬁ g
kil =T — {1 = gim]
= YT {18.33)

[ 1 tidemorthy thal the two constant cocfficients on the left (2 and a: ) are idemical
with thosz in the diflerenes squaton for o [, (15.24Y]. As a result, the earlier analysis of
the complementary function of the p path should be equally applicablye to te prezeat con-
text. Bl the constant term on the right ot (18.33) does differ from thar of (18245, Conse-
quently, the particulat solutions in the two siluadons will be diffcrent, Ths s as it <hauld
he, for, coinvidence 2side, there iy no inhemenr reason @ expeyt the mieremporul cqmlib-
fum rrte of weemployment to be the same as the aquilibrium rake ol inflaton.
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The Long-Run Phillips Relation

It is readaly verilied Lhal the intertemporal couilibrivm rate of unemploymens is

E=lh—T—U—ﬂﬂ

f
But since the cquitibrium raee of inflation has been found o be 7 = #r, we com link T 0 %
by The cquilioa
— 1
L-':J—Lj[{r—T—{I — #}F ] (18.34}

Beeause this equalion is concerned only with the equilifirium ates of unemplovinent and
inflation, i1 i wsid w0 depicl the fosg-riar Phillips retarion.

A speeid case of (18.34) has recoived a oezat deal of atteniion amang coopomists: the
vise of g = 1. [Fg = |, the pterm will have a zero coefficient and Lhus drop out of the pic-
wre. In caber words, £ will become 3 eonstant funetion of P, in the standird Phillips diu-
grum, where the rate of unemployama it is plotbed on the horizontal axis, 1his outcome gives
Tise to a vertical long-ran Phillips curve. The T value in this cuse, refirred ro as the dareed
rare of tinamplagment, iy then congisrent with any equilibrium race of inflation. with te no-
table policy imiplication that, in the long rur, there is no trage-off batvaen the twin evils of
nllation aod uneraployment a= eaisis 3o the shorl run.

But what 1ty < 17 bnhat esen, the cocfficione of B in (18, 34) will be acgarive. Then the
lonp-tum Phill lips curve will trm ot o he disswaed-sloping, thereby <till providing a trade-
off relarion berween infiation and urerwphwement. Whether the Tongarun Phillips curve s
vertical or negauvely sloped is, theredine, criically deperden an the value ol she fr parame-
ter, which, according to the ex pectations-augmmonted Phillipes relationg, measuies e auieot w
whicht (e expeciad raie al mlalion can wock i way 510 the waee strucoare and the aciuad
rate of inflation, Allof this mey sownd E2milian e vou . This is because we discussed the wpic
in FExample LinSec. 165 and you bave sl worked on it in Fxercise 16,54,

EXERCISE 18.3

1. Supply the intermediate steps keading from 18,23} 10 {12.24).

2. Shew that il the madel disaussed in this section & condensed intg a difference equation
in the varatle , the result wifl be the same as (18.24) except for the substitutlon of =
for p.

3, Thea irme paths of pand L n the model ciscissed i this section have been fopnd to be
cansistently convergent. Can dvergent time paths arise if we drop Ihe assumplion that
= 17 I yes, which divergent “possibilities” in Cases 1, 2, and 3 will e become
feacible?

4. Retain equations (18,73 and [18.19), but change (18.20) to
they = Uy = —klm— px}

{o) Devive a new dilfierence equation r the variabde p,

() Does the new difference equation yiekd a dlferent §?

(£) Assurme that j=g=1. Find the conditions under which the characterishic rocts
will fafl under Cages 1, 2, and 3, respectively.

{d) Let | = g =1, Describe the time path of g (including convergence of chvergence)
when gk = 3, 4, and 5, respeclively.
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18.4 Generalizations to Variable-Term and
Higher-Order Equations

Example 1

W are now readhy to oxtend our methods in twa directions, do the vanahie-term case and to
dilference equationy ol higher onders.

Variahle Term in the Farm of crtf

When e cotisiant term e in (151} is replaced by a viniable 1crm—soine function of ¢ -the
only it will be on the particalar sahitton, {3y To find the new panicilar solution, we
cun again apply the methued of undetermined cocfficicnts, In e differcnbal-cquaton con-
toxt {Sce. L6060, that method requires that the vaviable term and its sucvesgive derrvativey
teypether takee only a finie numbset of distinet types of expresswn, apant from muliplicative
vonstants. Applied to diference equations, the requircenent should be ameoded Lo read: “the
variable term apdl its sueCessive Aifferedces must together take only a Anite numtrer of dis-
tinet expression bypes, apart From nwltiplicative canstants ™ Let us illustrate 1ns method by
concrele examplas, frst taking 1 variable lerm in the form e, where c and m ave congtanis.

Find thee particular salution of

Voot t Yopr — 39 = 7

Here, we have ¢ = | and m = 7. First, bet us ascerlain whether the variable kerm 74 pelds a
finite number of expression types on successive differencing. According la the mule of
dIMeranding (A = Y41 — W), e Ffirst differance of the term is

AT =7 P =7 NP =
Sivilarty, the tecond difference, A%(7), can be expressed as
ALATT) = AB(Ty = &(7F'T - {7) = 8(7 - 1)7' =36(7)"

Moreower, a5 can he verfled, all successive differences will, llke the lirst and second, be
same multiple of 7%, Since there is only a single eapression type, we an Ly 2 sodution
v = 8{7) for the particular solution, where B s an undetermined coefficert.

Substitulmg the trial solution and its comesponding versions for periods {t + 13 and
ft 4+ 2} intg the given difference equation, we abtain

BTV 4 MO SIHA =7 or BPP AT IEA =7

Thus,
1

Tag+7-3 53
and wee can wiite the parbicular solution a6

1
¥p = B7Y = ﬁ{'ﬂ'

This may be 1aken as a moving equikibrium, You Can verify the correctness of the stlution
Ty substituting it into the difference equation and seeing to it that there will result an iden-
tity, 7 = 7.

:

The resilt ceached in Example 1| can be easily gencralized from the variable wrra 7 to
that of cm . From our cxperience, we sipect 2l the successive differences ol'em ' to take the
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game form of expression; namely. Am'. where § is some muliiplicative consiant, Hence we
can Iry asolution p; = Bm ' for the particular solution, when given the difference equation

Topz + 8 Fgr iy = o' {18.35)
Dl the trigl solution ¥, = B’ which implics vy = B ™' e, we can rewrite equa-
taoen { 15,35 as
Bo'™ 4 i Bt 4B = o
0T Blmt® +am +anm’ = cm”
Henee the coefficient B in e tnal solution shonld be

'y
mi+am+ a

aid the desited particwlar solitiom of (18,35 can be wTitten as

'y 1 .
PP=Hmj=m:+am+a N {m‘+a1m+d:a&ﬂl} {13.3-5]
i 2

Mode that the denominator of B is not allowed 10 be zera, 1 it happens o be,” we must
ihen use the ingf solution p, = Hem' instead; or, if thal teo fals, y, = Biim’.

Variable Term in the Form of ¢t"
Lei us now consider variable termy in the form or”, where ¢ is a0y comstand, and # 9 2
pOsitive imtepcT.
Find the particular solution ol
Vot + Sia 4 2y =

The first three diferences of t (@ special case of oI with c=1 and = 23 are found as
el quars*

A m b+ 1P -2t 1

Al = AfAr = M2t £ 1) = AZr+ A1

=M+ 1N—-2t+0=2  [A constant = §]

AR = MATF) = A2=1
dJince lurther differencing will only yield zero, there are altpgether three disbingt types of
expression: I (from the wariable temn itsedf), ¢ and & constant (rom the successive

differsnces),
Led s therefore try Lhe sclution

k= Ba+ Byl + Eﬁ:

F Analogous 1o the sluation In Example 3 of Sec, 1646, this sverualty will matenahze when the
ceastant «r happens to be equal ko a characteristic randt of the difference equation, The characteristic
roots of the difference squation of (16 35) are the wahues af b that talishy the equation b b

i = O, Wane rool happens to have the value o, then I st Tollow that @ + ;oM + m = 0.

! These results shauld be cowmpared with the first three derbvativas of t;
d s o g
— =2 — = —
t toaat and gat g



388 Part Fve  Diwuennc Arvtpesi

lor the particular $oluticn, with undetermined coefficients By, By, and B; MNole thal this
solutizn implies
p-1 = B + Byl + 10+ Bz + 'IJ'|2
=(Bg+ B # Bad + (80 + 2800+ Bt
Viaz = By + Byt + D+ Bzr 4 2
= (Bp+ 28 4 4B83) + (f1 + 482} + B2t
When these are substlituted Into the diference equation, we oblain
(88 + TBL+ 982 + (88, + 14801 + 82 = 1

Equating the two sides tenm by 1=, we see that Ihe undeterrninerd coeflicients are
required to sausfy the following simultaneous equations:

EBy+ 78,4+ 9B,=0
86 +148; =0

AF:=1
Thus, their values must be By = ﬁ, B = _TFE* and B = EI.“ gring Us the particular
s hution:
13 ¥ 1{1

LR

Cur experience with the variable term ¢ shingd enabie us Lo generalize the method Lo
the case of ¢+, In the new trial solution, there should obviously be a term B,t", 10 Corme-
spondd o the given varable term. Furthermaore, singe successive differencing of the term
yields the distinct expressions 1=, "2, ., t, and By, {constant), the new trial solution for
the case of the varigble term cf” should be writlen a3

i = Bg + Byt + B2t 4+ Bl

But the rest of the procedure is entirahy the same.

I rrust be added that swdh a trial solution may also fail towork. In that event, the trick—
already emploved on countless other occasions—is again to muliphy the original tnal
solution by a sufficienty high power of & Thal is, we can instead try o =c(fg + Bi1 +
Bat? 4 - .- 4 B, ehe,

Higher-Order Linear Difference Equations

The wrder of a difference equatien imbicates e highest-order difference present in 1he
rqualion; but it also indicates the noaximoum number of perods of tme lag invelved. An
rib-erder Lnear Jifference equation {with constant coefhcients and constant term) may
thus be written in pencral as

Fear i Vepr LH - Mok el =0 (18.37)

The methad of {imding the particular solution of this dues not differ in any subsiimtive
way. Az 2 slarter, we can still ry 3 = # {the case of stationary mtertemporal couilibrimm].
Should thes fail, we then try v, = &t or y, = k¢”, €tc., i that arder,

In the seareh for the complementary fanction, however, we shall poaw be condronated with
a charaheoae: equatien which s mo ath-degree polynomial equadion:

Faab 'y ta hta. =0 {18.38)



Example 3

Chapter 18 Higher-Oder ifforimes Latuarlny 589

Thert will now be # charactenistic ropts &, (4 = 1, 2. . <., /), a1l of which should enter into
the complementary function thus:

we= 3 AW (18.39)
1=l
provided, of course, that the roots ang wllreal and distinet, In case thete are repeated real roots
{zay. &y = by = b}, thett (e first three termes inothe sum in ¢ 13,34 muost be modiiicd 1o

AT+ AtB 4 Ayl LeE (15.6)]

Murcower, if there 15 2 pair of conjupate complex rools- - say, A, -, b,—then the |48 wo
terms in the sum in (18,39 are 10 be combined into (he 2Xpression

R A,y o0sds + 4, sin Br)

A suila expression can alse bt assgned to any other pair of comples tovds, [ncase of two
repeifed pAiLS, howaver, ong of the two must be piven a multiplicative (aclor of ¢ A7 fnstead
ol f°.

Alter y, el 3, are both found, the general solution of the complete difference cyuation
(18.37] ic again obtained by surmming; that is,

Yo = Fp T+ b

But since there will be a total of » arbitrary consiants in this solution, no less dan s initial
conditions will be 1equued to defincize il

Firel the general solution of the third-order difference equation

T 1 1
ﬂ+3_§ﬁ+l+ﬁﬂ+1 +ﬁﬂ =9

By trying the salution v = &, the particufar sotution is easlly lound 1o be j, = 32. As for the
comple mentary function, since the cubic charactenstic equation
i

7 1
_fpr e 3
b Eb +Sb+32_n

can be fackored inko the fonn

b-3) (-3} (r23) =

the roots are by = b :; and by = 'i!' This enalyes us (0 wrile

1 L 'l L 1 1
¥r = My (E} + Hg[(i) + A (_E)

Mote Lthal the second term contains a muktiplicative ¢ this i due 1o the preseace of repeeated
roots. The general solution of the given diffevence equation is then simply the sum of p-and ¥,

In this example, all three charactenistic roots happen te be less than 1 in their absglute
values, Wa can therefore conclude that the solution altained represents a ime path which
converges to the stationary equilibium level 22,

{onvergence and the Schur Theorem

When we have a high-order dilference squation tha is not easily solved. we can ronethe
less determune the convergencs ol Lhe relovant tme path qualitatvely withows having o
struggle with its actmal quantitatrvs seluiten. You will recal] thar the time path can converge
iF and only if every root of the characteriztic equation is les: than | in abaoluee value
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Example 4

Tn view of this, the following theorem— known as the Scher theorens —hecomes dircelly
applicable:

The raols of the gib-degree pelynemial equlion
k™ a4 e by =10

will bl be: kg chan unity i absolute valwe iF and unly if the Follewing m detenminants

iy i iﬂ_.- On L

Al Aol e
e |y 1Ty 1 HEL! i
o1 de: U
' iRy 4] - 0 : iy -y #o |
T T | | B M
P Y LN R R
" by 1) O ey o R
Ag—| Gy - A E il oy SR L R
" 1 ﬁyi 07 0 s iy

arg all positive,

MNole fat, sinee the condition tr the theorern is given on the “if and only i hasis, i11&
1 necessarv-and-sufficient conditien, Thus the Schur theorem is A perfect differenes
cquation counterpart of the Rowth thegrem intreduced eardier in the differential-equatien
frarnework,

The constucton of these determingnis 15 based on 1 simple procedure, This is best
explained with the aid of the dashed Imes which partion each determinant inta fur arews,
Each atea of the ¥th determinant, Ay, slwies consists of a & x & subdewerminant. The
upger-left area has ay alone in the disgonal, ceros above the dingonal, and progresively
larger subseripis for the siccessive cocfficients in each columin below the diagomal cle-
wietits, When we iranspose the elements of the wpper-ledt arca, we obiain the fever-righs
area Tarning K the upger-right area, we now place the a, cocflicient along in the diagenal,
with 7eroy helow e diagonead, and progressively smaller subscripts for the suceessve
eoefficiems as we go up each column b the diagonal. When the clemems of this areq ate
transposed, we gt the lower-lefi area.

The application af ths theorem is siraightforward, Since e coefficicnts ol the charie-
ieristic cqualion are the sumd as thige appearmg on the Tef side of the gl difference:
equation, we can imtroduce them divectly into the determmants g, Nole that, i our
conlext. we abways have ay = |

Does the time path of the equation y_z + 3wy + 2 = 12 converga? Here we haven =2,
and the coeflicients are ap =1, @ = % and &z = 2. Thus we get

12
ER

Mg 2

h =
(1

‘:—3-{“

T Far a discussion of this thearem and s history, see [ohn 5, Chipman, The Theary af frber-Fectoraf
Maney Flows and lcome fopmation, The joha: Hapkins Press, Baltimore, 1951, pp. 119-120
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ainge this alreacty vinlates the convergence condition, there is no need o proceed o A;.

Actually, the characteristic roots of the given difference equatsgn are easily lound o be

I, B = =1, -2, which indeed imply a divecgent lime palh,
Exampl&ﬁ Test the convergence of thepathﬂf W2+ ” y — EH 2 by the Schior theorem. Hera The
— oafflcencs are g = 1, ﬂhzﬁ,-ﬂ’z— E[uwl:hn 2. Thus we haye
1
vy | -3 33
|':|| = - = '.'I-D
T e -1 1|7 36
1 [
a0 O @ P# -5 s
I R TR R _ s
2= 0 @ ::r.l_ _]! o 1 5- = 1306 "
o oo 0 &
1 % _13- 0 1|
These do satisfy the necessary-and-sufficient condition for convergence.
EXERCISE 18.3

. Apply the definition of the “differencing” symbal &, o find.

(o) At {t) all (¢ add
Cormpare the results of differsicing with thise of differartiation.

. i the partioular sohutie of sach of the holliwmy:

(0] ¥ipe+2H-1 + b= 2
(B) ¥riz — S¥ren — By = 280
(6 3z + Fp = 34

. Find the parwular sobuteons of:

(1) oz — Epan+ 5 =1
(B por—2yar+ 5 =4+2t
(€Y oz + Spe) + 2 =18 + 61 +-31°

- Would you espect thal, when the variable tenmn takes the form mt + 17, the Inal

solulion should be B{m)' + {8 + #i+-..

+ Bot™)7 Vithy?

- Find the charactedistic rooks andd the complementany funclion of:

(6} Fous = 3¥oz —Fiet + 35 =0
B b3 s+ jha— =1
[Hirk,; Try factoring out {b— %} in both characteristic equations. ]

- Test the convargence of the sofutions of the follkowlng difference eguatlons by the

Schur theorem:
{6} pre2 + %}'r+1 - %:r’r =1
(B} ¥re2 - %‘.I"r -]

. In the case of a third-erder difference eguation

Yipi -zt @y +apn=c
what are the exact forms of the determinants requrired by the Schur theorem?



Chapter

Simultaneous Differential
Equations and Difference
Equations

Heretofore, our discussion of econonuc dynamics has been confined o the analysis of a
single dynamie {differencial or difference) aquation. In the prosent chapter, methods fw
analyzing a sysen of simulianeons dynatnic equativns are incioduced. Because this would
entail the handling of several variahles af the same time, you might anticipae a grea deal
of new complicaiions. But the rruth iz that mueh of what we have already learned about
singlc dynamic squaiwons can be readily extendad to systeny ol sirmultaneous dynamic
cquatians, Por inslance. the selition of & dymamic system would sill consist of 4 st of
petrtivnlar inlegrals or paicular solutions {interemponal cquilibrium values of the vamous
varghles) aned complemneneary fuiktions fdevrations rom cquilibriums). The complermer-
rary iyacrions would siill be based on the reduced equatisns, 1.u., ihe homncgeneons versienes
of the equations in the system. And she dyoanic stability of the system would still depend
an (e signs (i diferntial equation system) or the absolute values {if difference eqwation
sysem | of the characteristic roots in the complementary funciions, Thus the problem of &
dvnimnic system is enly shghtly mare complicited than that of a single dynamic cualion.

19.1 The Genesis of Dynamic Systems

Loz

Thera are two general ways 1o which a dynamic sysiem can come inte being. It may -
anale from u given xed of interacting patterns of change, Or i may be derived From a vingle
givea paitern of charge, provided the latter consists of 3 dynunic eguation of the second
(o higher) order.

Interacting Patterns of Change

The mixst cbnvious case of a given sei ol interaeling patiems of chanpe 15 that of & mulizes-
b meskel where each secton as deseribed by w dybanmic cquation, iMpinges on g1 least one
of the other sectors. A dynamic version of the inpat=outpue madel, for cxample, could in-
volve & industries whose ounput changes produce dynamic repercwssions on the olher in-
dustries. Thus it constitutey & Jynaomc systiem, Similary, a dynamic general-cquilibrium
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market movhel would iovalve # commodrbes that are interrelated in their pnce adpesiments.
Thuy, there s apain g dynamic syslem,

Huweyet, mteracting patterns of change ean be Bound even i 4 single-sector model, The
variqus variables in such a maowdel vepresane, not different gectors of different comumadiges,
but different aspects of an economy. Nopetheless, they can affect one anodher in their
dymaric behgvior, w as w provide a network of interactions,' & concrete example of thishas
i fact been cocauntered m Chap, 18, Tn the inflimon-unemplayment madel, the expected
rate ofinflation = [0lows 2 patiern of change, (18,19 that depends ao anby on, but glse
om the rate of unemploymert £ {through the actual rate of inflation p). Reciprocally, the
patern of change of I7, {18200, 15 dependent oo & {again through p). Thus the dwmamics
of 7 and £ must be simmlareously determined, In reirospect, therefore, the intation-
unemploymend mode| could have been treated as 2 simultanecus-equation dynamic mode.
And than wourld Bave obwiated the long sequetice of substintion? and eliminations thar were
nndettaken o comdense e imndel inio 7 single sguation in one variable. Below, in Sec, 194,
we shall indeed rewock that madel, viewed as a dynamic sysieim. Meanwhile, ihe notion that
Ihe same mode] can be analyzed cither a5 a sinple eguation or as an equation system supplics
a natural cue o the discussion of the second way to have o dypamc system,

The Transformation of a High-Order Dynamic Equation

Suppose that we arg given an wth-prder differential (or chfference} equation in ane vanabic.
Then, as will be shown, it is always possibbe oo transform that equation into 2 mathemali-
cally equivelent system of 2 simultancous fesi-order differential {or differenced sguiations
m &« variables. In particular, a second-order differeniial equation can bg rewritten as v
simublaneogs Arst-order Jiferential equations in twi variables,* Thus, even if we happan to
gtatt gut with ynly one (high-onder) denumic eguation, B dyrumic system cin nevertheles;
be denved thraugh the srbfice of muthematical fransformaoon. This tact, imeidentally, has
an impertanl pmplication: In the ersoing discussion of dynamic systems, we need only be
concerngd with systems of Arsi-orler equaions, for il o higher-order equation i pesgent,
wig can always trangform 1t first inko 2 set of fist-onder equabons. This will cesult 1n 2 latger
rukabar of eguations in the gystem, byt the order will then be loawerad W the oo,

Ty illustrate the transformaton procedure, et us congider the single difference ecqualion

Yoz tdiip tiy =¢ {19.1}
If we concoct an artificial new vatiahle x,, Jefined by
=y (mplying ) = Fyo)

we can lhen express the original second-order equation by means of swa first-order [one-

period lag) simulianeous equations ag fodlows:

el ‘i +tmp=¢ {1?1’]

Frel— & =

M Wgte that it we have two dynamic equation; in the tvo vasiables iy and 1 such that the pattern

of change of py depends exchusively an | itself, and simdarky for y, we really 4o not have a
samulanecus-eguation syslem. Instead, we have menely bwo separate dynamic equalions, each of
which can be anahbyzed by itself, with no requirentent of "simuka nefty,”

¥ Comnersely, bwg first-order differential (or diffarsnce) squations m twg vanables can be consglidated
imte a singde secand-grder equatipn n one variable, as we did n Secs. 145 and 18.3.



594 PartFive  Drawn; degsfvas

Lt is exsily soen that, as long as (e second equation {which defines e variable 5, ) i salis-
fied, the first Is identical with the vriginal given equation. By a similar procedute, and using
more artificial variakies, we can smilady wanstonn 3 higher-order single equalion inio &n
equivalem system of simultanevus firsd-order equations. You can verify. for instance, 1hat

the rhird-order equatiot
Frea+ by = B+ 2y =0 {19.2)
i:an be rxpressed a9
Mg 4wy —dx, +32y, =0
Trel — Wy =1 (1927
Fg = 4 =1

where 1; = yoyq (50 that 5 = vpa) and wy = 40 (w0 thal wyy) = K1 = Bas)
By a perfecdly similar procedure, we can also oansfirm an ah-order @iffercetinf equa-
tron o & system of 2 frst-order cquations. Given the sceond-order diffevential equation

I Y apud+ o) =0 (19.3)
For mnstance, we can introduce a pew vanghle xir), defined by
¥up=viz)  |implving x0ry = ¥7(0)
Then { 19.3) can be rewritten a5 the Tollowing system of two first-order cquations:

"N +ex(t)+anpil =10

19.3°
¥ty - xlid =N ( )

where, vou may note, the second equativh performs the fanction of delining the newly in-
troduced x variable, ax did the second equation in (1% 1), Essentially the snme procedure
can also be used to transform a higher-order diffierentiat equation. The only modification is
that we powst introduce a correspondingly larger number of new variables.

19.2 Solving Simultaneous Dynamic Equations

The methods for solving simultaneous differsntial ciquasions and simulrancous dilference
equations sre quite similar, We shall thes discuss thom teeber io this seceon. For our pre-
sent purposes, we shall confine the discussion to lingar equanions with constant cocfcients
only.

Simultaneous Difference Equations
Suppnse thar we are given the follawing system of linear difference equations:
Iyl + b+ =4
gl — X =)

{19.4)

How do we find the ame paths of ¥ and v such ihet both equations i this sysieon will be sat-
isfied? Essentially, owr task is again tn scck the particular ivegrals and complementury
functions, shd surs these to obiain the desired hme paths of fhe two vanables.
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Since particulur integ rals represent interemporal equilibrivm valwes. ke ws denote them
b 7 and . Ay hefire, 0y advisable first fo by constant solotions, samely, 5 =%, =¥
amdd yo_ 1 =y = ¥. This will indeed wock (n the present case, for upon subsliimg thes
irial solutions e (19.4) we ger
T4+ =4 e |
F+ F=0 ¥=¥=7 (19.5)
fTo case such constant scduthons Bl to work, however, we nrust then iry solitons of the
form a = &yf. v = Kol ete)
For the complememary Eunctions, we should, drawing s our previous experience, adopt
trial solutions. of the {iorm

X=wh  amd =l {12.6}

where 4t and # are arthilrary conslants and {he base bepresents the characteristic ool 1t g
then a0 tomatically implied thai

Xy = it and  ty = eh {19%.7)

Mot that, fo simplify matlers, we are cmploving the same bage & 2 0 for bath vanables,
atthongh their coefficients are aflowed 1o ditfer. it 35 our aim o ind the values of A, o, and
R that con make the toal selutions {19 .6p zaoshy (e reduesd (homegencoos) sersion
af [19.4),

Upon sybsanumg the tal sohagons into the redueed version of { 194 ) ad canceling the
common Factor & = 1), we obtaio the two equations

b+ o+ Y =1

—m+fr =0 (19.3)

This ean be considered a2 a linear homogeteous-equation sysiemn in the ww variables
and #—if we are willing to consider b 25 a parameter for the time being, Becanse e sys-
lem {19 5) 15 homogersous, 1t can yield only the tnvial selutions = & = 801 its coelteent
macix is nonsingular (wee Table 3,7 in Sec, 5.3), la that event, the complementary funciions
in { 1%.6) will both be identically zero, sigenifying that & and v naver deviate from their in-
lepteripisa] eduilibnum vilues. Smee that wanld be anumnieresting special cazse, we shall
iry to rule out thed tovial solution by requitog the coefficient macv of the syaem w be
singrfar. That 45, we shall require the determinant of that marix to vanishe

b+b Y
-1 b

From flus quadratic equation, we fiod 1that 4=ty = M) = —3 iy the only value which can
prevent & amd » [rom bodh being zem in (19.8), We shall therefore only wse this value of &
Equarion (1997 i called the chearaetoristic equedion, and it ioots the chgracterisic mo,
of ihe mwen simullianecus dilference-couation sy=mem.

(ee we have & spaetfic value ol b, (19.8) geves us the cormesponding solution values of
i and #. The system being homopeneous, howcver, there will acioally anerse an nfinie
swnber of solutiens (01 (e, r), etpressible o the form of an cquation m = ke, where ks a
conseant, In fact, for each root &, there will in peneral be a distinct cywation me, = &5,
Even with repeated roots, with b; = &2, we should stll use two such cquativms, my = &)

=i +&h+9=0 (19.9)
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and Rz1 = oy in the complemantary functions, Moreover, with repoated roois, we recall
Mrom ¢ 18 6 that the complementary funetions should be nmtten as

x, = =31 +mati= E:IJ

o= =3 4 npti =Y

The lwclors of proportionulity between m, and n, must, of course, satisfy thé given aqua-
100 syslem | 149.4), which mandates dhat v = x.1,

=3P el D=3 — e = 3+ ot -3y
Drrviding thriugh by (—3F, we wot
—3m = Jnzft + 1) = ey + gt
o, after Tearmnging.
=3k, mp = Il — g+ gt

Equating the derms wish 1 on the 1wo sides of the cquals sign. and similarly for the termy
without r. we find

m = —3m +n:}  and = —3m
If we now write 7, = A7, 2 = A, then il folliws that
my = =MA+ 4y my = =34
Thus the complementary funciions can be written ds

. =—-¥hL+ .’1-.1?]{—3]?- — 343
= —FAf=3) = FAgr + 1)-3) (19.100
Vo= Au=3 + A=)

where 43 aml A are arhitrary comstants. Then the peneral solution fallensy cagily by com-
bunig the particular solutions in £19.5) with the complementary fonchons just found. All
that remaing, then, is to defiutize the toro arbirory constants 47 and 45 with the help of
appropriate initial of boundary conditiens,

Ongsignificant Feature of the preceding selution 1s that, siee both Lime paths have iden-
tical & expressions in (hem, they must either buth comvergs or both diverge. Thiz makys
sense begause, i o modal with dynamically interdependent vaniubles, 4 general intertom-
poral equikibriurn cannot prevail unless no dynamic motion is present anywhere m the
systemn, In the peesenl case, with repeated routs b = —3. the time paths ol b x and v will
display explusive oscillation.

Matrix Notation

Lty order bo hring out the basic parallelism between the methods of solving a single equation
and an equision systen, the proceding exposition was carried out without e benefil of ma-
ik notation, Let us now sce how the latter can be wilized here. Even thowgh it may scem
pointless by apply matrix natation g a simple system of only twi equations, the prssibility
of extend ing that todation tor the a-cquation case should make it 3 worthwhile exercis.
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First ofall, the given system (19.4) nay be expressed as
'|.-|'+| b 1;. _ 'q
e e P

Ju+Kn=4d {19.4)

where [ iz the 2 « 2 identiy matnis £)i8 the 2 v 2 matiy of the coeliciens of the 5, and
¥ tarms; and a, ¢, and  are coluran vectors defined as folloms:t

] =l -l

The reader may find une feature purzling: Since we know {2 = », why not drop the ' The
answer i¢ that, even trough it seems redundanr now, e Weatiy manix will be nesded in
subsqueat aperationg, and thersfore we shall recain it as in {19497,

When we iry constant solutions x, | =.x, =¥ and w, | = §, = J for the paricular

O, more Suceinetly, as

solwiions. we are in elfect seftingw = n = ; - this will reduce {19.4%) w

U+E‘J[;:|=d

IFthe inverse{F + &y ' exishs, we can express the particular sphutions as

|

This s of couese o genergl Forenula, Doe it is wald (o7 any matos K and veclor o as keng as
(8 + K exisie. Applied to our numerical example, we have

- | W
a, [ 74w —wi[4]L
SE e R R ] (HE
1A T3
Therefore, X :_}J—d,tl.’llll:htfﬂ..[:k'i with { 19.9).

Turniany 1 the complementary Fumetidns, we see that the trial soluniens (1961 and (197}
aivie the ramd a vertors sthe specitic form

L (1

When substituted e the reduced equation fir 4+ Kv = U, Ihese trial zolmions will irans-
fore the latter inte
f[‘"]b’“ +K [”’]ﬂf=n
) n

* The symbal v here denotes a vector. Do pot conluse it with Lhe v in the comples-number notation
b vi, where il represents a scalar

e |

]: F+ K74 (1957

-
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o alter multiplying through by & 7 {1 scalar) amd Gactoring,
at
{H+K|[ﬂ]=ﬂ' (198

whore 0 is @ 7ero vectnr, 11 is trom this homogencous-equatien system that we ane to lind
the appropiate values ol &, i, and # to be wwed in the wigl solutions in order @ make the
latcer deigrminate.

T evviridd trivial solations for mrand w1t 12 becessaryy thal

Ibf + K| =0 (19.97)

And this is the charactenistic equation which will give us the charactenziie roots f; . You can
werily thal 11 we substitule

P T 6 9
Mz[“ ﬁ] anl H—[_l :}:|

inta this couation, the result will procischy be (194 vielding the repeeted roats o = -3,

In wencral, cach oot &y will elicit foon (19.8') a particalar set of infinite oumber of
solution valses of m and » which are bed to cach other by the oquation m, = Kka,, 100
thercfiare pagsible oo wite, for each valoe of b,

A=A, and  m; = kA

where 4; arc arbitrory constanis to be defmilized later, When substituted mio the trial so-
Iyiticins, these expressions for e, and m, aling with the vahses B will lead o specific Formy
of complementary [unetions, 1f a1l roots are distinet real numbers, we may apply {18.5) and

write
X || Bty | _ | A AA
| il | EA Ny

With repeated oo, however, we st apply (13.6) instead and, as a result, the comple-
maentary functions will contain terms with an extra muloplicatee ¢, such as sy A’ + b
ifor £ b and wih" + nard' {lor %) The factors of proportionality between w, amd 7, are o
be determincd by 1he celationship etween the variables < and v as stipulated in the given
equaticn system. a5 lustrated in (19100 m our numeread example. Finally, in the
camplex-root vaxe, the complementary Junctions should be wnbien with (13.10] a5 {het
prototype.
Finafly, b gol the general solution, we tam simply [orm (he sum

HEHEH

Then it renains only 1o definitize the arbitrary consants A;.

The extension of this procedure 10 the a-oquation system should be scl=cvident, When
1 3% larpe, however, the charackriste cquation—an rib-degres polynomial equation—may
nerl he easy 1o solve quantitatively. 1n thay event, we may again find the Schur thecre (o be
i help i yielding cerbun gualilative conclusions about the timae paths of the vanables i
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the systemn. All these vanabdes, we recall, ace assigned the same base & n the 71zl sehabions,
o they must end up with the same # expressions in the complementary functions and
share the same convergence properties, Thus a single applicaon of the Schuy theoren will
enable us to detenming the convergence or divergencs of the fime path of every variable in
the system,

Simultaneous Differential Equations
The methed of soletion just desenbed can olso be applhied to a Grst-order lenear differengiad:

equation system. Aboun the only major madificadon needed is 1w change the rial selu-
THONS 1D
H=me" wmd @ =ne” (1811
whigh imply that
() =rme™  ad ¥t} =rne"’ {12.12)
Lo Tovee wetthy oor nokzbacenzal conveniion, the chartensic roots are oae denoded by r instead

of &,
Suppose that we are given the following equaniod systeni:

A28+ 2 (Fy + Spe = 77
¥+ [+ dwe) =61
Frst, bar ws meswaite il i il anrarion as

where (he mancces ame

ol U I ¢ I T B A

Mete, that, in view of the appearance of the 2p(¢) term in (he first equation of {1213}, we
have to nge the matriz J in place of the identity matrix 4, as in { 19.4"). Of course, iF S is non-
singular (50 that 77 axigiz), then we can in & sense normalize (19137 by premuluplving
every lea m therein by J1 | to get

Slmr s Me=s"r o Ju+Kr=4d
(K=J"Md=d"9 (19137
This new format is an exact duphcate of (19.3%), although it must be pemembered (bat the
vegtors u and 1 have altopether different meanings in the two different contexis. In the en-
suing development, we shall sdbere 1o the Ju + Mv =g formulalion piven in (19,13,

To find the particular inlggrals, let us Ty constant soltions k{r) = ¥ and 1r) = F—
which inphy that x(71 = ¥(#} = 0_Tf these solutions hold, the vectars v and i will become

= [;] add & = [g], and {1915y will reduce 1o M1 = g Thus the solution for ¥

and ¥ can be wriren a5

(19.13)

]=_l= M'lg [19]-‘-}
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which you should comparg with [ 1457, In numerics! e, our present problem yields the
following particular integrals:

HE NS

Next, let us boak: for the complamnentany functions, Using the trial solutions suggested in
{191 Vhand (19.12), the vectors w and v become

m| . m| o,
u=[ ]re" and l-‘=[ ]{-"'
i t

Substitution of these into the reduced equation
Ju+ Mue=1

fr}esfz) -
n it

or, afier multiplying Uhwough by the scalar ¢~ and factoring,

yields the resmli

irs +iﬂ[‘:] .y (19.15)

You should compare this with (1987, Siuce our objective is to find aonivied sohmons of
e and]  {ser that our tial solutions will also be contivial)l. o is necesary thal

lrd + M| =1 {14.16)

Tl analig of (149", this last equation—the chamcteristic equation of the given equation
system— will yield (ke roots #; that we need. Then, we an find the comespending {pon-
tovial) values of m; and ;.

In pur present example, the characteristic equation 1s

Ft Yl 3 )
= Tl=r dr 1= .
|¥.f 4+ M| ‘ i . 4 r+idr4 0 (19.167)
with toote #; = — 1, #» = =1 Subgiatoling these into (1913), we ger

[l 3‘][”‘“}:1} (for e = —1)
I 31 m

- =] m|_ L
|: . I][”J_ﬂ {fore: = -3

It follows that w1, = —3m) @l mg = —a;, which we may 2lse SXpracs as
m =34 and = A4z
H|=—."i| .FT:_:-.-JI

MNow thal r. 4, . and A: have all been found, ihe comptementary functions cat be it
ters 5 the tollowing Imear combinations of cxponenhial expressions.

[x"] = [Em"'m] [distinet real toots]

W T
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Al the gencral solution will emerze in the fivm

iy | | we I
[.1’“}} B [}’c] ¥ [:T]

fo our present example, the selutwon is

|| JdeT+ Ase™H 4 1

LY T P g b
hereover, iFwe are wiven the inbiig] condiiions x{0) = & and (0 = 12, the arbitrary con-
sbants cam b found 1o be 4 = 1 and 42 = 2. These will sorer by definitize the preceding
salution

Ciec Towme we iy ihsctve that, gince the @57 expressione ane shared by bt rine el
Ay and wiry, the lafer muwst cither both cenveryze or hoth diverpe, The moois boing =1 and
—3 i the presend ease, hoth finme paths converge B their nespecive cguilibna, nomly,
Y=land ¥ =13,

Even thowgh our cxample cansists of a two-oquation systcm only, e method certaimnly
calenify bo Ve peneral s-cqualion sysierm WEen & 15 laree, quinlitiiee soleians may agimn
be difiicult. but once the characteristic equation 15 found. a qualnative analysis will always
e possible by resorting 1o the Rowth eheorem.

Further Comments on the Characteristic Equation

The berm “ehavacteristic equation™ has nis Feen encountered in feee soparite contests: D
sce. 1.3 we spoke of the charactenstic cquation of 1 mamx: m Secs. 1o and 131, the
terme was applicd W a sinple hiocar difforential cquavion aml difference cquation; ma,
i this soction, we have just inrodeces] the characteristic ouation of o system of Bmuar
difference or diftorential equabions. [s thess a comnection bebween the thiee?

There indeed 15, and the comnection = a chae une, Inthe fist place, given o single
equation and wn cquivalemt cquation systen ax caomplificd by the cgualion [19.1} and
the systemn {1917, or the equanen (19.3) and be system (19.3") - -Lheir characensac
equations most be identical. For illustration, consider the dillerence equawon {1900,
Irpz + Ve @2y = oo We have earlier leamed to write s characleristic equation by
directly iransplanting its conslant coefficents into a quadratn squahon:

h‘z + ] |r]‘ -+ = ﬂ'
What aboul the equivalent system (1% 1)7 Talieg that svstem o be in the form of

fa+ K =2, an in (199" we hawe the nuainis X = [fi T__‘:] . 3o bhe characteristie
£quation 15
i+ K| = ‘ P dri 2 b =0 by (1997] {1917}

-1 b

which 15 precizely the xame as the ¢ne ohiimed from the single equaton as was asscricd
Nawnally, the same tvpe of cesult holds also o the differential-cquaieon fromcsodk, the
ohly difference being that we would, in acenrdance with our convention, replace Lthe syinbol
& by the symnbol Fin the Tatter amoework,
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It is alse possible b Tink (he characteristic equatwn of a difference. (or Jificrenual-)
Equation sysiemn tor thai of a particular square mutrix, which we shall call £3, Referring o
the definition in (11 kY, but using the Symbol & Ginstead of ¢ for the differenge-cguation
tramework, we can write the charagteristic equation of matns 2 as follows:

DB =0 (19.18)

In general, if we muttipty every element of the determinant |12 — #f| by —1, the value of
the determinant will be unchanzed of matria £} containg an cven oumber of 7Ows {or
colwmng), and will chanpe ifs sinif O contams an odd rmimber of rows. [0 the present case,
however, smce | £ — 2] s to be s21 equal 1o zero, multiplviae cvery clemen by —1 will
re ratter, wgardless of the dimension of nratria 3. But (o maltiply every element of the
derereminan |2 — BI| by —1 is tantameunt wo nauliiplying the maces (0 — 2y by — 1 Gice
Example o of Sec. 5.3 befowe inking s determnmanc. Thus, {19 18] can b fearinen i

Ibf — ) =10 (19.18"

When this s equated oo (1917} it beoomes clear than iF we pick the maix L = - K, then
its. ¢haracteristic cguation will be wdenbcal wich el of the system (13175 This matris,
—K, has a special meaning: 1 we take the reduced version of the system. fu + Ko =10,
and express it inthe lormod Jor = —K v, orsimply u = — K v, we see thal =K 15 thit medinz

that can ransform the vectwr o = [;,] into the vectar w = ["r_”“E } i that pardicular
Ul o Ate:

Again, the same reasoning can be adapted o the Jilfcrential-cquation system (1437,
Howeyer, in the case of a system such as (19,13, Jor + Mo = g, where-—-uolibe in the sys-
tem £ 1S3 —che fiest tenm is Je eather than fu, the characterishe equation (s n the farm

S+ M =0 el (19.069]

Far this case, if we wish bo find the exprassion for the murnx 23 we mast firs normalize thy
equalion J i + M = g ntocthe form of 1913, ond thentake D = —K = =f° 'Af

I swem, given {1 a0 single diffecerwee or differennal eguation. and (2 an cyuivaient cqua-
thon systom. from whach we can alsa obtain (3) an appropriae macrs D i we iy w find the
charactenslic equations ol all three of these, the Tesults mmg be one and the same.

EXERCIIE 19.2

1. Verlfy that the difference-equation sysiermn (19.4) is equivalent to the single equation
Frop + Gpren = 9w = 4, which was soheed earkisr a4 Example 4 in Sec. 13,1, How do the
solutions ubitamed by the twao different methods compared

2. Show ihat the characteristic equation of the difference equation (1%.2) is identical wilh
that of the equivalert system [1%.2'3.

3. iohve the following two difference-equation systerns:
LI + i+ 2p=24

Vig1 + 24 — 2= 9 fwith 5y = 10 and ¥y =9}

(&) As4 —-"r—';}’r=—]
11— ¥iad - i':l"r = 3% {with zp = Sand j = 4)
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4. Sohve the lollowewy Leo differential-equation systems:
fwh o1y - w1200 =60
PO+ 2t + B = 36 [with x(0h = 13 and ¥{D) = 4]
&) A0 -2+ = 10
P~ xifi+ Zpih= 9 [with x(0} = & and {0} = 5]
5. On the basis of the differentialequation system (19.13), find the matrix D whose char-

acteristic. pquation i icentical with Lhat of the system, Check that the charactesistic
ecjLations of the two ars ndeed the same

19.3 Dynamic Input-Qutput Models

Ouer frst encounter with inpul-owtput analysis was concerned with the question; How much
shrold B proscluced n cach industry sor that the inpud vegquirements of all mduskrizs, as well
a5 the fmal demand (apen system), will be exactly satishicd? The combexl was stabie, amd the
problem was t solve a8 simallsaneows-cguation systom b the cquifiefuem output Levels of
all industrics. When cerlain additional ceonomic conaidetations are ineorpotaled inlo the
miodel, the iimput-outpul systom can kke ona dynamie character, and there will then resolt
a chlterence= or differenital-equatsn srstem of the type discussad in Sec, 15,2,

Three such dynorneing consideralions will be considered here. To kezp Lw exposition
smnpke, boweser, we shall Jhustrate with two-ndesiny open systemns onby, Nevedhebess,
sinse we shall emmlay matrs solation, (e peneralization 10 the a-indusiry case should nol
prowe dilfieadt, for il can be accomplished simply by duly changig Uw diovensions of Lhe
matnices imvelved. Forpurposes of such generalization, it will prove advisable to denote the
variables not by x, and po b by £, and &1, 50 thal we can exlend (he nolation 1o x,
when needed. You will recall thal, In the mpui-ocwipul contexl, &, Tepresents Lthe culpul
(measursd m dollacs) ol the ith industry; ihe new subacept £ will now add a lme dimenzaon
o it The input-cosfficient srmbol @,; wall still maan the dollar worth of te ih commodiey
required in fhe production of a dellar's worth of the jth commodiey, and &, will again ndi-
cane the final demand for the (th commodivy.

Time Lag in Production
In 4 soane (wo-industry open sysienn, the ompur of indusiey L should be sef a1 the level of
demand as follows:

Xy = e X Fanexa + )

Mo azsume a one-period lag in production, so that the amount demanded in period 1 de-
tetiminges not the corent outpl bul the output of pedod (¢ + 1), To depict thes wew situa-
tiot, we mnst malfy the preseding equation to the form

Apeal =@y izt 4 (19.19)
Similardy, we can wnre for industry 11:

A2ql = N0 T o (19.19%
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Example 1

Thus we now have 4 systemn of simubancoos diference equations; (his constinies A
dynamic version of the: input-output model.
It maleix notation, the syslem consists of 1he equation

Lo — A =4d {19.20)

- 2 “I_I
o] efi] ool ] oo
SIE— L 2 s -

Clearly, {19.20 i3 in the form of [ 19.4%), with only o exceptions. First, unlike veetor a,
veclor €, does nol have an identity matrix  as its “cocfficient” However, as explained
earlicr, this really makes ho amalytical difference. The sceond, wod maore siwbatantive, point
is thar the vector ., with a gme subserip, itnplies thyt the final-demand vector is being
viewed as 2 [unction of time, 1 this fuhction IS nonconstmt, 3 roodifcation will be required
in the mcthod of finding the particular sulwions, although the complementary functions
will remain unatfected, The following cxample will Mustrute the moditied procedure

Civen the exponential final-demand vactin
e = [:J] = [_}]H‘ [ = a positive scalar)

find the particular sohthons of the dynamic inpul-output model (19.20). In ling with the
methed of undetermined coefficients introduced in Sec. 18.4, we should iry solukions of the
foern ay, = 3" and xz, = k", where g1 and fiz are undetermined coefficients. Thatis, we

should by
_ [ B LA
% = |:I1 |] = [ i|.5 (1921

- IE1'§H-1 _ Bk [ _ g Ol H .
ver= [ | =[] = (o S][ )

If the inddicated tial solutlons held, 1hen the systern {19 20y will bacome

o Sa)- o SRl

or, on canceling the common scalar muhiplier st # 0,
d—dn -y Ji] 1
= 19
o Cwla=0] a9z

&
! You will nole that the wector [f'lz-!i ] i1 b rewritten in several equivalent fatmd:

N W ME RN

i O
W chopse the third altemalive hers because in a subsequent. tiep we shall want to add [1} -;] 17

which irnpliest

argther 7« 2 matn. The first Lo albernabwe fooms will entail prblerns of dirsngion condoemabikty,



Chapler 19 Fimlfaregg Differestiof Eguatows amd Dffmbce Equphion; 05

Assuming the coeffickert rmatrx on the sxtreme (=it 1o Be nonsingular, we <an readily find
# and Bz {by Cramers rubke) to be
_d-dptony f— 1 + 3

ad = — (1922

£ n A

where & = (4 = @ j(f - @) — @200 Jince & and S ane now expressed entirely in the
known values of the parameters, we only need Lo Ingert them into the bal solution {19.21)
to get the delinite expressions for the parlicular sohutions,

A miore general versson of the type of final-demand veclor discussed here is given in
Exergite 19.3-1,

The procedure for Anding the complementary funetlons of (1%.20) & no different from
that presented Tn Sec. 13,2 Since the homogeneaus version of the equation system is
Ay — Ak = 0, the charactesistic egquation should be

b—o - |=
—ty b ay

From this we can find the characteristlc roots by and b3 and thence proceed o the re-
maining steps of the sglution process,

Excess Demand and Quiput Adjustment

The mendel frmulation in {19200 can also arize from 2 different econimic ASSRIMpEION.
Cunsider the silwabion im which the eacess demand for each product always tends to induce
an vutput imeTerment equal 1o e sieese detnand, Since e excess Jemaind for the fivs prod-
wct in period Famounts o

[ — 4| = 0 <1997

o1t Fd, — a,
N s -y Fl
rmasthal wapplial

the outpul adjusiment (increment) Ax s bo be set exactly equal to that level:
Ap =X — X =ttt 2i¥ay Hdi - 5

Mowever, if we add x; ; toboth sides of this cquarion, the resuli will become identical with
{19 19). Simlarly, our ourput-adjustment asswnption will give an equabion the same ax
{19197 for the second indusiry. In short. the same mzihematical model can resudt from
alwgether difterent cconomic assumpions.

Sa far, the inpat-ouepal systena bas been viewed only in the discrete-time framework.
For compatison purposes, let us mowv cast the output-adustment process in the continums-
time mold.

It the main, thiz would ¢all fot use of the symbaol 2 (7) it liew oF ¥, .. and of the deriva.
tive &:{¢) in lisw of the difference Ax;,. With these chanpes. our oultput-adjustiment
asswngption will manifest itsell’ in the following pair of differential equations:

¥ = 2t + @axal e - Qi) — {1

5'"5{!} = an {1+ mrxif) +dfi) — xald)
Al any wastant of time ¢ = fy, the symbol it tells us the rate of output Aow per unit of
timne (say, per month) that prevails at the said instant, and t(m) indicakes the final demand

per month prevailing at that instant, Hence the right-hand sum in each equation indicates
the rate af excess demand per month, measured a1+ = ¢ The derivative x(fy) at the Left,
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Example 2

onthe ather hand, represents (he rate of output adjustment per month called forth by the ex-
cesy demand a6 ¢ = &y This adjustment will eradicate the excess demand (and bring abu
equilibriurny in a month's time, but only if beth the exeess demand and the autpyt adjes-
ment stay unchanged at the curceni rales. In actuality, he excess demand will vary with
time, 4% will dbe ndwced output adiustnent, thus reseling in a cai-and-mouss pame of
chase. The solution of the system, consisting of the tire paths of the ooipul 1., suppliey 4
shromicle of this chase. If the solwiion 15 conyerpent. 1he cat {output adjusiment) will cvem-
bupdly be able 10 catch the mowse (moeess demand), asympiotically (as f — o),

Afier proper rearrangement, this system of dilfevenbal equanons can be written 1o the
format of {1913 as follows:

I — A =d (19.23}

REND z|tL) LTI AilF]
) - = A= d =
whee ¥ [ w341} } * [1’ 2 TN o]
(the prime Jeneting denvative, not transposc). The complementary functians can be found

by the method diseussed earlier. In particular, the charmcteristic roods are t he fonnd lrom
the equation

r+1-an —iz

= il . r
—dn, P41 — it 0 [ef. (19, 10)]

lrd +4f - All =

As lor the particular integrals, if the final-demand vector contams nonconstant funcions
of tirne &, (1) amd o3[ 85 s elements, o modification will be needed in the method of

solution, Let us illustrate orth a simplc cxample.

Civen the final-demand vector

— 'l'-lfﬂ _ iy ol
o[- L)
whera &; and p are constants, find the particelar integrals of the dynamic model (19.23).
Using the method of undetermined coefficients, we can try solutions of the form

5, (1} = e, which imphy, of course, that X1 = g e'". In matrix notation, these can be
written as

k=|# ]e““ (15.24)
fia

ard =g [ g; et = [E ﬂ gl ] et [¢f foolnote in Example 1]
Upan substituting inte (19.22) and canceling the common {nonzero} scalar multiplier e,
we abtain

g QA [T-an -a ﬂl_:_fu]

O o] #: -ty T [Hz] |

ar

p4+1 - = el :.5-1. 1935
[—ﬂsi ﬂ+‘—ﬂzz][ﬁz] [ 2 | [ ]'
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1F the Teltraoet martix is nonsingular, we can apply Cramers mle and deteramee e viluds
¢f the coeflicients S to e

Cdlp 4] - A

fi & 19,25
g+ 1 —ag) + ey (19253
fh= A

where A=ip+ 1| —a Mo+ | —ar] — g, The wadetermined coefficients having
thus been determined, we can intreduce these valuss inta the tnal soluton (19241 to obtam
the desired particular intsgrals.

Capital Formation
Another coonomic consideranon that can pive nise to & dymamic input-outpal syséem 1s cap-
ftal formatan, incleding e aecimulation of veotory,

Imthe stati discussion, we only considered the omtput level of each produst necded to
satizty current demand. The needs for inventory accumaulalion or cupilal Bormation were
cither ignored, or subsumed vnder the final-demand vegtor, To bring capiial farmanen
e the apen, lecus o consider—along with an input-cocfBicicont man: 4 = [#;]—2
eapllal-costhcient matox

. e Loz
=l = [cm a:;rz-]

where ¢, denotes the dollar worth of the ith commodity needed by the jth industry as new
capital {gither cquipment or inveotory, depending on the nature of the fib commodily) as o
resudt of an owlpul increment of $1in the jih mduseey, For example, if an increase of $1 in
the output o the soft-donk | fily) industey induces o add 32 worth of bettling equipment
(ith commmdity}, then ¢ = 2. Such a capital cocfficient thus reveals a marginal capital-
cantpet racio of sors, the ratio beme limaled 10 one (ype of capatal (the ith commodityj only.
Like the inpul colficients a;;, the capital coefficients are assumad to he fved The aded 15
for the economy 1o prodoce cach commodity in such quantity as to satisfy mot only the
mput-requirement demand plus be fiaal demand. but alzo the capital- reguirement demond
for i,

Tf lime is covlinuote, output increment 1s indicated by the dervatives xl(e); thus the
autpit of cach industry shawld be sed ar

Iﬂ:f]:E||ILI:J'}+ﬂ'|21’_"{f:|+{'|.|.r;[”-I-E“”-..Ti{l'j + dl“;
e"-'I”}=F!IIIU}+”?ErI{I]I+_"-'1I-'fj{-r'+ﬂ12x;ff}_ + sl

. ot
inU reguremenl capitul reqnicement Aml denand

In matnx nokation, this is expresable by (he equahon
fr=dAe+x" +4
ar

Cx'+{d—1lx=-4 {19.26)
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IFlime iy sfiecrese, the capital requirement in penod rwill be desesl on the omput inere-
metl ¥, — X, —1 (= A%, 1); thus the output levels should be seat

S IO I I U T N R PR B L [ P I LY P e W n o1
f2, an ay || 1. ez | [ Fae = B iy,
v v e— —
inpu! n:yaccmem kil acyuiredecHL Il e gmd

o Py = Ay + 8 — o) —d

By shifling the time subseripns [oraard ot period. and callecting tomas, however we can
write the equation in thy form

{I - |'I - {;I}-rr+| L {:I'r = d|+| {Tg.z?}

The diflerential-equation spsiemt 14 20p a0l the dilfarence-squation system | %275 o
again be solved, of course, by the method of Sew. 192, T alsd gous wiloun saying il rhese
two matrix equations are both extendible w 1he p-ndustry case simply by an appropriute
recefinron of the toaleces and o coresponding change io the dimensicons thereef,

In the preceding, we have discussod bow & dynamic wmput-outpul madel can arse Irosa
such considerations as ime lags and odjwstmenl machanisms, W hen similar onsiderations
are apphed 10 general-equilibrium market models, the taifer will tend e beeome dynamic
in much the swne way, Bul, since the formulation of such models is analaguus in spint to
input-outpul medels, we shall dispense with a formal discussion thereol and merely refer
vou (o The illustrtee cascs in Exercizes |4 3-trand [9.3.7,

EXERCISE 19.2

1. In Example 1, it the final-demand wvector i changed 10 & = [i‘:

particutar sohuthons be? After finding your answers, show that the ansvwers in Example 1
are merely a specil case of these, withyy =l =1
2. {d) Show that {1922} can be writlen more concisely a3

(3 — A =
(6} Of the five symbols used, which are scalars? Yectors? hiatrices?
{c) Wrile the solution for 3 in matrix form, assurning (87 — A} to be nonsingular.
3. {0) Show that (19.25) can be written more conclsely as
led +1 - A)E =4
(5} Which of the five sytbols represent scalars, vectars, and matrices, respeclively?
(1 Write the solution tor F i malrix (arm, assuming (af + [ - 4) to be nonsingular,

], what will the

1 2 121%
IR (T3

oulput model described in (19.2¢), find {g) the particular sofutions; {b) the com |:I'|E:
mentary funciions; and {¢) the definite time paths, assuming inital outputs xy o = &
and a0 = -|-§ {tse fractons, not decimals, in all caloulatlon: )

104 124
4, Clen 4 = I:ﬁ ‘_']j| and & = |:': 07 :| for the discrede-time production-lag mpul-
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I re'
TR 2¢

input-output madel described in [19.23), find {5) the particular inteqrals; € the com-
plemenidary funclions; and () the definlte Lime paths, assuming inital conditons
A0} = 1;’ and x- () = 335. {Lise fractions, not decimals, i all caloulations_}

& Inan meommodity markel, Al Oy and Qo (with (=12, . 7 can be comsidered
as funcbons of the n prices Py, ..., P, and s0 can the excess demand for each
commaodity £, = e — O Assurming nearity, we can wnke

Evmagton M +afr+ o+ @defn
=+l +omafe+ -+ Py

R o
8, Given A= l:“] B ] and d = [E } e the contnuos-tame M tpul-adjustment

||||||||||||||||||||||||||||||||||||||||

Ea=the t @GP - GzPr4 - d Gpfa

of, in malrx notation,

E=-a+ AF

(o} What do these last four symboks stand tor—scalars, vectors, or matriges? What are
rhalr raspactive dimensions?

(b} Censlder all prices §o be Tunctlens of tams, and assume that dP 78t — o F (1 = 1,
2., o) What i3 the econwemic interpretation af ths last set of equations?

§e) White gul the differential equalions showing each o F; fot to be a limear functicn ol
the £ prices.

{1 Show that, if we et P’ denote the 1 < 1 colurmn vector of the derivatives dF; rdl,
and if we ket denote an nos g diagonst matnix, with oy, oz, .o (i0 thal arder)
in the principal diagonal a0 zeros elsewhwre, we can wiite the preceding differertial-
equation system in matiix notation as P’ - u AP = aa.

¥. Foi the ncommodity markel, of Prob. &, the discrete-time version would consisl of 2 set

of difference equations AP =wili [I=12....n, where £ =au+mP, +

2 P.?,z +o ""-'I'?r:Fﬂ,l-

fa) Wiite out the excess-cemand equaton systerm, and showy that it Gan be expressed
in matrix notation as £, = a + AP

[h) Show that the price adjustment equations can be written as P, - F =0k,
wheere a i3 the 0= rnodiagonal matris defined in Proh, &,

(C) Shond that the difference-equation systern of the peeten] discrete-Tame model can
be expressed i the form #rpy — [F + o A = oo

19.4 The Inflation-Unemployment
Model Once More

Havwg ollustowicdd the multisecter type of dynamig sysdems with mpui-gutpat medels, we
shall noww provude an ceomomie cxample of simulEmeous dynamie cquatons 10 the one-
secdur selting. Fer this purpose, the inflatior-unemploymen model, wlecady cncmuntered
Iwive Befiwe o bwo differont guises, can be colbed back b servioe ehee agoin.
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Simultaneous Differential Equations

In S2c. 16.% dhe ioflation- wnermploymen model was presented m the comtinpaus-time
framework via the follwwing three equations:

p=a—-T=fll+gr A, f=00<g=1] {1633)

dn

7 =T 0= f=i) {16.34)
Y e - & ) (16.35)

exce that we have adopied the Greek leter g bere (o replace #t in (16.35) m order 1o anvoid
confuzion with ourearlier usage of the symbe| min the methodelomcal discussionofSce. 192
Ity the treatment of this madel m Sec. 16.5, since we were not yed equipped then 16 deal with
il Enecus dynamic equations., we approached the problem by condensing the mode] ime a
single equation in one variable, That necessitated a quite labonous process of substituions and
elimunations, Mo, th vicw of the coesisience of two given patterns of change in the mode] hw
rand &7 we shall trei the model as one of two simulvaneous diffevential cyquations.

W hen { |6.33) is substituted into ¢he other nwo equations, and the derivitives dx /dr =

xUr) and 4L et = L) written more simply a2 7" and £, the mode] assumes he fom
il - g kU = jle=T
P giw + it = fle=T) % (19.28)

i — fgw + A8 = ko — T — pob

QF, 1N TRATTIX DO,

o= [i-g sgl[x]_[ ja=T .
R 2R a1 I A R
L '

! M
Feom this system, the ime paihs of = and & can be found simullancous]y Then, il desired
we cun derive the p path By using (16.33)

Solution Paths

Tor Fird the particular itkegrals, we can simply scf 7" = LY = 0 (10 make x and L stavion-
ary gvee time} in [ 1228 and sobve for w and L7 In o eaekier chscussion, in (19 14). such
solulions were obtained through matos nversion, bul Cramer's eale can centainly be usad,
oo, Bither way, we can find that

T=pu and E.:%[ﬂ—?'—[l—g}i:] (19.2%

The result that T = u {the equilibium expected rate of inflation equals the rate of mone-
lary expunsion) coincides with ibat reached n S2¢. 19,5, A5 o the ratc of unemployment
L4, we made re anemg 1o find s equiliboum level in dhat seefion T we did (o0 1he basis
of the differenial equation in U given in Exercise 16.3-2), huwever, the answer woukd be no
differont from the £ solution in {19 29)

Turning to the complemeniary functions, which ace based on the trial solutions s2"" and
e’ we can determing o, w, and F from the edweed maltix equation

{ri+1‘rﬂ[:] =0 [fom (19.15)]
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which, i the present cofitexl, takes the Form

[ruu—g; yi: Hm]:[u]
kg FEp | R {

Ter wyoid trivial solutions lor #r and w from this homogeneous sysiem, the determinant of
the cocfficient mamix must be made to vanish; that is, we require

PI+ M =7+ 88+ jil — il + k7 =0 {19.31)

This quadratic squatton, a specific version of the characteristic equaton rf + ayr +
a2 = [, has coefbcients

a =i+ il —g) and oz = &)

And these, as we woukd expect, are precisely the @ and e+ values in {16,377 —a single-
equation version af the prezent model in the variable =. Ax a result. the previous analysts
of the thres cases of charactenishc roots shoubd apply here with equal validity, Among other
cancluzions. we may 1ecall thad, regardless of whether the roots happen 1o e real or cone
plex, the real part of cach ot in the present model toms oot fo be always negative. Thus
the solution paths are aheays convergent,

(19.30)

Find the time paths of ¥ and Lf, given the pammeler values

.3 1
g=1 f=3 and t_E
Sance these parameter values duplicabe thase in Exarmpre 1 in Sec, 14,3, the resulls of the
present analysis can be readily checked against those of the said section.

First, it is masy to datermire that the particuiar Integrals are

A=3

-u'—T=E

- = 141 1
T=u and u=§(a]=ﬁ [Py (19.29] {1932}
The characlenshic squation beirwg
2 3.2
r +2r+3-ﬂ [y c19.31)

the bwm reols U oot be be comples:

1§ 3 ¢ 9 i3,
“*’FE('E*H'E]"E*E'

Substitution of the byvo rools {along with the parameter values) into {19.30) yieldls, respee-
tively, the matrix equations

. 33
(vnlhh_—iandv_I) (19.33)

B N
2V qm| | 3.3,
: ] = [ﬂﬁm n=-3+ Er] (19.34}
- - Y f 1]
R A e
- g g
_E“ +1] ) M fi
: ] = [I’ru:-m f2=—— — —I] (19347
o bt I B o
i 2z 4{1 r}_



612 Pan Five  Dhmamec Amaipsis

Slnce rp and 13 are designed —via {19.31)—=to make the coeflicient matrix singular, each of
the preceding two matrix equations actually containg anly one independent equation,
which can determine only & proporionality refation between the arbitrary constants m and
1. Specifcally, we have

%I,"I - 1my =y and %ﬂ + ikt =13

The complementary functions can, aceordingly, be axpressed as
e || meeh + myet?!
L'Ir - nlE.nI -I-.I"I';-Er”
_ | ettt 4 mpe!

_ g ety 4 MalCos w4+ {my — g )i sin el
- 1ty + Rl Cos w4 {ny — 0 Sin v

] (b (16.24)

i, for reatational simphcity, we deling new arbitrary constants
As=my +m; and Ay =My = malf
it then follows that!

1 ]
ﬂ|+ﬂ1=§{ﬂ5—ﬂaJ {17 —ﬂ:}'f=i{ﬂ5+ Ay

50, using these, and Incomoratng the h and v values of {12.33) into the complementary
lunctlons, wa eénd up wilh

3 3
x; A 6% IH ﬂ.f,smir
=e ¥ 11 3 [ 19.35)
LF. —( A — A 008 —F 4 —{ A + A sin =t
. 3{ 5 — Ag) 3 3{' 5+ Ag) 3

Finally, by combining the particalar integrak in (19.32) with the above complementary
functicns, we can obtain the selution paths of r and UL As may be expected, these pathe
are exaclly the same as these in (16.43} and (16,45) in Se¢. 16.5.

Simultaneous Difference Equations

The simultaneous-equation treatment of the inflation-unerploymemt model in discrek:
time i similat in spiril to the preceding continpous- e discussion, We shall thus merely
#ive the tnghlights,

T This can bre semn from the following:

1

3
1

= gl - &)

Ny + = <01 = 1jmr + %{1 + M2 = llr[lﬂﬂ + Mz —[(m

1 =i = [%{1 — i 1 +F}mz]F = Hlm1 = m2) = 1 + mahy

= %{nﬁ + A [P=-1]
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The modet in questicn. as given in Sec. 18.3, consiss of three equations. twae of which
describe the patterns of chanpe of 7 and £, respectively:

m=ue—T- L +gq7; (1818}
-:Tl'd.-l _.I-Er =|‘I{FI-H"'. [13'19}
Lipgr =4 = —kp — ) (18.20]
Eliminating g, and collecting termz, we con rewrite the model as the dillerence-aquaion
ysiem
1 O o= || -U-dtagy JAm
—ke L+ BE || L 0 “1
7 K
_| Jle-T (19.36)
fla — T — i)
Solution Paths

If stationary equilibeiums exist, the parhcakie solutions uf [19.36) can be eapressed as
T=m =m4 amd UV = L7 = Uy, Substimting & amf 7 intp {1926, ind solving ihe
gystem (by matrix inversion or Cramer's rlep, we¢ oblain

T=u and E=%[II—T—I:|—E}{I] {19.37)

The £ value is the same as whar was Found in See, 153, Ahhough we did nol find 7 in the
lamet secion, the information in Exergise 18,3-2 indicytes that ™ = p, which agrees with
[ 19.37), In fact, you may note, the resuls in (19371 arc alse idenbeal with the mterempo-
ral equiltbrium values oblained 1n the continuwows-time framework in ¢ 19.29),

The search for the complementary funetions, bused this vime onthe mial 2olutions mA°
and nb', inwolves the reducad matrix equation

r m —
fh}+ﬁ.}|:ﬂ:|_{h

oT, inyiew of [ 19 36),

b—(l—j+ g i m] [o
|: —bhg Ml+ﬁk]-|][,,:|—[n] {19.38)

In order to avoid orvial selutons from thes homosreneous syslem. we teyguine
0+ El= (0 + gRe" —[L +gi + {1 = /51 + kb
Hil—Fj+ =0 {15.39)

The nonmalized version of this quadratic cquation s the characteristic equatton & +
a i + 2. = 0, with the same 2, Ml 2» coctlicients as m (15,24} ared 115,23 1n Sec. 18.2.
Consequenthy, the analy=is of the three cases ol characteristic roors undertaken in that
siition showhd equally apply here.

For cach root, &, 119.38] supplies us with 3 specific proporionality relation between
the arbitrary oomsiants e and i, . and these enable us 1 link the arbitracy constants in the
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camplementary function {or L 1o these in the complementary function for . Then, by
cambming (ke comptementary funetions and the parl icular selutions, we can get the bimg
paths of 7 amd L

EXERCISE 12.4

1. Yerify (19.29) by using Cramer's ne.

2. Yerity that the same progportionality relation between oy 2nd 71 ermerges whether we
use fhe first or the saoond equation in Che system (19.34).

3. Find the tirme paths (general solutions) of 3 and 1, given,

1 1
=- -2+ =
P=g T3
. :IE{F -
.
b= E'h-: £}
o, Firwl the tirme paths (general solutions) of  and U, given:
1 1 1
{ﬂ:' H=E_3Uﬂ+§”t [b}l I|:]'I|-=ll1l——llﬂ_||'|+:|'i'|
1 1
-1 =1 = E{H’_It:' M — T = :{Pr--‘f[:'
Viar — U =—(1 - ) gt = Uy = =l = g}

19.5 Two-Variable Phase Diagrams

The preceding sections have Jealt with the grosnitadive selutions af linedr dynonic syslenss,
Irt the peasent sevtin, we shall disuuss 1he guotieive-grepin (phase-dtapram) analysis of
a momilacerr differential-vguection syslam, More specifically, o atention will be tneused on
the first=order diferential-cguation syslem m oo variables, inthe general form of

s = )

Fit) = gir v
Motz that the tie derrvadives 7141 and 21 1 ) depend anly on x and v and (hat the variable |
does mol enter into 1he fand ¢ functions as 2 seperate avnunent This feature, which makes
the SyRlenl 30 siitomesig s1slenr, J5 3 prerequisite for the application of Lhe phase-diagram
techmique.’

The two-vaniable phase diageam. ke the one-variable vorson m See. 156,18 lirited in
that it can answer only qualitative guestions—thuse concerning 1he locarion and rhe
dynamic stability of the imeriemporal squilibeiyris). But, again hke the one-variable
veriimg, it has the compensating advantages of being able to handle tonlinear sysiems
cornfortably 2z linear ones and to address problems couchied in terms of gznera] funciions
as readily a8 those in e of specific ongs,

TIn the pne-vanable phase diageam inlroduced edrlier Ino 5ec. 5.6, the equation dyidt = Hy] is alsa
resircled to be amtonomaus, being Ferbiskden b have the vanalbe £ as an eaplicit argument in the
Function £



Chapter 1% SDmewdtane e Qifnamtnl Pyuanons erd Defiseme: Fuyranem, €15

The Phase Space

When construciing the one-vanable phase diagram (Fig. 153} lor the (autonomous) diller-
enmal equation dv/ift = f{r). wesimply ploned dyfde aminst 7 on Lhe 1w 2x25 10 3 lwo-
diersensional phase space, Now ihal the somber ol varables i donubfed, bowever, how can
we manage [0 mest the apparent need for more axes” The answeer. torienately, iz that the
Taspace 1s all we necd.

To see why thes 15 feasibtde, observe that the mmast cruetal sk of phase-diagram con-
sicuciion 15 [0 detennine the direction of iovement of the vaniablefs) over iime. Lt is this in-
fornation, a5 embodicd in the arrowheads in Fag. 153, that cnables s vo derive the fina
qualitateee wfevences. boy the degwing of the g anmowheads, only tea things are reguirel:
i 1Y a demarcation line—call it dhe “dvfdr = 0" line—that provides the locale for any
prospeclive equibbriumis) and, more important ly, scparates the phase space inta two Te-
s1ons, ane chagacterized bw v fdt = 0 and the other by dpfde < 0 amd (2 a real line oo
which the increases amd decreases of vthat are imphied by army nonzero walues of 21/'oft can
be indicated. In Fig. 153, the demarcation line cited in itean | iz {ound in the harizomal
axas, Bur that axs acmially also serves as the real Ime cited in dlem 2, Thas means that the
vertical axis, for dv/di ., cun ateally be groen up without loss, provkbed we fake core o
distinguizh berween the duvfdr = 1 region and the dyfde = O sepin—siiy, by labeling the
former witly w plus sign, ond the lafer with a s signe This dispensabdity of one aas s
whurt makey feasible the placemment 61 a two-vanable phase digpmm modbe 2-spoce. We nowe
nced e eeal hnes instedd ol one, But this 15 avtomatically ahen care of by the siandard «
wnd ¥ aacs of a two-dimensional diagrem. We now also nesd fon demarcaton bnes
for Cimves 1. ome Fat xSt = 0 and the clhet loc v/ dt = 0. Buol ihese are bodh graphable
in g wo-dirsensiongl phase space- And once these are drawn, iU would ool be dillicull
deenk: which sigdes of these ines or curves showuld be morked vath plus and minos g,
Tespooayvrly.

The Demarcation Curves
Girven ihe follewing awononiows differendiz]-couztion sy-tem

¥ = fiv, o

, {1%.40}
¥ =gl

where x" and ¥ are short for ihe time derivatives <) and ¥, respectively, the e
dernarcation curves—to be denoted by 5" = 0 ad o7 = O—igquesent the grapls of the
twnr equations

fieovk=0 |0 = urve] (19.41)
gl pl=0 [ =0cure) (19.42)

If the specific form of the f funcaor is knowen, (194 E) can be sobeed for ) in terms of ¢ and
the solution plotted in the k- plane as the £ = O curve. Even If not, however, we can
nonetheless resort w0 the implicil-funcrion rule aod aseertain the slope of the 5" = 0 curvy
10 be

y dffie ]

= — = - ©ouk i) 19243
AR Rl SR (19.43)
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FIGURE 121

| A

As lonp e the signs of the partizl derivatives [ and £, (2 U) are know, 2 qualitative clue
1 1he slope of e ¥* = 0 curve iy svailable from (19.43). By the same token, ihe shipe of
the ' = W curve can be inferred from the demvanye
dy >
i B T (19.44)
Al s B
Tor a more concrele lustration. en ws assomy that
feelt f=0 m=0 ad gl (1945)
Then bath the ' = 9 and +" = 0 curves will be positively sloped. 1P we Burther assume tha

—% . [x" = U curve steeper that ) = [ cuive]

¥ &

lhen we 1may encounter a <ilalion such ax thal shown o Fig 19,0 Note thar the dernare-
lion lines are now possibly curved. Nute, also, that they are now no longer required 10
ciincide with the axse,

The wn demarcation curves, ntersiecting al point £, divide the phase space into [owr
distinct regtons, labeled T through 1% Poine £, where x and v are bath stabonary
{v" = ¢ =1, egpresents the intertemporal equilibium of the systemn. A1 any othet pednt.
hoswaver, either ¥ or y for buthh would be chamging over tiine. i directions dictated by the
signs of the ime dervalives x° and ' at that potnt In the present instance, we happen 1o
have ' = O{x" = 0w the loft {righi) of ithe v* = 0 enrve; hence the plus {minue) signs on
the left [right} of that curve, These sipns are based on ihe fact that

"';i =foeh (b {19.46) and {19.45)] (19.46}
x
which implics that, 25 we mwrve continualty from west to cast in the phase space (as x in-
creases). X undergoes o steady decrease, so that the sign of x* must pass throngh thiee
stapea, i the onder +, B, —. Analogously, the Jervative

iy

% =g <D [oy(19.40) and (19.45)] (19.47)

iy
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imphys dhat, 32 v mowe comtnually from south o notth {25 v increasgs), ¥ sicadily
decrenses, so that the sipn of »" must pass throwph three stapes, in the order +, &, —. Thuy
wit e b o appen] the plus s below, and the mmey sizng above, the 1° =€) ¢curve in
Fig. 121

O the bases of these plus and minus sizns, @ sot of directional arrows can now be drawn
to itdice che ineertemporal movement of ¢ and p For gay point in region 1, 2" and p° e
both megative. Hence 1 oand y must both deerease over tme, prsducing 3 westwiard move-
renl [or o, Aokt & xowthwerd moecmcnt for P, As endicaled byt Twd arrows o eepiom [,
@iven an thihial point tocaied 1n region 1, the intarlemporal movement most be in the gen-
eral southwestward direcaen, The exact opposite is true in region [1, where x" and ¥ are
bodh positive, so thal borte (Be s and » vanables rmust ncredse oeer ime In contzast, 37 and
¥ have diflerent signs i region [L. With &* positive and 17 negative, ¥ should mowve sy
v and v soutinaand, And eegion 1V displays a tendenicy exacdy opposite o region 11

Streamlines

For a betler grasp ol the impliations of the ditechonal arsows, we can skelch a series of
sargeartfings 10 the phase diagram. Alse referred 1o a5 phase drafecaaries (oF frgfeciories Tor
shocl) or plusse paths. these streamlines serve 1o map oul the dynamic movement of the
aystent From aty conceivable ingl point, & Few of these are ol lusivated n Fig, 192, which
reprochizes the & = 0 and ¥ = [ curves in Fig 19.1. Since every poant m the phase spacs
must be tocatled on one sireamline or another, there should cxist anoipfnite number of
siveenlings., all of which conform i the dasetiong| requirements inposed by the 3y arrows
in @very region. For depicting the general qualitative character of the phase diagram, how-
ever, 1 few representative streamlings showld normally suffice.

Several Teanires may be noted about the sircambaes i Frg, 19,2, Firgt, gl of then hyp-
pen o leadd toward poimt £, This makes £ a smble (kere, glabally stable} imertemporal equi-
libriwm. Later, we shall encounter other types of streamline configurations, Second. while
some sireamlines never venture bevond a siple region [such as the one passing throwgh
point A}, others may cross over from one region mio anodher (such as these passing thoough
# and O} Third, where g sircamline crmses oven, it must kave cither an mbnil: slope
jcrossang the x' = 0 curve) or a 7er slope dcressing the ¥ = curve), Thig 15 due 10 the

R
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fact Ihat, along the x" = 0(3" = U} curve, x(1) is Slatiomary over (ime, sir the sireamline
st e have any horizontal {vertical) movement while crossing that curve. To onsure chit
these slope requirements ar¢ comsistently met, it would be advisable, as yoon az the demar-
eatvon curves have been gt in place, 10 add a few short vernicaef shewching burs across the
v = 0 curve and a few Aorfzomie! ones across the 1 = 0 curve. as quidelines for the draw-
ing of the streamlines ! Fourth, and last, dithough the sereamlines do explicilly point owl the
directions of mavement of x and ¥ over Bme, they provide no specific information repard-
ing velesily and agceleration, because the phinse disgram does not allew for an weis for ¢
(ime). [t is for chis wason, of conrse, thal streamlines carry the alternative name of phase
paths, as opposed 0 fime paths. The only observaon we can make about velocity is qual-
itative in hature: As we move alonp 3 streamline choser and closer to the " = 04" =)
curve, the velocity of approach in the horizontal (vertical} dircction must progressively
diminish. This is due to the steadv decrease i cthe ghsolute value of the depvative
£ =dx/dr () = dy/de) har ocours s we mowe toward the demareation line on which
x'{v) takes a zorm value,

Types of Equilibrium

Depending on ihe configurations of the streamlines surrounding a particelar intertemporal
equilibrium, thar equilibrium miy fall into e of fowr cawgones: (1] nodes, (2) saddle
paainls, (35 Toci or focuses, and (4} vOrtices or ¥orenes.

A e is an equilibrivm such that all the stream]ines dsociated with it ether flow non-
cyclally woward it Cstable radel or fow soncyclally away (rom 0 (ensiaie node), We
have already encountered a stable node in Fig. 122, An umatable wode [s shown in
Fig. 193a. Nole thal in this particuler illustation, it happens that the streamlines never
cross over from region 6 region. Also, the 1' = 0 ad ¥ = curves happen to be linear,
ail, in f2c1, they theanselves serve 45 streamlines.

A saddle pofnf s an egulibrium with a double persowality-—it 15 stable in somg direc-
tione. bul unstable in others, Mo accurately, with reference 1o the illusiration in
Figr, 1934, a snddle point has cxactly one pair of streamlines- -called the siebfe franchey
of the saddle point—that Aoee directhy and consistently twvard the equilibrium, and exaciby
onc pair of streamlines—the wmsfable branches—that flow directly and consistemly sway
froma it All the ather trjectories head woeard the saddle poing initially but seaner or later
turn away from i1, This double personality, of course. s what inspired the name “sadidle
point™ Since stability is observed only o the stable branches, which are wot reachable asa
maller of course, a sadlle poing is ganarically ¢lassificd 28 i wesrable equilibriom.

The third type of equilibrium, focuy, is one chiractetized by whirling trujeewotics, all of
which either flow cyclically toward it (srable foeus ), or Row cyclically away i il {paste-
Ble foctis). Figure 19, 3¢ illusirates 2 stable focus, with only one streamling caplicitly drawn
in order 10 avedd clurter. What causes the whirling metion to oceur? The answer lids in the
way the " = D and p* = Oouves are positioned. In Fig. 193z, ihe two Jemarcation Gorves
are shoped in such o way that they take furns im blockading the streamline Bowing in a di-
recion presenibed by & particular set of xp arnows, As 3 tesult, the streamling is Frequently
compelled bo crogs orer from one region into another, racing out a spital. Whether we get

" To aid your mernony, note Ihal the sketching bars across the " = 0 curve should be perpendicukir b
the ranrs Semslarly, the skelching bars across the " =0 curvq should be perpencicutor o the p axls.
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a stable focus {as ia the case here) or an unatable one depends on the relative placement of
the: [ demarcaton curves, ot in gither gase, the slipe of the streamline at the crossover
points must still be either infinite {rrossing x* = O} ar zore (crossmg ¥ = D).

Finally, we may have a voriex [or conter), This ix again an cquilibrium sath whirling
strearnbnes, but these sireamlines posr form a fanly of loops (concentne circles or ovals)
orhiting around she equilibrium in a perpetual mooon. Ao cxampls of this 15 given
Fig. 1934, where, again, only g single streambine i2 shesn, Inasmuch 8 this tpe of
equilibring 15 unattamabdc from any imtial position away from peint £, a vortes is auto-
matically ¢lassrfied s an unstabls equilibrium,

All the ilMustratioms in Fig, F9.3 display & untgue equilibriom. When safficient nonlin-
£arity gaists, however, the iwo demarcailon curves may inlersect imore fhan once, therehy
producing multiple equilibia. In tha event, a combination of the previously cited types of
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intertermporal equilibriur may exist in the same phase diggram. Alihough there will then
be moce than four regions to contend with, the underying pranciple of phase-diagram
analysis will remain basically the sme.

Inflation and Monetary Rule a la Obst

As an economks ilhusration of the two-variable phase diagram, we shall present a mode]
due 1o Professor Obst,! which purports 1o show the ineffectiveness of the conventional
thence the need for a new) type of countereychical monetary -policy rube, shen an “inflation
adjusiment mechanism™ is al work. Such a model comrasts with our earher discussion of
infation in that, instead oF sidying the implications of i given rate of monerary expansion,
it looks furiher into the efficacy of two different monetary rulex, cach prescribing a diifer-
ent set of monetary actions o be purswed in the Fface ol various inflationary condibions.
A crucial aszurmphon of the mode] ic the inflation adjustment mechatsm

dp (M, - M,,-) M, )
dp _ —afy o X s, .
i h( 0 (J - h») (1948

Bl

which shows that the effect of an cxcess supply of maoney { M, = A 5 to raise Lhe rale of
inflation g rather than the price level P The clearance of the money markel would hus
ity tod prace stabilidy, bue anly 2 atable cate of inflafon. To facilitate the analysis, the
vecond equality in (19,48} serves o shlt the fogus from the excess supply ol money to the
demand-supply ratio of meney, A7 M, , which we shall denotc by g Om e assumplicn
that M, 33 ditectly propartional 1o the nominal national product PG, we can write

F
= M = kit (o =0
M. M

The rates of mrowlh of the several variables zve then colaied by

dpfdr s 4 o P vt N agyde  dMfdr

I g F o M.
| bor (16 2dp and [10.25]]
=p+tg—m |¢ = @ constam | (1949}

where the lowerase lotlets p, g, and m detote, eespectivily, the cate of infation, the | exoge-
nous) rate of growth ol the real natonal product, and the e ol moneary ¢XpaRgon,

Equationg {19485 and [19.49), a set of two differcnial equanions, can jointly determing
the time paths of 7 and ., il for the (ene baing, s taken to be exogenows. L'sing the sym-
bols p' and o' 1o represent the tima derivatives F{z) and w{), we can express s systen
mare congisely os

Fo=H1 - u}

. (19.50}

g o=(p+q—mmy
t Norman P, Obst, Stabdization Palicy with an Inflation Adjustment Mechandsm_” Quorterly foamel of
Feonomies, May 1978, pp. 355-359. Mo phase diagrams are given in the Obst paper, but they can be
realiy constrisctad frorn the moded,
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Citven thar b iy positive, we can have p' = if aind ooly (17T — 0 =0 Similarly, simce s
abvays positvg, o = O ifand only if p+g —m = 0. Thus the p" = 0 amd " = O donir-
cation curves are assnciated with the equations

[ = curve]
(4 = Dcurve]

w=1 {(19.51)
DP=m—y (19.52)

Mg shown in Flg. 19 4, these plot as o hovizontal Tne aud o vertical line, respective [y aml
vield aunigue equilibrium gt £. The equilibium value g = | meuns that in equilibrium 34,
and M, arc equal, clearing the money market, The fact thar the equilibricem rate of imflabion
i showh g he positive eeflects an maplicit asamption hatw > 4.

Since the ¢ = 0 curve corresponds e the x' = 0 eurve moour provivus discussion, it
should have verlical sketohing bare Awd vhe wther curve showdd have boricrmal ones, From
{ 19,314, we fnd that

vy d
—=—f = and ﬂi =
il 1t g
with the implicaton that a nonthward movemment womoss the p° = O corve pasaes oeugh the
i+ 0, =} sequenoe of signs fur 5, and an castward mwwvement acroess the g = 14 curve, the
§—, O, F seguence of sigas for e’ Thus we abloin the Tour sels ol directional amowes 23
drwam, which generade streamlines {ooly ome of which 15 shoswn} thal oibal commlerelockw e
around point £, Thix, of course, makes £ a vones. Unless the coonomy bappens indbally to
be at £ ot 15 irnpossable b aitatn cquilibiom. Inslead, there wall be never-censimg Mueluation.
The: precedmg conelugion is, bovever the consequence ol an exogenony e ¢ mone-
tury cxpansion, What il we aow endogenize e by adoping an ami-inflationary monetary
rule? The "comeentional™ monetary rule would call ter pearing (he rate of moretary expon-
wgon negalively 1o the rate of mbation:

e = 1 {1953}

m=wmipr mipl=0  [eowventional menciary role]  (19.54)
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Such a rule would modify the sceond equation i (19.50) to
f=[p+q —miphle (19.55)
and alwer (19,52 10
p=mipl—g  [u' =1 curv; wnder conventional monetary nule] (19,56

{(riven that e 2 is monstonic, tere exists oaly ong value of p—say, 7 —that can salisfy
this equation. Hence the new g = {1 curve must still cmérge as a vertical sicaight line.
although with a different horizomal imercept iy = mipi ) — g. Moreover, from {1255}, we
findl that

‘% (-l =0 [by{19.54)

which 1§ guifiavef no different from e derivative m (1533 [ follows that the divec-
tioneLl aroomes must also remain as they are in Fig. 1944, Tn shon, we would end ap with 2
pormex 3% before.

Tl allemative monctary role proposcd by Obst s o gear v to the rave of clernge (rathur
than ke feved ol (ke rate of inBation.

m=mip')  wi{ph <0 Julerolive mondary rule]  (19.57)

Under this rule, [19.35]1 and { [9-36) will beceme, respectvely,
w=[p+aq-—mpl|u (19.58)
p=mip)—g  [n' =0 creunder altemativ: mancaary rule|  (19.59)

This time the g = ¢ ewrve would begome upward-slopmg, For, differentiating (19.5%) with
respect te w. via the chain nule, we have
d, . L oap _y
o wp =tk > b [y (19500
)t i
o, by the Inverse-Tunction rule, dyefrfp the slope of the ¢ = @ cruve—is also posilive.
This teew situation is illusteated in Fiy. 1945, where, for sinplicity, the g = 0 curve i
drawn a5 2 sicaigh line, with an arbitracily assigned slope.” Thespite the shipu change, the
pariial denvatrye
F:? [
_ﬁ =p =0 [feomq19.58))
dp
is unchanged from {19.53), &0 the p areows shoold Tetwin then orginal otieoration in
Fig. 19.da. The streamlings {only one of which 15 shown] will now teard mwordly woward
the equiltbtium at = | and F=m(U) — g, where s denotes wlp') evahated at
g = {), Thus the alternative monetacy rule is seemn 10-be capably of converiing a vertex into
3 stable Foous, therty making possible the asmpiotic elimmation of (e perpewal Buei-
abyon in the rate of inflation. [ndeed, with o sufficiently Aul 12’ = 0 curve, it 15 even passible
t¢ turn the vortex mio 4 satde node,

* The slope is inversely praportisna to the absohute value of m'{ ') The mare sensitively the rale of
manetary expansion mis made to responed e the rate of thange of the rate of inflation @, the flatier
e pr' = G curve wall be an Fig, 1940,
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EXERCLAE 19.5

1. $how that the beo-varfable phase diagram can ako ba used, it the model consists of a
single second-order differential equation, y7(t) = f{¥", ), instead of fwo flrstorder
equalions.

2. The phos and minus signs appended bo bhe b sides of the «° = G and y' = Q0 curves n
Fig. 19,1 ars based on the partial derivatives 8232 and 3y’ /3y, respectively. Can the
sama conclusions e obtaired Ikam the derivaties 36y and ay"/ax?

3. Wsing Flg. 19.2, verily that if a streamlime does not heve an infinite (zera} slope when
eresdng the « = O(y' = 0) curve, it will necessarily wiolate the diractional restrictions
imposed Gy Hhe xpr amows.

4. As special cases of the diferenteal equation system (19,40, assume that
(m (=1 fip = 0 g=> and g =0
(B f, =1 el g.<0 and g.=0
For each cage, corstruct an appropriate phase dagram, draw the streamilings, and
cletermine the nature of the equilitrium,

5. (o) Showr that it is possible 1o praduce either 2 stable node or a stable focus froen the

differential-gquathsn systetn (19.40], if
[« b0 <0 and ge<0

() What special feature(s) in your phase-chag ram constrsction are msponsitile for the
difference in the outcomes [nods versus focus)?

6. With reference to the Cbst model, vedfy that IT the pesithvaly sloped g = 0 curve In
Fig. 19.4b & made sufficiently. Aat, the strearlines, although still characterized by
crossovers, will converge to the equilibiom m the mgnner of & node rather than a
focus.

19.6 Linearization of a Nonlinear
Differential-Equation System

Aanther qualitatree techinique of aualyrng a seafinear differential-equation system 1s (o
draw inferences from the finecr aoyrarimadion e thl sysoem, e devived Trom the Taylor
expansion of the yiven sysrem around ts eyeilibrium.’ We learned in Sec. 9.5 thata linear
{or aven a higher-rder polynomial) approyimation &0 an arbitcary function gdxy can give
us the exacl value of gdx) at the peinl of expansion, but will entail progressively larger
crrers of approsicnation as we move Garther gway Frony the poitl of expansion, The same 15
brse qf the linegr apywoximation f a nonlinear spstem. Al the point of expansion—here, the
equilibrium poine £---the Jinear approvimation can pinpoint exaclly the same equibbrium
a5 the original nonlinear sysicn, And in a sufbeiently small neighborhood of £. the linear
approximaton should bave the same gewcral streamline configuration as the original sys-
tem. As long as we are willing to conbioe our seabilily inleeences to the ontediae negh-
borhood of the cquilibrium, there forc, the lnear approx imation coutd serve as an adequate
source of informaiion. Such analysis, referred wo as el siability amalfvsis, can be used

Fin the case of multiphe equilibea, each equilibrium eequires a separate linear ppensimation,
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either by itself, or as a supplement o the phase- diagram analysis. We shall deal with the
lwi-vanable case only.

Taylor Expansion and Linearization
Given un arbiteary [successively diffarentiable) one-vaniable function gx), the Taylot
ExTnwion around a point xy gives the serics

$"{x0}
il

$lry= i) + 4 — g+ fx =gl +--

M)

#!

+ ix —x"+ Ry

where a polynomial invelving various powets of {x — o) appears on the nght. A similar
stractuee characterizes the Taybor expansion of'a function of twe variables /v, vi around
any point (k. po). With two variables o the picture, hewever, the resulting palynomal
would comprise variows powers oFp — ) as well as (¥ — xg)—in fact, also the producis
ol (hese Do ehpresions,

Fix, ¥l = flag, 1) + S0, Fadl = xob + fr{xo, 1)y — Fe)
l _ .
+ 35 [ fealias Jollx — wl 4 2 fidwm mlE — )y — v}
+ fulse bl ¥ = R+ A (19.60)

Mote chat the coefficients of the (r — x3b and [» — 1) espressions are pow the pardial
derivanves of £ all evaluared at the expatesion point {Xo. o).

From the Taylot series of a function, the linear approximation—or fwearization for
short—is oblained by simply dropping all terros of urder higher than one. Thus, for the one-
vaniable case, the lincarization is the following bingar funetion of a-

Degh + dixgr — )
Sirnilarly, the lincarization of {19.60) is the Fallowing linear fenction of x and v
Slra yat + filrn e — xab+ fi{xa, 3y — )

Besides, by substining the function symbol g for £ in this resnlt, e can alsg et the cor-
responding lmeavization of ¢f v ) [t fallows thay, piven the nonlincar svsicm

T .
€S (19.61)
¥ =gx n
its lincarization around the cxpansion point {x,. y) cin be written as
X' = fln, yob 4 felr, ¥l — sl 4 f e 10 — ol (19:62)

_Llr = g{_t'u., M)+ Bl I_!"I'_I.:“.-' —xpl+ Hv[-rl'lr Yoy — .]"[ﬂ

If the specific forms of the Iimctions F and o are koown, then flx. mb Gl b
fr (g, ¥e) and their countcrpars for the g funchon <an all be assigoed speethic values arv
the linga sygbem (19.62) solved quantitatively. However, even if the fand 2 limetions are
given in genergl forms, qualitalive analysds is sl pessible. prisided anly that the signs of
Fro foo Zooand g, arc ascertainable.
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The Raduced Linearization

For putpeses of local stabiliey analysis. the lineardzation (19.62) can be put inte a simpler
form. First, since our point of expansion is 1o be the equilibriom peioe (€, 7, we should re-
place Cxi ) by (x. 7). More substanively, sineé Al the squilibriun pomt we have
k"= 3" =1 by definition, it fallows that

S, pi=gix.¥1=0  [by (1961}

so1he first teem on the vight side of each equation i (19,62} can be dropped. Makang these
changes, then multiplying oot the remaimang terms on the nght of {1%.62) and rearmanging,
e nbiain anwdher version of the Imeanzalion:

X = flX.Fle — flF. Py = — foX, Fie - Lk )y
P AR TR - TR = g V)T - g F P
Mote that, it [ 19,63}, sach tzrnon the right of the equals sims represents a conseant. We

tock the trouble to separate out Ihese conslant terms so thal we can now Jdrop them all. (o
get 10 the reduced equations of the lmearization, The resuit, which may be wrilten in mairix

WHation as
£ _[FH ! | _ |0
G112 2L [)-[s] ase

coustikes the reduced finearization of (19,611 Masmuch s gualitanse analysis depends
exclusively on the knowledge of the chiractimshc roots. whach, 0 turn, bonge enly on
the reduced equations of 4 system, {1%.64] is all we oeed for the desired local sabiliey
amalysis.

{Goimg a step firther, it may be ohserved that the anly distinguishing property of the
reduced linearization lies in the matria of partial denvatives- the Jacobian mates ol the
nonlinear system {1960 —evaluated al the equalibowm (2, ¥ Henes, i the fing | analyyis,
the local stabiliby ar instaba ity of the equalthrum (= predicaded solely on the makeap of the
said Jacobian. For notational convenience in the ensuing discassivn, we shall denote The
Jatoban eviluzted at the eguilibawm by Jypnd iy clemenls by &, b, o and o

_[% Jl-} _[ﬂ f?]
Je = = 19.65
g [3.': Erlzm ¢ l; )

It will be assumed that the two differentia) equations arg funcoonally independkent. Then we
shall always have |/:] # 0. {For some cases where |/g| = 1, 5ozt Baervize 19.6-d.}

(19.43)

Local Stability Analysis
According to (12.16), and using (19.63), the charactenistic equation of the reduced
linearizaiion should be

r-a —b

e 4F_d‘=}‘ —{a + d)r + {od — by =0

Ti i3 clesr that the charactensic roois depend entically on the expressions (2 + &} and
{ad — bc). The latter is merely the determinani of the Jacobian in (19.65):

ad — be = ||
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And the Tormer, representing the st of the principal-diagonal elemenis of thatl Jacobian,
i5 called the dreece of Je, symbaolized by dr Jg:

a+d=1mJ
Accordinghy, the chareteristic ricds can be expressed as
R T L
P

The: relative mapnitudes of (te Sz )% and 4].7¢ | will detesming whether the (s s are real
orconmmples, thal 5, whether the (ime paths of x el ¥ are sleady or Huetuating, To check the
dynamic stability of equilibrinm, on the other kand, we need to ascedtam ihe algehrne signs
ol (he two roots. For that purpose, 1the following two relaicnships will prove 1 be most
helpful;

Fl.Fa=

Mt =i (19.66)

e = e [¢f. (16.5) and (16.6)] (19.67)
Case 1 {ir f.) > 4|4,| Ln this case, the roots are real and distined, and oo fuctaation
possible. Henoe the equilibrivm can be either a node or a saddle pormi, but never a forus or
vortex, In view that» 2 o, there exist three distines possibalinies of sign combination: both
roots negative, both roots positive, and two rowts with opposile signs,’ Taking into apcount

the informarion in [19,66) and {19.67), these three possibilities are characterized hy:

{1 relrp=0 = L =kof=0
i) » =00 = [Hl=0of>0
i) rzr <l = el <tinde S0

Under Resssibhilicy £, with both toaes negative, both complementary functions ¥, and ¥, tend
10 2er0 4% f becomes infinite. The equilibrium is thus a slabke mule. The apposile s iTue
under Bossibility fi, which describes an unstable aode., In cowirast, with two roors af
oppusite signs, Posaibility i yields a saddle point,

To see this last case more cleadly, recall that ihe complementary lunctions of the two
variables under Casz 1 iake ihe general from

.=, 4 45"
W=k A e A

where the arbitrary consiants 4; and A3 are 1o be Jeiermined from ibe inital conditions. IF
the initial condilions are such that 4y = 1, the positive eoid £y will drop oat of the picture,
lcaving, i tor the negative root v 10 make the equilibrium sizble. Such initial conditions per-
i3in t the points locaied on the stable branches of the wubdle peint, On the other hand. if
the initial condilions are such that 43 = I, the nopative oot rz will varish from the scene.
leaving if 1o the positive oot £ to make the equilibrium unsiable. Such inifial conditions
selate 1o the points [ying on the ynstable brunches. Inasenuch as all the other initial conds-
tons also mvolve A) =€ 0, they must all zive ose e divergent complamentary functions,
100, Thus Possibibily £ vields a saddle poim.

1 Sinece we have ruled ol [fpj = 0, neoioot can take & 2ero walee.
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Cast 2000 L)% me AWl A the vt ave ecpeatod in this case, snly T possibilitics ol s

COMDINALLQN CAT 3Ii%e:
i e clhnp el = g 20wy <0

fl o=l =0 = Sy =i =0
These two possibidities are mere duplicares of Possibilivies fand 7, Thus they poing t 2
stable poxle and an unstable node, mespectively:

Case 3 (t0 JeF < AWl This Hee, with comples oo & £ wf, oyelical Aucimation i pre-
sent. and »e must encounter arther a focus or 2 vortes. On the basis of {14.600 and (1967,
we have in the present case

trde =rp—ta=[h+uir+k—it =
|| = FiFs = (h — ik — vy = A" + o

Thus trSfp has o take the same sign as &, whereas | e} 1s invanably positive. Consequently,
Ihere are thee possibde Gurcomss:

e =gy <
EAe| = 001 S o= [
|| = =0

[wf] A b =
(] A=} =

{rirf) A=0 =

These are assocaled, respeclively. with damped fuctuation. sxplosie Huctuation, god
kil fluciuation. {n other word, Possibilimy o implies 1 stahbe focus: Fossihidinye o7, an
utskable focws; and Possibiloy cidi, o vortex.

The comclusions fram the procading discussion are summartzed in Tabke 14 ] w0 Gt
tate Yualikative inlerences froan Lhe sigms of [ | and i Sy . Three featares of 1he table are
espey ally notowarthy, Firer, u oegative |0 | s exclusiveby ned G i sabllepoint tipe of
equilibrium. This suppests that 1g] = 0 oo mecessary-and-sullicient condigon for a
samddle pavint. Sewwnd, d acto value far iy oceurs only under two circumstances  when
there i% 4 saddie peint oF 4 vores. These tvo cireunsiances ans, however, Jisiinguishably
Fromm each oiher by The sign of [e ], Accordingly, a T2 Sy coupled with apositive ||
i5 necessary-and-sufficienr for a vortex. Third, winile a negative sign for 1 Jy 15 necessary
for dynarmic stabilivg. i s mer 2uiicicnt, oo account of the possitilitg ol a saddl; peoin.

Sign of sgr of Type of

Case 1A tr); EquilErium
1.4 LY = ), + - Stable node

+ + Linslabile ronhe

- +. 8 - Saddle point
2.4 LY = ) + - Stable node

+ + Linstakle e
1 ¥ < 41 + - Stable focus

+ + Lirstabsle foous

+ LF Yomex
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Example 1

Example 2

Example 3

Mewertheless, when a negalive ir Jg 15 accompanied by a postfive |Ag[. we do hiwe g
negessiry-and-suflicient condition for dynamic stabilicy.

The discusshim Jending & e summary in Takde 131 has been conducted m the context
of 2 lirezar apyproxinmation to a weadnear system. However, the contents of that table are ob-
vicnasly applicable also to the qualiative analyzis of 3 systee that is fineor to begin with. Tn
the latter case, the elemonts o 1he Jacobian matrix will be a sat of given cangtants, so there
is mu ocvd w0 evaluale them a the equilibrim. Since there s na approsimation prsess
nvalved, the stabality inferences will no longer be “logal™ in ngture but will have global
winldidy,

Analyze the local stabiliby of the nonlinear system

¥=Ilxpl=ay-2

V=ginym2ioy Y20

First, setting &' = ' = 0, and noting the rewwregativity of x and ¥, we lind & single ecpalib-
rium EALEE ¥i = (1, 23, Then, by laking Lhe partial derivatives of ¥ and ¥, and evalualing
them at £ we obtain

e=lar aley=[3 10712 ]
ol wlgn 12 an 41

Since |],| = —4 is negrtive, we can immediately conclude thal the equilibrium s locally a
sacldle point.
Mcle thal wwhile U first rowe of Ehe Jacoebian matnx originally cantains the variables y and

%, the second row does not. The reason for e difference is that the second equation in the
given systern is originally linear, and requires no Enearization.

Given the ronlinear system

¥Fapl-y

y=1-¥%
we can, by setting = = ¢ = Q, find bwo equilibrium pointst £ =1, 1) and E; =({-1, 1)
Thus we need two separate linearzations. Bvaluating the |acebian [E; ::] al the bwo

eqquilibriums in tum, we otdain

2 -1 -7 -1
ff'=[u —I] and J“:[ p —‘I]
The first Gf these has a negative determinany; thus €4 = (1, 1} 15 [ocally a saddbke polnt. From

the 5ﬁ.‘md; we find that ”.Fil =2 -ﬂl‘"d ty .f“ = —3- HEﬂ':'E_- I:I:'F’Tahl'& IgiL -E.E' ={._1.I-1} i
Igcally a stable node unwder Case 1.

Dhoes the liwear system
X =x- ¥+ K

y=xtyts

prssess a stable equilibrium? To answer such a qualitative question, we can sirnply corcen-
rate on U reduced equations and iginore the constants 2 and 4 allogether. A3 may be

| 1 ] has as its alerments four constants.

. . 1
expected from & linsar systerm, the Jacobian [
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Inasmuch g3 its determinant and trace are both equal to 2, the equilibrium falk under
Case 3 and is an unslable focus. Note that this conclusion 15 reached withaut having o solve
for the equilibnum, Nole, alsa, that the conclusion iz in this case globaly valid.

Analyze the local stability of the Obst model (19.50),
F=h{l-n
p'={p+q—mhu

assuming thal the rate of monetary expanséon i is exogenaus {ro monetary rule is foi-
lowed}. According Lo Fig. 19.4a, the equilibivm of this model securs at £ = (R &) =
{mr =g, 1), The |acobian matrix evaluated at s

A

i dp A | [0 -h _fo -
: di ﬁi Y PRG-I o 1 0

I e

E

Since )J,| =t =0, and wr |, = 0, Table 13,7 indicates that the equiliiium is locally 2 vor-
tex This conclusion is consstent with that of the phase-diagram anabysis in Sec, 19,5,

Analy2e the local stabdlily of the Obst model, asuming that the allernative monetary e it
as lollows:

p=h{l-u) [From £19.503]
p=lprg-mip)la [from (19.58)]

Male that since & & fungtion of p, the function m(p] is in the present model also #
function of u. Thus we have to apply the product rule in finding Jr:” /3. At the equilibrium
E where f = =0, wehave w =1 and P=mi0) - 4. The [acobian evahmted 2t £ is,
therefore,

_[n —h ] _[u —h }
=l prg-miph-mipY-toa |, =1 mriow

where m{0) is negatve by {19357, According to Table 191, with |fj = h>4@ and
[, = m{0)h < 0, we 2n have either a stable focus o 3 stable node, depending on the
relatlve magnitudes of (br {EF and 4 |f, |. To be speciic, the langer the absolute vakse of the
gerivative m'(0), the karger the absolute value of tr f, will be and the more likely (tr 3.3 wall
exgead 4)),, to produce a stable node instead of 2 stable bocus. This concluston is again
consistent with what we kearmed from the phase-diagram analysis.

EXERCISE 19.6

1. Anatyre the local stabllity of each of the following ronlinear gysteems:
oy X' =¢" -1 (€) a'=1-¢t
¥ = e y=5x—y
B r = x4 2y () % =3+ 3ty 4y
¥=xl 4y ¥ =l 4 )
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Z, Usa Table 19.1 1o determine the type of equilibium a nonlinear systern would hiave lo-
cally, glven that:

o) =0 f=0 g=0 and g,=0
i#) k=0 f=0 g=0 and g,=0
() <0 L0 Q<0G and  gy<l
Are your rezults consistent with your answers to Exercises 1%.5-4 and 19.5-57

3. Analyze the locat stability of the Obst radel, assurning that the cormentlanal monetary
rub is followad.

4. The following twe systems hoth possess zerowvalued |acobians, Construct a phase
ciagram for each, and deduce the focations of 2l the equilibriums that exist:

() W= x4y b k' =@
o=y p=6



Chapter 20

Optimal Control Theory

Al the end of Chap. 13, we referred to dynamic optitiization as a oype of problem we were
nut ready 1o tackke because we did nin yet bave the tools of dynamic analysis such as
differential cquations, Now that we have acquired such teels, we can Anally ey 3 taste of
dynaEmmic opumizaion.

The classical approach to dynamic oplimizarion 15 called the catouius of vardafions. lo
the Jaler development of this mothudobogy, however, 3 more power{ul approach known as
optimil cotieol theory has, for the most part, supplarted the caleulus of variatons. For this
reason, v shall, in this chapter, confing our attention to optimal conirol theory, explaimng
s basic namee, inueducing the major solution tool called We sucimum pritciple, and
illustrating its use in some clementary economic models.”

20.1 The Nature of Optimal Control

In slatie: optirmizatiot, the Gusk is to find a single value for each choict variable, such that a
stated objectve Funciion will be mazimized or minimized, as ihe case may be. Such a prob-
Temn is devieid of 4 time dimension, In conimst, time enters explicidy aml promisently n 2
dynaric optimization problem. Tn such a problerm, we will always have in mind a planning
period, say [rom an imilial tine: + = 0 10 & kettninal fne £ = 7. and oy to find the best
course of action to take during that entire period, Thus the soluton for any vanable wll
take: the forim of wnt 4 single value, bul 2 complete nime path,

Suppose the problem is one of profit maxmuzaton over 2 time pericd. Al any point ol
time ¢, we have to choose the vahe of some contraf varfable, w(t), which wall then affee
ihe value af somc sfade variable, pir), via 2 so-called equetion of sesion, Inturm, pir) sall
determine the profit mit). Since our abjective is (o maximize Lhe profit over the entire pe-
riod, the objective fitncuion should take the form of a definite imegral of 7 rom £ =1 tw
§ = T. To be complete, the problem lso specifies the initial value of the state variahle v,

1 For a more comphele treament of aplimat control theory (s well 25 “calculus of vanarona™), dee
student is nefermed to Clements of Dysmmuic Optémizotine by Alpha €, Chiang, McGraw-Hil, Mew Yok,
1992, rowr putdished by Waeland Press, In, Prospect Heights, IBnois. This chapler draws beavily
Irom malkerial in this oted boak.

LN
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i, aod e terminal valoe of p, T, o alternatively, the range of values that (T 1
allowed 10 1ake,

Taking into account the preceding, we can siate the simplest problem of optimal conirol
R

r
Mlaxirmnee fFU,_v,If}dI
i

A .

subject fo d_i’ = = ¢, . u) (20.1)
MOl=4  WT) free

and mith el foralls efih T

The first line of {H1.17], the objechive function, 1s an imlegral whose infegramd £17, p, &}
stipulates how the choice of the control variable # al time ¢, along with the resulting ¥ at
tre £, determings our object of mannnazation at £, The second ling is the eguation of ma-
tion for the state vartable . What this equation does is to provide the mechanizm wherchy
our choice of controd vanable « can be translaied into a specific paben uf movement of e
siate variable p, Nosmally, the linkage berween & and p cam he adequately descnbesd by a
first-order differential equation »' = fir, v. o). However, i it happens that the pattermn of
chanpe of the state variable requires a stcond-order didferential equatkon, then we mnst
tracesforny this equation iee a pair of fivsi-order differential cquations. In that case an addi-
tional state variable will be mtrgduced Both the integrand Fand the equation of mation are
asswned to be continueus in all their arpuments and possess contineous first-grder partial
derivatives with respect 1o the staie vamahle ¥ and the timg vanahle 2, bul not necessarty the
comirol variable L In the third ling, we indicate that the imitial state, the valot of v ot = 10,
i5 a constant 4, but the terminal state wf Thas left onrestircted, Finally, che foueth line indi-
cales that the permussibie chowees of u are limited 1o 4 conteol region £ 10 may happen, of
conrse, that wir) 15 not resirieted.

lllustration: A Simple Macroeconomic Madel

Consider an econowmy that produces mogne ¥ using capital & and a fixed amount of laber £,
according lo the production Runclion

¥ = Fi&, L)

Furtlee, nutput is used either By consumption C o1 for invesiment £ T we ignore the prob-
lem of depreciation, then

_dK
oy
Lr other words, imeestment 15 the change in capital stock over e Thus we can 4050 weile
investment as
K
I-I’—C-F[K,L]—C:‘i—
a1

which gives ns a first-prder differential cquation in the variatile £,
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Lf our objective is ke maximize some form of social utility over a fixed planning penod,
then the problemn becomes

T
Maximize f LHE 4t
i

subjoct 1o ‘E—f =FK Ly—¢ {2025
and i =K RiTi=Kr

where Ky and Kt are the initial value and terminal {larger) valog of &. Mote thac i 20.2],
the eminal stite 5 a fiked valee, ool Yeft free us in (20011 Tlere £ serves as the control
variable and & i the stare variable, The problem is to choose ihe eptimal conto! path Ci)
such that s impact on owiput Y and capital K, and the reperoussions therefrom upon ©
itself, will topether rmaximize the acgregate wiling peer the plannimg period.

Pontryagin’s Maximum Principle

The key Io apumal contral trecery is a first-order neceszary condinon koown as the masi-
i privetpie ! The statement of the maximum principhe imad ves an approach thal is akin
to the Lagrangian faocion and the Lagrangian muliiplict variable. For optimal controi
probe s, thesz are known as the Hamironian funcrion and costate variable. CoNCERTS we
will now devebop.

The Hamilionian

Tea (20, 1), there are three vanables: 3ime £, the stale variable . and the confrol vanable o, We
now introduce 2 new variable known as the costas variable and denoted by 27}, Like the
Lagrange moltiplier, the costate vaniable measures the shadow price of the state vasiable,

The costaie variable is introduced inve the optimal control problem via & Hamiftonian
fumction (ot Ilamittoman, foe shor). The Fimiltanian is defined as

Hie pow, A= FLE v u) 4+ AT v, 8) (20.3)
wherg H denotes the Harmiltoman and is a funetion of four vanaies: ¢, v, w0 and 4.

The Maximum Pripciple
The maximum principle—the main wel for solving problems of opritmal control-- is s
namid because, as a frst-order necessary condition it requires 1s to choose & so 2% to max-
imize the Hamiltenian 5 of every poot of fse.

Sinee, aqide Trom the conmal variable, u, A invelwes the siae varable p and costate
variabke i, the siarernent of the maximum prineiple abw stupolates bow v and A showld
change ovur tire, via 30 eqalion of stotfon for the state voriable v (sene equatinn [or

The rerm “maximum principle” e attributed to L, 5 Poniryagin and his associates, and is oftan
referred to as Ponryagin'y maxamum principle, See The Mmthematival Theony of Omtimaf Coniral
Provesies by L 8. Pontryaging ¥, O, Baftyansk, B . Gambkrelidze, and E. F. Mishchenks, intersciance,
hgw Verk, 1952 (tramalated by &, M. Trirogoff).
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shirt) as well a5 an squation of mogion for (e cerfare varfablz b {eastate cguarion 1or
short), The state equation abways comes as part of the problem stbement itsell, as m
the second equation in {20.1). But in the view that (30,3 mplics 4 5,95 = #{r. v, u), 1he
roaximin prascmple deseribes the state equation

iy ., dH

‘= ) asy = — {20.4)
ta

[n contrast, J. does not appear in the probem statement (20.1) and s equation of midion
enters mto the pichire purely as an optimization conditbon, Thé aodlabe Squation s

Lf_dyyad
5 (= dr) -3 (20.5)

Mot that both equations of motion are stated in tepns of the parbial dexivatives of H, pag-
gesting some symmedry, but there it 3 negatrve ign attached w d F7 /gy in (20.5).

Equanens {20.4) and {25} constitule a syslem of twe differential equations, Thus we
need v boundary condiione o definiize the wo arbirrary constantg that will arise in
the peocess of sohumon, If both the initial sme p(0) and the terminal stuie #(T) are fined
then these specificalions can be used to defintize the vonstangs, Butif, a5 m problem 20 1),
the terminal stae is nor fixed, then something called a rarsversgline comdivion must be
included as part of the maximum principle, o fill the pap lefi by the missmg boundary
condulon.

Summing up the preceding, we can siate the varipws components of the maximum prins
ciple for problem (20 1) a5 follows;

Ly Mot k)= Hi a4 toralls & [ T]

o, an .
(i} v =— { SR equation)
@
Wiy Y =- o {voslale equation)
_...
v} MTI=1 {transversality condition?

Condition { in {20,8) states that ar overy timwe 1 the value of w(r), 1he optiral control,
muest be chosen 5o a5 o maximize the value of the [Tamilioman over 31l admessible values
of 1#)_ In the case where (he Hamillonian is differentioble wilh cespect (o ¢ and yields an
inigrior solwtion, Condition £ can be roplaced by

iH

— =0
di

However, if the conerol region s a closed set, then boundary solufions are possible and
d# i = 1 may not apply. 1n {act, the max imum principle does noteven require the Hamil-
towan te be differentiable with respect fo .

Conditions i and i of the maximum principle, v' = #5684 and A" = —08 [y, give us
two cqualions of motion, referred o 35 the Hamihonian system for the given problem.
Condation i, 2Ty =10, i3 the tensversality comdition appropriate for the free-lerminal-
state problem only.
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AGURE 201
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To illustrate the wse of the maximum prindple, ket us first consider a simple noneconemic
axamphe—that of finding the shortest path from a gren point A to a given straight line, In
Fig. 20.1, we have plotted the point A on the vertical axis in the ty plane, and drawn the
strasghi line a5 a vertical one at £ = T. Three {oul of an infinite number of) admissible paths
are shown, wach with a different length, The length of any path is the aggregate of small
path seqments, each of which can be comsicered a5 the hypotenuse (not drawn) of a trian-
gle formed by small movernents o andd dy Denating the hypelenuse by dh, we have, by
Pythagiras’s thegren,

gh® = ot & gy’
Divichng kot sides by dt? and taking the sguare ot vields

11
di dy 1 _ P T
EF_[H(:#” =01+ ('R

The total kength of the path can then be found by Integrating (20.7) with respect to f, from
t=010t=T K welel p' = tbe Lhe contrf varlable, (20.7) can be exprassed as

ah 112
— = {1 4+
T {14+u)
Te minamize the integrad of (20.77) is, of course, equivalent b maxirndzing the negalive of
{307} Thus the shorest-path problam is:

{(20.7)

(20.7°)

T

haximize f —{1 o9t
o

subjectte p =u

and plp=A
The Hamiltenian for the problem i, by (206,33,
Ho=—{1+u )" 4 hu

V(T Free
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Since M is differentiable in o, and o is unrestricted, the Iflowing first-order condition can be
used 10 maxirize H.

dfH ] T
= ~5(1 + 2+ A G
or uif) = A1 - ad)7
Checking the second-order condilion, we lirwd 1hal
¥,
% = —(1+#F¥ <0

which verifies that the solution Ll u{f does maximdze The Hamiltonian, Since w1} is a func.
et of &, we nead 3 solution to the costate variable, From Lhe firsl-order Conditions, Lthe
equation ol metion for e Costale vanable i

i)

PRI
dy

since His mdeperddent of . Thus, 2 15 2 comstant. To definnizze this constant, we can make
use of the tramsversality comlition 3{T} = 0. Smce & can take only o sangle value, now
Lawown 1o be 2ane, we ctually Tave afrh = & for all ¢ Thus we can wnte

MO =0 forall ¢ [0, T]
It Ballcnws that the aptimal Zonted js
Wi =& - WyFrit=o
Finglly, using the eguatron of molon for the state wariable, we see that

p=u=0
o ¥ =ca (aconstant)
Incorporating the initial conditien
Hm=A

we can conclude that g = A, and write

¥inn=4 foralt
In Fig. 20.1, this path iz the line AR, The shorlest path i found to be a sraight line with a
zafd shpe.

Find the optimal control path thal will
|
haximize [ {y—t)dt
1]
whiectto ¥ =
and Wly=5 w1} free

This problem iz in the larmat of (20.1), except that o is unrestricted.
The Hamiltonian for this problern,

H=y-1F+iu
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is concave in o, and u is uneesiricted, so we can maximize H by applying the first-order con-
dition {also sufficient because of concanity of H):

M duta=0
i
which grees us
A !
== == Fal
wly=z o y =3 (20.8)
The etquation of matlon kw213
ik
V= =1 0.8
S {20.8)

The last two equations consiitute the differentlal-equatlon system for this problem.
We can first solve bor & by straight integration of (20,8 to get

AR =0 -1 [y arbitrary)

Moreover, by the transuwersality condition In (20.6), we must have if1) = 0. Setting =1 in
the last equalion yiekds &) = 1. Than the aptimal costate path s

=1 -t
1t lollows that y' = ;[1 - 1}, by {20.8), and by integration,
1 1
M=t - ;fl +0z (2 arhitrary)
The arbitrary constant can be definitzed by using the initial condltlon w0} = %. Setling

t = 0in the preceding equation, we get 5 = (0} = 3. Thus the optimad path foe Hie state
varable is

1, 1,
AUES Et— e +5
and the corresponding optimal £ontrol path is

(0= 501 -1)

Find the optimal cortml path that will

l
Miaximize f (2 - 3u)
v

whjectlo p'=y+u
pith =4 2] free
and wf) = [0 2]

The Fact that the control variabde is restricted to the dosed sel [0, 2] gives rise to the possi-
bility of boundary solutions.
Tha Hamiltonian funclon

H=2y -3+ A+ =(2+0)p+0— 3u
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FIGLURE 20.2

Mun H

Woa H

I~ ———— — == —— i —————— —_——— e ——

[ Contral region
l Wsesd

is limear moo. IF we plot H agarst ¢ in the «H plane, we get a straight ling with slope
dH 5 =1 — 3, which is positive if 3 > 3 (Line 1), but negative if & < 3 (Line 2}, ax illus-
vated in Fig. 2.2, i at any time 2 excaeds 3, then the madnum § gocurs at the upper
boundary af the conbrol region and we must choose =2, K, ¢n the other hand, L falls
belowy 3, then in order to maximize H, we must choose i = 0, In shart, 11} depends on
r{1) a5 folkows:

2 . .
(D) = | ; } iF 1 | g ] 3 (20.9
Thus, it is critical ke tind (). To do this, we start from the costate equation
I-—-—ﬂ=—2—}. wn  M4r==2
dy

The general soluticn of this equation i
MO=Ae =2 [br{i5.5]]
where A is an atbitrary constart, By using the transversality condition ACFY = 2{2) = 0, we
find that A = 2¢2. Thus the definite solution for L is
MR =2 -2 {20,109

which is a decreasing function of ¢, falling steadily from the initial vakee 27(0) = 262 - 2 =
12,776 to a terminal valug A%2) = 2¢9 — 2 = 0. This means ihat A" must pass through the
paind i = 3 at some oubcal tme £, when the opbimal o has to be switched from = 2 10
W=0

To find this ailical time ¢, we 32t 1) = 3 in (28.10):

For

5
=i =2¢"1-2 o & =§=z_=.

Taking e paturat g of Both sades, v get
heg"=n25 o 2-z=In25%
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Thus
e=2-In25=1.084 [approxy
ard the optimal control wms out 1o consist of tao phases In the ime interval [}, 2]:

Fhaose 1w [t} =2  Phase 2.0 2] =8

20.2 Alternative Terminal Conditions

What happens 0 the maximum prigeiple when ihe iermingl condition 1z diffecent rom the
ome in {20.1) In (20.1), we face a vertical termuinal line—with 4 fioed ternminal time bt
umreaincled terminal state as illustrated in Fig, 2001, The maximum prineiple for the max-
IMIzation probletn requmes that

{0 Hir, pw™ hz Hi, e a, M) forallr =0, T]
AH
B,

{ﬁ] _:I.'I =

with the tramsversality condtlion
ey MTy=1

With glremmgtwee tornmal condittons, Conditions ¢, fr, and & will remanin the <aome, but Cone
dition te (the trangversality condition) must be duly modified.

Fixed Terminal Point

If the terminal point is fixed sa that the terminal conditwn iz ¥ ) = vr wth boib T amd py
given, then the terminal condiwon g2l ahould provide the intbrmation o definitize one
constant. 1o this ¢ase. no iransvorsa ity condition iz needed.

Horizontal Terminal Line

Suppose that the tenningl state is fixed uta given larget level yr bun the terminal time Fiy
frez, so that we have the Aexibility 1o reach the tarpet in a burey or a3 leisurely pace, We
then have a horizomal terminal line a5 ilusteated i Fig, 2033, which allows ws o chaose
berween T, T, T3, of other teerminal times 1o reach e iarget level of v, For this case, the
transversal ity condition is 2 restriction onthe Flmmillonisn (rather than the costale variable)
atf =1T:

H_r=0 {20.11)

Truncated Vertical Terminal Line

1f wi have a Axed terminal time T, and the terminal stk i3 free bul subject to the prosisn
that pr = vy, Whees v denotes 2 given minimum permicsible level oy, we face a trun-
cated vertical terminal ling, ag ilhostrated in Fip. 2030,
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FIGURE 20.3
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The transversaliky condition for s case con be stated like the complementary-
slackness condtion Futed in the Kueln-Tuckor conditboms:

MIJ =0 > pm (Fr —panl&lD)=0  (20.12)

The practcal approach for solving this type of peablem is to fivst iy M T = 0 as the
trwns versalily condition and test if the resuling v3 sansfica f restricion ¥ = vom. 1f 50,
the rroblem is solved. If not, then toeat the problem as a given tetminal poine problen with
. as the lerminal state,

Truncated Horizontal Terminal Line

Whet the terminal state js fived ot vy and the 1etninal tme ie free but subject  the re-
striction T = T .. where T, denotes the [atest pepmissible time {8 deadling) 10 reach
the given yr, we face a fruncaiey horizontsl terminal line as tlostrated in Fig. 20.3c The
transversal iy condition becomes

HJ—"' ﬂ L F E Tmu ‘T - Tnla1]II:'=

TIRUT

e =1 (20.13)
This again appears in the format of the camplememtary-slackness condinion.

The practical approach ta solvimg thiv bype 1 peoblem is 1o iy Hog = (st I the
resuling solunion value is T = T, thuo the probiem is solved. Hnot, chen we must fake
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T 35 A flxed terminal time which, together vwith the given vy, deflnes a fixed end poim,
and sobve the problem as o fsed-end-point problem.

In the problem
|
Maummize ffy-u-'-'}m
o

spblect b ¥ =w

anr wi=2 Y =u
the terminal pont is lixed, even tough W) s assigoed a parametric rather than nunserical
vahe tvera,
The Hamilvenian function

H=y— ¥+t

i5 CONCMeE i o, 50 wie can sek (4 7w = 0 to maxamize H;

a
,—H=—2u+:v.=l}
G
LT
u'—l
T2

which shows that in order Lo solve For wit], we need to solve foe i) first,
The two equations of motion ane

yi=u=

oy
/- —"'.;]'} =

Diract integration of the last equation yields
MEt=0 -t (g arbitrany)

k| ==

which implies that

Again, by direct integration, we find that
1
wnil= %I!' - EIE +2 (o arbitraryy

To tetinitize the bwm arkitrary constants, we make use of the imbal condiion W0 = 2, and
the termmnal condition 1) = 2. Selting { = 0 and ¢ = 1, successneely, in the preceding
erjuation, we ohtain

0 1

2=vl) =3 u:;=:p1:l}=?—3+-:;

Thus, ¢z =2, and ¢ = 20 - .
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Example 2

Therefore, we ¢an writs the optimal paths of this problern as:

7. 1
Y=o r— gt +2
7
i) =2a- 5 -t
A
U[}—ﬂ—;—i
The protdem

Maximize f T —(F® + &) at
a

subjectlo y' =u
lgle viid wMT)=5  Thee

exemplifies the case of horlzontal terminal [ine where the lerminal state is fived but the time
of arrival at the target level of y is unresincted. In fact, it is one of our tasks to salve lor the

optmial value of 7.
Sance the Hamltomian
H=-tf - +in
is Concave in u, we can again maximize H by using the first-order condition
wH
',— =-2u+i=10
i
which qrves us
A
u= 3 (20, 14)

The concavity of H makes it unnecessary to check the second-order condition, but if we
wish, it is easy to check that 424 /3u! = -2 < 0, sufficient for 2 maximum of #,
The equation of moton for & is
dH
i==--=0
iy
which implies that A is 2 constant, But we canhol yet determing ils eaaci value at this pomt.
Tumning to the equation of mokion lor y,

+

¥

[

S [y (004

we can obtain, by direct inbegration,
W = §t+.: (20.15)

Simce v{0) =4, we see thal ¢ =4 Futhermore, the transversality condition [(20.11)
requires that

P I L S S, by [20.14)]
I L '
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ariving the preceding eguation T T, and taking the positive square rool, we et

T=3 (20.16)

Jrhe koas canstank, w05 TV Ly now Lo fingd g5 exacl value.
Appling the lermanal-stale specilication T = 5 to (20.15), and recalling that ¢ = 4,
We get

W)= ;T +4=5
In view of {20,15), the last equation can be rewrilten as 72 = 1. Thus, by taking the square
o0k, we Can determing the optimal arival time 1o Be
T =] {neyative root wacceptabls)
From this, swe can readily deduce Lhat

MVigp=2T"=1 by (20:16)]
wu}=%=1 [y (20.14)]
Vi =t 44 Flwy (200,153

The last result shaws that, in this example, the optimal y path s a straight Ene going from
the given initial point to the honizontal terminal line.

EXERCISE 20.2
Find the ogtimal paths of the control, state, and costate variables that will
1
1. Maximize f (y— o)t
Bt
abjetty Y =w
and =2  y(1}ime
2 Maxlmize f Spar

subject 1a ¥ = ptu
W0}=10  wWB)ime
and uft) e [ 2]

T
1. Maximize f —fau + By
d

sbyect 1o V=y-u
and FiDr =%  pit}Hes

r
4, Maximize f v — w? - 1t
L

subjectta p'=w
arid = p(l)free
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2 ]
5. Maximize f ——il gt
L 2

subject loa ' =w

and =10 wX)=0

4
6. Maximize f 3y dt
i

sibject 1o ¥ =¥+
WO =5 vi4y2 300
and O=ul) =2

i
7. Maximize f Lt dr
]

subjectte ¥ =¥ty
and vidj=1  p1)=0

)
8. hiawirze f {y + ut ~ P) 4t
i

subject o ¥ =w
andg Wlhi=3 wD=4

e
&, Maxitmize i{zr-su—mﬁm

subject tt ¥ =4
md o) =5 w2 free

20.3 Autonomous Problems

In the general control probler framewark, the variable 7 can enter the objeative funclion
and siate equation directly. The general specification

.
Maximize f Fie, v, u)de
i
abjertm = fin pow)
and boundary condidons

where ¢ expliciily entets into Fand fmeans the date matters. That is, the value generancd by
the activiy ut ) depends nat andy on the level, but also on exactly when this activity 1akes

phce.
Prablems i which 1 iy abseni frorm ihe objective function and state equaion such as

;
Maximize f Fiy, widt
i

subjecttn ¥ = f{¥,n)
and boundary conditions
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are called aumbonomony profdems. [0 such problems, since the Hamiltonian
H=Fiv,ul +4r )

dows pot conlain £ 35 an argument, e equations of motion are easier to salve: momevser,
they are omenable to the nse of phase-diapram analysis.

In snll other cases, in an otherwise aummomons problem, fime ¢ enters inte the pietune
as part of the discount factor &7, but nowhere glze, so that the objective fumetion takes 1he
torm of

:
f Gl e ™" ot
I

Stricily speaking, this problem is nonautonomous. However, I is easy o cowvert the prob-
lem inty an amotomousd one by coploying the so-called curremi-vilie fawtifronion,
defined ax:

K o= He™ =Gy ul + o fy,w) (20,17
where
p=id” (20.18)

15 Lhe eureenfvalie Lageengre mulfiplicr. By focusing on the curreat (ondircounted) valug,
wie are able 1o eliminate ¢ from the origingd Hamiltonian.
Using A, in lieu of &, we must revize the maxi mum primciple w:

M1 Hipo™ )= Hlwou ) forallz [0, 7]

i o=
)y =
AH,
() ' = " +ru 2019
(i) 1T = I.'il. (for wevtical tennimal Tine)

of |H;}or =0 (for horizomal terminal Tine}

20.4 Economic Applications

Lifetime Utility Maximization
Suppoze a consumer has ihe wtiliny fiunction GIC(, wherne OO0 G consemphion at bimne ¢
The comsumer’s utility funciion is concave, and has the Following properlies:

L' =1 i
The consumer is alse endowed with so minal swck of wealth, or capial, &y, with income
stream derived From the stock of capits] soeording 10 (e follewing:
Y=+rK

where ¢ is the inarkel rate of mieresl, The consumer uses the iveoms o purchase C I oad-
difion, the consumer can cohsume the caplial stocke Any inedme not consumed 15 wdded to
the caputal siock ax invesmmenl. Thus,

K=lf=r-C=rk-¢
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The consumers fifetime unlily maximization preblem i to
F
Maximize f L(Clihe ™ dr
4

sbgpcto K =rK{) - 00
and Ky = Ky K(T)=1

where § is the consumer’s persondl rate of tme preference (4 = 0], I is assumed that
Cie) = and K1) = Oforall 7,
The Hamiltonian is

B = 0™ a0 e K00 — Tt

where C is the control variabde, and £ is the statz variable: Since C{C) is congave, and the
eonstraint is Iinear in £, we know that the Hamiloonizn is concave and the maximazation of

H can be achizved Wy simply setting & A /8C = 1, Thos we have

E — " = _ oy —
ﬂﬂ_tff}e A=1 (20.20)
K =rK{n—Ci) (20.207)
L
A= T -FA (20.20')

Equation {20,.2() states that the discounted marginal wiility should be cgquated 10 the pre-
sent shadow pmice of an additional unit ol capital. Dafferentiating (20020) with respectta
we ped

e ™™ — sUriCle ™ = X (20.21)

In view of {2020 and (20.207) we have

W= —rh = e
which can be subslitwied Dnte {20.21) o yisld

DO e)e™ — 30U Cre™ = —r U0y e

ar, after cancebog the common Factor ¢ and rearrenging,

-G

LG

Since L7 = Qand U = 0, the sign of the derratrve (0#) bas to b the same a5 (# — 4),
Therefore, ifr = &, the optimal consumption will rise over time; if r « &, the optimal con-
surnphion will decling over bime,

Solving {20.20") directly gives ns

M= e

'l =r—32

where Ay = U is the constanl of intepration. Combining this with (2020} gives us
LT = 2e® = Jyalé¥
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which shows that the marginal utility of consumption will wjimally decreass over time il
F o= b, but mcrease over time ifr < 8.

Since the terminal condition A7) = O identifies the presen prablem a= one with 2
Iruncaled vertical terminal bine, the appraoptiate teasswversality condinon is, by (20127,

ATY=0 E(F)y=0 KTxTi=10

The key condition is the complementarv-slackness stipulation, which means thae eithet thy
cipital steck K mmst be exhavsted on the terminzl date, or the shadow price of capital A
mut fatl to zero on the ©rmingl Jato, By assumplion, £7C = 0, the marginal utility can
never b zero. Theretore, the marginal value of capital canmol be zen, This impliez that the
copilal stogk shoubd optimalky be exhansted by the terminal date 7 in this model.

Exhaustibde Resource

Lets(rt denote 3 stock of an exhaustible resource and it ) be the tate of extraction al any
time # such thai

x

5 = '—-ﬂ'
The extracted resource produces a Bnal consuncr good ¢ such thal
c=dly) where £ =" =0 (20.22)

The consumption goad s the sole arpument in the wtility fancwen ol 3 representanve con-
ayrmer with the following properiios:

L= [iie) where B >0,07 <0 {20.22)

The wonemmer wishes to maxirize the utility function over a given interval [0, 71 Since
154 functon of &, the rat2 of extraction, g will serve as the conte] variable. Foy simplic-
ity, we ignere the issue of discounting over time, The dynamic problem is then 1o choose
the uptimal extraciion rate ihat mectimizes the utility fanetion subjeet only to a nonnegativ-
1ty constraint on the state variable «{1), the stock of'the exhavstible resowce The formula-
LigH 3

T
Mazximize f Lol el
0

_ {20.23)
Subgect to ¥ = —y

i sihi=mn #T1=0

where 5, and T are given.
The Hamilvemian for the problem ig

= L{eigl) — »q
Singe H is concave m g by model specifications on the £¥c(q )} Runction, we can maamiy
f e sefting 8 F fig = O

EI'H FI Il
o =iyl ig) —h =4 (20.24)

The concavity of K assures us that (20.24) maximzes A, bul we can casily check the
second-onder condition and contirm that A F /8q? is negative.
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The maxinmn pringiple stpulaies thal

. AH

A=——=10
dx

which implies that
Mri=uq  aconstant (20.25)

Tor determing o, e furn w© the tanwenality conditions. Since the model specific

K{TY = 0, i has a truncated vertical terminal line, s (20.12) applies:
MPy=0 =) =0  s{Tialf1=10
I practical applications, the initial skep is 1o 1y AT = 0, solve for ¢, wnd see il (e solu-
Hon wall work Since AT} e a constant, w try AT =0 implies M) =10 lor all ¢, and
d H iy i {20.24) redoces to
Llek'tgh =10
which {in principle) can be golved for g, Sitee ¢ is ot an explicin argument ol ££or o, The
solution path lor i 1s consbint over Hme
q"f] :q-ﬂ

Mow, we cheok il g~ satisfies the restriction s( T > 0. T g* is a consianr, hen the equa-
en of tRoion

W=y
can be readily intcgraied, yielding
i) = =gt +e  [v] = constant of integration]
Using the nitial condition s{0} = 3 yields a soluiion for the constant ol integeation
£ =%
andd the optimal state paih 15
My =5 -2 (20.26)

Wichout specifying the functional forms for U and ¢, no nemencal solution ¢ian be feund
furg* . However, from the transversality conditions, we can concluds thar if {7 = (, then
a" i derived in the salution is acceptable. But i {7} = O for the given g™, then the ca-
traction tile is 100 high and we need to bind & different solution. Sinee the trinl solulion
AT =1 laiked, we now take the altornative o A T) = 0. Even in this case, theugh, & 13
whill 3 constant by (20,250, And {2023y can atif] {in principle) yicld a constant. but Jdiffur-
ent. sidution vahee g;. It follows that {20.26) rermams valid, But this ime, with &(T) = G,
the manswersality condition 20,1 2) dictares that 5( T = 0, or in view of {20.26),

- P =1
Thus we can wrile the revised (Constant) ophimal mee of extraction as

0
T

s

’l
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This new solution value showld repegsent a bovver eatraction mie that would i violale the
(T} = 0 boumudary condition.

EXERCISE 20.4

r
1. Maximize f(x_un:*’-_r'-’]dr for = 0]
n

abject 1o K'=1-3K R
and il =K, €[ Tyfrag

2. Sohe the following exhaustible resaurce prablem tor the oplimal extraction path:

.
Maximize f Int gl de
¢

wuhpdt =g
and =% =0

20.5 Infinite Time Horizon

In this seclion we intraduce the prodden of dynamic oplimization over an infinite plaoning
period. Infinite ume horkzon modely tend 1o inmeduce complexitiae with respect 1o trans-
versaliy conditions and opimal time paibs shal differ from these doveloped earlier. Rother
than adilress these issoes here, we shall ilbwairae the methodology of such models with a
version ol the neaclarsical optimal growrh mode].

Neoclassical Optimal Growth Model

The standard negslassical productian fonction eapresses output ¥ as o function of twir in-
pubs: Tabor L and capital K. s general form s

¥=F(& L
whrere IR, L) 5o linearly bomogensous function with the properties
Fo=0  Femw Yip=0  Fig =1
Rewriling the productisn fumelion in per capila terms yields
p=adhy withgify =0 and  @'tkp <0

where ¥y = V/L and & = K7L Total ouipm ¥ is allocated w consumprion © or gross in-
vestent . Let § be the rate of depreciation of the capital stock £, Then nel invesimani wr
changes 10 the capilal stock van e writien s

R'=f-bKk=¥F—-0U—4#K

Denating per capila conaumphon s c = €70 we can wrile as

I
I—H'z_r—c—ﬁfr. (20.27)
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The night-hand side of (20.27T) is in per capita terms, but the kefi-hand side 15 not, To unify,

we node that
codk d L d
K 'E’Em‘]_kﬁﬂiﬁ (20.28)
11 the pepulation prowth rate 5
L
ﬂfﬂ?! =7 s thyt {;—’ -kl
then { 20.28) becomes

K'=Enl I or %K'=A‘n+k’
Substituting this mio (20.27) wansformg the latter into an equation entirely 10 per capila
terms:
Fesy-c-in+itk=¢lb)1—c—(n+3K (20.27")
Lot Lite) be the social welfare funetion | expesssed in per capita ferms), where
Uiley=0  and Ul =0
amd, to eliminale corner soluions, we 8lso assume
Eey—=ma asc— )
and £g) —= 0 iy £ — 2
If & denotes the social discount rate and the fnitial population iz normalized w one, the

objective lmetion can be expressed as

g -
K= ] Friche ™™ Lo dv = j Licle 12 " oty
0 i

g.'_.
=f el dr wherey = p—n
a

I this vetsiom of the neoclassival optimal growth medel, wility is weighted by 3 popalation
that grows continuonsly at a cate of 7. However, if v = o = w0 = 0, then the model 1s math-
ematically no different from one without popubaton weighes but with a positive discoant
Tale .

The oprimal gresd problem can now be stated as

=l
Masirize f Uicle™ dr
Q

subjét 40 K= iRy o= {n + B {20.19)
k[_ﬂ" = -ﬁ'u
and O =ity < glk)

where & is the state varrable amd ¢ is the conteel vanabde.

F I this meadel we assume [abor forge and population ta be ane and 1he same,
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The Hamiliomdan for the prodilen
H=4U{cke™ 4 Mtk — ¢ — (0 4+ 51k]

Bmcc 1% concave ¢, the masimum of & eorresponds to an imerior selution in ihe cone
rod region [Q < o = F[&], and therefore wie ey find the meximwm of 5 frogm

it
M g™ — =D

4 "~

or We) = ket (20.30)

The cconomic interprelation of {24030} 15 that, along the aptimal path, the marzinal wility
of per capila consumplion should equal the shadme price ol capitul (L) weighted by o™
Chacking second-order conditions, we find

2

PH_ oy
F = {{:}4.-

Thereforg, the Hamiltonean 1s manimized.
From the maxamurm principle, we have two equations of molion

b= %{:— = Jilk} = o= {# + &)k
and A= —% = —A[@'h) — {x + 8]}

The two equations of mation combined with the (9] = A" should in principle define
3 solution for &, &, A, However, ai this level of peneralily we are unable 0 do oo (han un-
demtake qualative anabysis of the model. Ampthing move wousld cequire specilic forms ol
bedh the utility and production funchions.

The Current-Value Hamiltonian

Since he precading model is on example of an aulsaomoos problenm {5 1 0 o Sepurade
atgument n dhe ubbey funstion o stale equation bul appeacs only m the discount Factorl,
we may use the current-valuz Hamiltonian written as

H =He" =)+ [diB=c = (n+Bk]  [see{H0.17]]

where p = 4™,
The masimum paaciple calls for
i,
H—T =LMel—pw=0 o p=Ei) {20.31
dH,
3= i =ik —c —in+ 804 (20.317

p'= —d.u—’r:* +rp = — (k) — (R + )]+ P

= —p[#kh— (143 +7)] (20.31)

Cyuativns (20317 aml (2031 mshioeie an autonomous diffeiential equation system.
This makes possible g gualitstive analysis by phase disgram.
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AGURE 20.4

Constructing a Phase Diagram

The variables in (he differential equatons (200317 and (20.31%) are & and g, Since (20 31}
involves a funetion of o, nameby C(e), rather than the plain ¢ iself, il would be simpler to
comstrnct 3 phase diagram in the A space tather than the ki space, To do this, we shall iy
1o eliminate ge. Sinee g = L(c), by (2031), differenuiation with respect to  gives us

pf= e
Substiruling these expressions for poand u' into (20.31%) vields
P
¢ = _-'.J'”{c',]w' () =ln +4+r]]

which is a differeitial equation in c. We now have the antonotnous differential cquation
By Etem

K mglk)—c—(n+ 8k (20.317)
"
axd ¢ = —@[zp’l[k] —(n45+r} {20.32)
L)

To construct the phase dizgram in [he & space, we first drow the &' = 0 and " =10
curves which are defined by

c=dlbl~(at bk (F=0} 120.33)
an i =n+d+r ¢ =0 (20.34}

These two curves are illustrated in Fig. 20.4, The equation forthe &' = D ewrve, (200.33), has
the same strueture as the fundamental equation of the Solow geewth madel, {13.30). Thus
ihe &' = 0 cprve bas the same general shape as the one in Fig. 15,50 The o = 0 curve, on
Ihe other hand, phots as a vertical Ime because gven the model specifications ¢'(f) = 0 and
k) = 0, $iK) is mssociated with an upward-sloping concave gurve, with a different
shope at gvery poitl o the curve, so that only a unique value of & can saasfy (20.34). The
infersection of the tvm curves at poind E determmes the intextemporal evuilibeium values of

C
[.ﬂl'[ir}:n A+ .I‘]
o' =10

0 pa \ t
[ = Mk — ir + B
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kand ¢, because at poant E, neither & noe ¢ will chinge in viloe over timg, resulting s
steaedy stare. We could label these values ws & and £ for micriemperal coulibriwm valees,
but we shall label them ae £° and &* imslead, becawse they alse nepresent e eyuihibem
valuey for optimal growih,

Analyzing the Phase Diagram

The intersection point £ 1n Fiz. 204 gives vs 2 unigue steady state. Butl what happens il we
are initially ol some poinl olher than ET Beturning 1o our system of Grst-order diffecential
equations (203717 ard (20,32}, we can deduce that

Ak A £reh

E——]f:[} and ﬁ:—U,_.mﬂf*{Hiﬂ

Since ke < 0,3l the poanls below he #° = 0 curve are charsctenized by £ > (rand all
the points abowe the curve by & = (. Simelarly, since do’/df < O, all the points to the leti
of the ¢ = 0 line are charactersed by ¢ = 0 and all the points (o the Tight of the Tine by
o < 0. Thus the &' = 0 curve and the o = 0 Lo divide the phase space ko four regions.
epch with its own distinet paanng of sipns of ¢ ond &, These are reflected in Fig. 20.5 by
Lhe right-angled directional arrows in each region.

The sireamlines that folbow the deeclional arrows m each region @1 us thak the stealy
state at point £ 5 a saddlz point, If we have an imitial point that ligs on one of the tno sa-
ble branches of the saddle point, the dynamics of the system will lead us tw point £, Bul any
initead point that does not lie on g stable beanch will make us esther skt ground point £
never reaching it, or move steadily away from it [ we follow the streamlings of the latter
inslances, we will eventually (as & — oo} end up either with & = 0 {exhawstion of caprital)
of ¢ = 0 [per capata consumption dwindling to 2erp—both of which am geongmically u-
acceptable. Thus, the anly viable alternative iy to choose 4 (&, ¢} pair 30 as to locate our
economy on a stable branch—a “yellow brick road,” so 1o speak—that will fake vy fo the
ateady state at £, We have nod explivithy talked about the trangversality condition, but if we:
had. ie woukd have pmded us to the steady state ac X, whers the per capita consumphin can
be inaineained 4t u constant level ever afier,

T

[l =atat#

=1 1
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20.6 Limitations of Dynamic Analysis

The static analysis presented iy Fart 2 of this volome dealt only with the quesiion of what
thiz sgquilibriwm position will be under certain grven conditians ol a model, The magor query
was: Whal values of the vanables, if etained, will 1end 10 perpetuate themselves? But the
attaizabitity of the equibbriom position was taken for eranted. When we proceeded fo the
cealm of comparative stafics, in Part 3, the contral quesiion shifted to a nore interesting
problem: How will the equilibrium position shifl in response @ a cerfain change in a pam-
rieler But the ataingbility aspeel was zpain brushed aside. It was nod entld we eeched the
dvnamic analkysis m Port 5 that we Jooked the question of attainability sgaarely in the eye.
Here we specifically ask: If initially we are away from an equibbnmm posiron—zay.
because of a resend Jisygulibrating parameter change—will the various orees i the
mode| tend o steer ws toward the new equihbrivim posibon? Furthenmore, in a dynamic
aralysis, we also leurn the patticular character of the path {whether stcady, Aucluatng, ot
oseillatory’ the vanable wall follow on its way to the equilibrion: {ifatally. The significance
of dynamic analvsis should therefore be sell-evident.

However, inconcluding ils discussion, we should also tuke copnizanes ol the limitanens
of ciynumu; analysis. For ope thing, 10 make the anakysis manageable, dymamic madels ars
often formuliated in tétrns of linear equaticns, While simplicity may thereby be gained, the
assumption of linzarity will in many cases entail a considerable saeniflee of realism, Since
a1 g path which is genmane 10 a linear model may net always approximate that of 4 non-
lincar counterpart, 85 we have seen in the prive-griling example in Sec. 17,6, care must he
excreized in the interpretation and zpplicaton of the msus of linear dvhamic meodels, In
thix connection, however, the qualitaiive-yraphic approach may perfoom an extremely valy
able service, becawse under quite general condicions it can enable us to incorporate nanlin.
earity into & mods] without adding undne comphexity tor the analysis,

Another shonicoming wsually found in dyoamic economie models is the wse of cansiant
coefficicomn: in differenial or difference equations, Inusmuch as the primary role of the
coefficients is 10 specify the parameters af the model, the constaney ol coefficients—again
assumed for the sake of mathemalicul manageability  essentially serves (o freeze™ the 2on-
e emvironmend of te peeblem under imvestigation. In other words. it means that the en-
dogenons adinstnent of the oaode| i Being siudied ina sort of economic vacuum, such that
b exopenous faciors are allowed to intrude. In cerlain cases, of vourss, s problem may nat
be il serious, becauss many ceanomic paramelsrs do end to stay relatvely consenl over
fung periods of time And in some other cases, we may be able to undertake 4 comparative-
dynamic type of anabysis, bo soe how the Ume pat of a variable will be affected by a change
in cectain parameters. Mevertheless, when we arg int2rpreting a ime path that extends into the
distaan fitnre, we showld alwsys be caredul not to be overconfident aboul the validity of the
path in s imore temide sirelches, ifsimplifying assamplions of constancy Iave been madc.

Wou realize, of courss, thai te point oul its [imitations as we have done here is by no
means intended 10 dispacage dynamic analysis aw such. Tndeed, i1 will be recalled Thai cach
trpe of analysis hitherto presented has bron shown do bave s own beand of Bmigtions, As
bony as it is duly interpreled and properly applied. therefore, dynamic analysis—bke any
other ype of apalysis—can play animportant part in te siody of cconomie phenamena. in
particular, the technigues of dynanrc analysis have enabled us to extend the stody of opti-
mization oto the cealm of dynamic optimization in this chapter, im winch the soluboen we
seek is no lomger a statie oplimum state, but an entire nptimal time path.
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Mathematical Symbols

I. Sets

it E N

he ¥
aCT
s
AUB
AME

I

| torid
fa, b, e
x| % has property M
[, &, e
R
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i

iL ¥

i1.}. )
(e, &)

[a2, &]

. Matrives angd Determinanis
A or AT

FiL

El

|f]

| Y

Ei

rid)

tr.d

i is an element of (helongs 0] set &

b is it an element of sel ¥

et & ix & sulwet of (is contained n) sa1 T
set Tinghsdes set §

the nnion of sot.A4 and st &

the intersection of set A and w2 &

the complement of set 5

the mwll set (empty set)

the se1 with elenents o, &, and ¢

the s¢t of all obpects wirh property #
the smallest element of the specified sot
the setof all real numbers

the two-dimensional real space

Lhe n-dimensional real space

ordeted pale

ordeted eiple

open inderval from a o b

chsed inrerval from q io b

the trancpose of matrnc 4

the inverse of mainx 4

the determinant of mattix 4
Jacobran determinant
Hessian delermingmi
bordersd Hessian determinunt
Lthe rank ol matriy A4

1he trace of A
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) null malrix (zere matrix )
N-Y the inar product {dod product) of vectors v and
b the scalar procuct of Lar vectors
. Cakeulus
Criven » = fix), a function of a single variable x:
tim_ nxl the linit of f1x) asx approaches infiniy
el the first dilterential of v
dy the second dilferential of
dy . e .
ﬁ ar fix) the first derivative of the function ¥ = #{x)
oy . .
- or f{xy) the2 first derivative cvaluated at £ = ¥y
=0
i ¥ -
—— or 17} the seeond domsatiee of = fix)
dx T
y i o
o of JUMag the mth derivative of ¥ = x)
f Ffle)ax indefinite integral of fix)
b
Fix)dx definiee integral of flx) fomy = g1 =

ay : o
H—‘} or the partial denvatrve of 7 with respest 1o x,
'In'
V= prad f the: pradient of /
o .
d—}l the tetal deovative of f owith respout Wea;
X,
kv . . .
§—T_ the partial 1otal denmvatve ol 7 with peqee by,
. Differential and ThlTerence Equations
I:f -
¥ = d_i the time derivative of v
A, the first diilerence of ¥,
Al ¥ the second difference of y,
Ty P hie olar mitegral
1 comphementary R tion
. hers

n
¥, the swm ol ;a5 F ranges from | lon

i
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#= 4
pr=4q
fag

iff

|l

!

log, =

log. v or Inx

g only if g | p implies )

2 iFg (p s implied by )

pifand only if g

if el only if

the ahsolute value of (he number m

it factonial = w(n — L =20 - (321}

the bopenthm of x to base &

the natuzal lopanthm of x (0 base ¢

the base of natvral |oganthms and natural
exponeniial functions

ging Fanction of B

cosing function of #

the remamader term when the Taylor sexies vl ves
an mihadeprec polyromial



A Short Reading List

Abadie, L (ed-): Nonlineur Prosramming, Nocth-Helland Peblishing Compars;, Amsterdom,
1367 [ A vollection of papers on cerlain theoretical and computational aspects of mon-
linzar programming: Chapter 2. by Abadie, deals with the kubn-Tucker theomem m
relabicn to the comstraint qualification, )

Allen, B G, D Mathemarica! dnafpsis fer Feomowtisss, Maemillan & Co, Ltd,, London,
1233, (A clear exposation of differential and indegral caleulws;, delerminants are dis-
cogsed, bt net mameocy; nn sct thoory, and mo mathemancal programmmg. )

: Marhomaticgl Ecomomice, 2d cd, 5t Martios Press, Tnc., Mew Yorky, 1959, {Das-
vosss o begiom of mathematical cconomic models, explains lmear difterential and
dhifferenee eqoabons and matrx alechm )

Almon, T, Magrix Methorls in Ecomewiics, Sddizon-Weskey Poblishing Conpany, 18,
Readin:, Mass.. 1907, iMatrix mnethods are discussed in relanon to Tinear-equation
systems, mpu-output models, lines programming, and nonlinear pregramming.
Charactensiic s and charad lerislic veciors ae also covered.)

Balduni, ), 1 Bradiicld, sod R Tuner: Mathowoiical Econonmics, The Dryden Fress,
CQrando, 1966

Bawnwel, W 12 Scetomite Dvnamios: An fitreduetion, 3d ed., The hMacmillan Conpany,
Mew Yiock, 1970 {Pan 1V gives a lacid explanation of simple difference equations,
Pan ¥ treats simuliancous difference cquations; diffecential equations are only brcfly
discussad.)

Brann. M.: Differential Equations amd Their Applications: An frroduction to Applied
Mathematios, 4th ed., SprmgeeVerlyz, Ing,, New York, 1993, {Contnns interesling
applications of diferentia] cquations, sueh as (e detection of art lorgenes, the spread
of epidemics, the aoms rade, and the disposal of noeclear wasle.)

Eumeiser, E, and A, B, Dobell: Matemasics! Mheories of Beomomic Oiowrh, Tle
Macmillan Company, New Yook, 1970, (A thorough asposition of growth models of
varyinge deprees ol complexly )

Chiang. Alpha Co Elements of Dynamic Opimizarion, BleGraw-Hl Book Conpany,
1992w published by Waveland Press. Inc., Prospect Heighs, ]

Clark, Colin W Murthemeticel Bivecomomics: The Optind Mumdgement of Ree weble
Reveurces, 2nd ed., John Wiley & Sons, Inc., Toronto, |9 (A therough explanation
o opiitnal conwesd theory and its uea in both renewable and nonrenswable resourees. )
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Coddington, E. A, and N. Levinsen: Theory of Ordinary Difervaid Equeions,
TieGiraw-Hill Book Company. Mew York, |2355 (A basic mathemarical st on differ-
emital equations. |

Couramt, Rt Differomial omd feiegrl Calonfies (trans. E. 1 McShane), [nierscience
Publishers, Inc., Mew York, wol. [, 2d od, 1937, wol, 11, 1936, (A clacsic treaine on
caloulys.}

. ard Fololm. feienduction o Caleidus amd Anafizis. Interscience Poblishens, Ine.,
Bew York, vol. 1. 1963, vol. 11, 1974 (An apdated version of the preceding title.)
Dodman, R., B A, Samouclson, and R M. Solow: Linewr Programming amd Scoweniic
Analpsis, MeGraw-Hill Book Compaty, New York, 1958, (A detmled 1reaimem of

eyt progromimang, game theory, and input-output amalysis )

Franklin, IL; Merhads of Mafhemties! Econanrics: firear amd Noaleman- Prgrampneg,
Fixed- Count Theivers, Springet-verlag, Lo, New York, 1980 {A delighifu] presemva-
tipn of mathematical programming. )

Frisch, R.: Marvime and Minima: Theory end Economic Appficerions (in collaboranon with
&, Mutyl'), Rand MeMally & Company, Chicago, 11, 1966, (A thorough treatrent of
extremun problems, doge peimanly in the glassical teadition.)

Gollbirg, S Introdbeciion fo Difference Equations, John Wiley £ Sons, Inc., New York,
1958 {With ccommmic applications,)

Hadley, G.: Linear Afgebra, Addison-Yosley Pubilishing Company. Inc.. Reading, Mass.,

1961, [Covers matrices, detormmanis, convex 5865, elc.)

o Linear Progranming, Addison-Wesley Pubbshing Company, Ine., Rewling,

Mass., 1962, (A clearly woitlen, mathematically erieated exposition.

s Wonlinear and Penamic Programming, A ddison-Wesley Mublishing Company. Inc.,
Reading, Mass., 1964, (Covers nonlinear proegramming, Sochasic programming, imi-
per programming, and dhnamic programming; conputaional aspecns ate emphasized )

Halmos, P R Maive Sor Theary, D Van Mostemd Comipany, Ine., Ponceton, B, 1960
[An infonmal and hence remlable introdciion to the bacics of =et theory.)

Hands, D. Wade: Introdiciony Marhematizal Ecoresics, 2nd ed., Oxford University Press,
MNew Yoric, 2004,

Henderson, J. M., and K. E. Cuand!: Mficrvervnomee Theony, 4 Mathematical Approachk, 5d
.. McCiraw-Hill Dook Company, New Yorl, 1930 (A comprehensive mathematical
trealment Hf MiCrSCOnomic tpics.)

Hov. M., L Livernois, C. Meklenna, B Rees, and T. Slengos: Mothernticr for Bempnrcs,
2rl ed , The MIT Press, Cambridge. Mazs, ML,

Intriligator, M. T Mathemeasicod Opfimizofion and Fronomic Theory, Premtice Hall, Inc,
Englewnad Clifts, N1, 1971 (A thorough discussion of aptinizanon methads, in-
chading the classical tachniques, linear and nonlinear programming, and dyoamic
optmizaion; also applications 10 1he theories ol the consumer and the firm, genaral
vquilibrium and welfars economics, and thuones of growih)

Kemeny, I G, LE. Snell, and G L. Thompson frtedction b Fimite Mithematics, 3ded.,
Preatice Hall, Ine., Englewood Clifts, NI, 1994, {Covers such iopics as sets, mainices,
probability, and linear programming. |

Klcin, Michacl W.. Muafhematicol Methods fiv Evongedcs, 2nd ed., Addison-Wesley
Publizhing Conmpumy, Ine., Readimg, Mass. 242

Koo, D Elemcenis of Optimizarion: With Applications ir Economties and Buiiness,
springer-Vorlag, Inc, Mew York, 1977 (Clear discus#iun of clasgieal aptimizaton
methuls, mathematical programming as w21 as opmal conmal thesry. )
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Eonpmans, T, C_{ed.}: deivifr Anafsis of Frodetion and Afocation. John Wilsy & Sons,
Inc., Mew Yock, 1951, reprinted by Yale University Press, 1972 {Contns a mumber ol
imporgant papers ou linear programming aml activiry aalysis. )

_______ 0 Three Exsuyy ow b State of Economte S0fence, MoGegw-Hill Book Compems,
MNew York, 1457, {The first essay containyg 4 pond exposition of convey sets; 1he third
essay discusses the interacton of soedr anyd profleres in coominmics.)

Lamhert, Peter )., Advarced Marheratics for Ecomomizts: Matic and Dhaceite Opiimiza-
ficr, Blackwell Publishers, Mew Yok, 1985

Leonnef, W W The Structure of Asrerivan Ecownem, FHI8-10319 2d ed . Oxiord Univer-
wity Press, Fair Lasen, M., 1931, (The preneeting wark in inpet-cutpue analysis.)

Sarrme lson, B A Frsaditiens of Ecomsric Anatfpsiy, Hanand University Press, Cambndpe,
Ofass., 1947 (A clagsic in matheniatical economics, b very difficull 1o read.)

Silberberg, Eogene, and Wing Sverr The Structwre of Economics: 4 Muthemiatical
Amcrtyxiv, 3rd ed., Melraw-Hill Book Company, New York, 1. {Primanly 1 micro-
ceonomic fovus, this book has a sirong discussion of the emeebope theorem and o wide
variety of applications. )

Sydszicr, Kout, and Peter Hammond: Fsrentiul Mathematics for Ecanamic Anpafiiy,
Prentice Hall, Inc.. L.ondon, 2002

Takayama. A Mashemarica! Economies, 2l e, The Dryden Press, Hiosdale, L, 1985
(Gives a comnprehensive treatimont of coonemic theory m mathemalical terms, with
concentration v P qpecific tnpics: competitive equilibrivm ard econamic grawth,)

Thomas, G. B, and B, L. Tiocy, Coferafer omd Amalytie Geomern, Yth ed., Addisen-
Wiesley Publishing Company, Inc.. Reading, Mags., 19%. (A eleady written inrodoe-
tacaty b ileulus. )



Answers to Selected
Exercises

Exercise 2.3

1oday [x 1w = 34

oo {24670 ) ihel ) [

B, There are |4 sulwets.

8. Hini Destinguish between the bwo symbels ¢ and &

Exercise 2.4

Loy {t3, @), {3, B, (6, ), (6, B), (9,20, {2, b))
3. Mo

%, Range ={v|% <y =32|

Exercise 2.5

2. () and by diffex in the sign of the slope measure; {ard and {e) differ in the vertical
Iftercept

d, When nepative yvahoes are permissible, quadeant 11 has fo be wwed tou.

£ {g) x'"

€, (&) &

Exercise 3.2
n L 1-
L P =28 and O0* = 141

A Nowe: Tn HMah, o = L0 (ot 6).

5. Him- b+ d =0 implieg o = -,

Exercise 3.3

1 (@) xf =5, mdx! =3

Aol (r =+ Nix —N=0or! =82+ + 15=4
S.0) —1.hand3  je) -1, 5.and -4



Arsveds b Selbected Exercines b3

Exercise 3.4
Le=3t o p=3k o=l or=3%
Exercise 3.5

Loi) ¥ =ia - bd 4+ fy + Gl /T =M1 - 2]
I =[dil =8+ g+ o+ &)/l =AL =1
O =la = I+ 8= 000+ GallA = A1 = 1]
3. Hint: After substicubing the fasi o equations indo the first, consider the resulling
equalian a5 a quadralic equation in the variable w= ¥ "%, Only one toof is acceplable,
wi = 11, giving ¥* = (21 and C* = ¢1. The adher ront leads o a negative (V.

Exercise 4.1

L. The elements in the (column) veclor of constants are: I @, —v.

Exercise 4.2

a3 et 7]

1 4 0
3. In thns special case, A0 happens to be cqual lo 84 = | 0 1 0
a1
# 3 da+ 5y
b [ 1 3] (e) -1.r+2}f—'.'z}
(]| [I=1y
ISR N Ol A S TR PN BRI ST B PR Y
i |
T (B} ¥ a1y +1) () Hist-x" = forr £0
i=r
Exercise 4.3
15 5 -5 T L
lL.imwe'=s] ¥ 1 -1 {c} 1" = | xax .1.';2.' Az
o 3 -3 X Xz x:f

{£) a'r =13 (g} ' =35
1. {e] iﬂ@: (i £ Qror Ao FF
1=l

5. () Eir=|:2:| ] u—u=[_ﬂ

T' {.ﬂ-] d = «,‘-"iﬁ
B (c} iy, 0) = {z- 5)'"

Exercise 4.4

L {a) [I? 1;]



564 Answeers bo Selecied Exepise:

2. Ne; itshouldbe 4 - B= -5+ 4.
4. (a) A+ B) = ¥ + b, ] = Dhayy + &byJ = (hay ]+ Dby ] == Klag ] + K[y =
kA + k8 (Canyou justify cach step®)

Exerclse 4.5

L {@ Ak = [_-.!r _g ﬂ () hy = [2]

ey dx3  e)dx)
4. Hint: Multiply the given diagonal mairix by itself, and examine the resnlling product
matria for conditions For idempotency.

Exercise 4.6

. T - [ 30
l.ri=|:‘4 S]EII.'IITJ..B\—[_E |]

3, Hiar Define 0 = A8, and apply 14.11),
5, Hin: Define D = A8, and apply (4.14).

Exercise 5.1

L) {520 fe) {53 (e} (33

3. da) Yes. (d) No.

5 {a) rid) =3 A s nonsingular. (B} r(8) =2; B iz angulan

Exercise 5.2

Efay =6 (ep 0 ig) Jabe—a? -8 -
_|d f _ | f

ilMI—\E : 1| = c ‘.|

4. (a} Hine: Expand by the third cohunn.
& 20 {not —20)

Exercise 5.3

3. tay Propercy 1Y (b Property I (spphied io both rows).
d. () Singular, (€] Singular,

S (o) Ramk < 3 (¢} Rank < 3

7. A is nonsingular because 4] = 1=d# (.

Exercise 5.4

k|

4
1Y il E day I'Cﬂfl

el i=L
3. (@) I[nterchange the two diagenal elements of 4; multiply the two off-diagonal
elerments of 4 by —1.
i&) Divide by | 4]
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N
4. (@) E_I=E -7 1 7 ic) G~ =
—6 —4 2
Exercise 5.5

Lotg) xf =4, andxy =1 () rf =l,adr =1

1r ], [4 R T R R N
AR N IR

2, qz) A -
Iy =2,5=0,xF= " =0p"=3:"=4
d. Hime: Apphy (5.2) and [5.13).

e
— o ETh
= —

Exercise 5.6
bl 3
Lial A7 = 1= 1 -
1) I —htbr I"[r 4 s
| ] I+ +a — e
[{'W]:]—ﬁh’;r [f}{l—ﬂuu+f3ul+a—hd]
T i+ Op)+at +d(1 - &)
L) |Al= 1 -5+ bt |Ay] = Iy Gy = b &t
|Az| ma — b + B — OB+ Gy A5 = (]l — &)+ He + H+ G
Exercise 5.7
1.« =695, k3 = 57.03, and of = 42.58

0 050 : N B R L BTV T N L
I (g} 4 = [{I_ﬁ{l 0 ],ll'u: WA Crualinn “[—ﬂ.ﬁ{l .{H'.I:| lrz] = [I{[H]]

(e} = = 3,333, and x} = 4,000
4, Element 0.33: 33¢ of Cormodity IT 15 needed 49 mput for producing 31 of Commodity |,
Exerclse 6.2
Lota dpfdx =8z +4hx  (Brdyde=3% (0 f3 =M, =12
3. (@) ApSoT = 5 g constan! funchion,
Exercise 6.4
1. Lefl-side Emic = nght-side Himic = L5, the limit ks L5
L - T
Exercise 6.5
L (g} =3/d=x icy » = 172
g -T<rxr=h (e} —d4 <1 =1
Exercise 6.6

1 (@} 7 {ch 17
Lap 2
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Exercise 6.7
ola NP -SW-2 (&) Yes. () Yos,
340 (N AN+ (# Yes. (¢} Contmeus in the doman.
b, Yes; each fumetion i conlinuous and oo,
Exercise 7.1
1 o{m) ey fx = 2" () drjdr = 3527 (¢} dwidu = —2u~1
Mo iy =18 (= iy =18
) S =107 Ly =10, 2 =13
Exercise 7.2 .
L ¥C=(F - 508 4+ 12, % = 3% — 1) + 12 15 the ML funetion.

3. fa) S bx = 2 i1 12a{c+ 1) {#) —x{9x + 14}
4 {5 MR =&l — 60
T (27 -3 () 304 + 57
B. {ur) o fcy —a/lon + b)Y
Exercise 7.3
L —2x[}5 - ' P+ 2]
Yotrh 18ei3e — 130 {0 Sefax +AY
5 r=qy—Ydvidy=1
Exercise 7.4
L tar] defite) = 62l = 220yx, and A1 /ds = — 1155 + 6
ic) Avier = Hay — 20, and dpfte, =22 43
X m 12 [c) 1049
& 1) B =%, + 240 + 3 and Ua = 3k + D + 37
Exercise 7.5
L 0" fdu m o fth+ b =0 3080 = —dfa+ )b+ d) <0
Pt fie = —Bih <0 A0 = Ma+ b+ = 0
2oVt =AY e =LAl - 4 8 =0
Exercise 7.6
L. (g} |.f| = M the functions are dependent.
by |f] = =20y, the Junctions are independent.
Exercise 8.1
1, ia) dv=—3x" + L)ddx i) Ay =[11 — F)(z? + |F]dr
L SCHY = b aml CFY = (a4 AV Y
Exercise 8.2
2 i) dz =i{br + ylde +{x - 6 dp



Answirs 1o Selected Exencises

3, {a) @y = [x2/{m + ¥ 1dx) — [0 0 + 5 Pl

4 oEgp = 2P+ B+ RS

6 crp = =2ATIPI 4N

Exercise 8.3

3 0m) dp = H(2xy — vy + 30dx + 2o0x3 + 5 a5 + 0025z - D]

4. finr: Apply the defimbiones of diferential amd toda] differcntial.

Exercise 8.4

I (@) s fdy =5 + My + 60" =28y + 9!
(o) defdy = ~15x + 3 = 108y — 30

3. d0/de = [acc AR + BOAL + (0] KeLF

doiF) §W b = 10wf + £ §WSBe=3f - I fF

Exercise 8.5

3, (ad Defined v /dy = ={3r8 = 4o + W/ (20 + Bup) = —9/8
(&) Defined: dy/dx = =4 + fphjidx = 4y = 2713

7. The condition £, # [ is vielated at {0, 0).

8. The preduct of partial denvatives 15 equal to —1,

Exercise 8.6

Lofep g ) =15+ 7 -1 >0

L APYAN) = Dy (S — Dpy = b (A0 = PrSe (S — D} = 0
{dPY/ah) = —Sg {8 — D) = 0 (307/3D) = -5 Dp- i Sp- — Dpe = O

Exercise 9.2

L. [g) When ¥ =2, ¥ = |5 {arelarwe maxmom).
{¢) Whenx =10, v = 3y redutive minimyra),

b7

2 {a) The critical value x = =1 lies cutsida the domain; the critieal valoe 5 = 1 lesds wy

v =3 G relative nmninium),
4, 1d1 The elasticity 5 one,

Exercise 9.3
Ldg) el =2a, fsp=0 (¢} fra)=a1=x}?, (™x) =181 =3
3. i) A straight line.

5 Everypomton f[r) 15 a statienary peint, but the enby slalionary point on 2{x}
we know of isatx = 3,

Exercise 9.4
L (@} fi2) = 33 is o maximom
iy {1 = Sl? is a maximum, fi{5) = -5% is a minimim,
2. Hint: First write an area fanction A 0 terms of one vaniable (eiher £ or #'} alone,

Ly ¢F=11 (&) Maximumpeofit = L1173
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Sl h=0 thhh<D i) ji=D
T. it 5 is maximized at the amipal level 24037 Gappronimuately ).

Exercise 9.5

1. (a1 120 ) 4 b B 2He + 1)
LN A e L S L

L(h) —bY —uky — 82— 1R - Ry

Exercise 9.6
1. (w} i =0 isan inflection poim. {e) f{01 = 5 {5 2 relatree minimum.
L (hy F(2) = 0is a relalive minimum.

Exercise 10,1

1. tah Yes. (A Yes.

oGy S oy 12

%, {a} The curve with 2 = —1 15 the snrres inage of the curve with o = | with reference
to the hatizontal axis,

Exervise 10.2
I {wp 7388 (k) 1.649

.. |
2. e 1+3x+${hl‘+glhh3+--.

3. (a) $T0MM by Seot 10

Exercise 10.3

. (e 4 fel 4

2007 ()=} fer b

3w} 26 i) m3-[n8 ify3

Exercise 10.4
1. The requirement provenis (e Tugetion froon degencrating into a constant funetion,
1. Hint: Take log Lo base b
4{@) p= U8 gr = BN g g = GllMIK gy o Gt
& L] 2 =ilny)AInTrors = 05139100 y
e} r=3m{H I 15) ot = LIOTS Ini%y)
b (g =l (1 r=2In].03%

Exercise 10.5

1. (ih Jef+ () 2rel! (e} (2ux + P Hhise
3. (a3, wh LAE+ 19 (o) 1stl + 5]

5. Hini: Usz (10.21), and apply the chain mlg.

7. b ¥ — 21 [ + 2P0 + 404
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Exercise 10.6
L i*=}r?
Y A = = A4 < )

Exercise 10.7

L e (el Imd fop 1jr=1Ind
Lr=in

L egl=n

1l rp =epnrr +opure

Exercise 11.2

L 2* =3 3 aminimum.

3. o* = ¢, which is 2 minimum n case {a), 8 mazimum in case (), and a saddie point in
ease ).

5 (a) Any pair (x, v) other than (2, 3) yields a positive z value.
(M Yes, [r]) Mo, (] Yes [d°z = 0).

Exercise 11.3

1 (al g =de +dum + 37 () g = %7 4 bay

3. (a) Positve defimie. (r) Melther

5. (a) Positive definile. {1 Negative definite.  {2) Positive Jefiniie.
& {a) i, r2= HT & JTT); u' Du is positive definilc.

(e) Fib = %{S:I: VOTT, o Fur is indefinie.

I T N N I P
T [uﬁ]u‘ [:;«;’E}

Exercise 11.4

1. 2' = 1) {mainrnom)

3. 2 = —11/40 {mind i}

4. z* = 1 — e {minimum], anained an (x*, p*, w*) = {0, 0. 1)
5. (B} Hint: Bee i) 16}

B (o ri=2 =4+JE ri :4_‘“@

Exercise 11.5

I. (&) Strictly convea, fc} Stoctly convea,

1. (@) Strictly concave, (e} Meithor,

X Do

5 (o) Ddisk. () Ves.

T. {a) Convex combination, with # = 0.5, (8 Coenvex combangtion, with 8 = 0.2
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Exercise 11.6

L iz} No. ik O = Pipfdand (I = Prfd
3olenl =1} el =17 knl=13

L () 7= R, M1 4 3ind ™ — Pawr — Py

Exerclse 11.7

L {e® 3 Pa) = P~ 0 < (30 f3P) = =Py D™ 1 < O

i) Fowr @ (Rt AR = { DG — Qe Omd Pl +igd 210 = 0
(e} (e fihinh = { @ B — QW Q) P 41037714 = D

Exercise 12.2
1) o' = 1/ avained when &' = 172, x% = 1oand v = 12
icy 27 =~ |9 attamed when 4* = -4, x* = |, and p* =5
d Fy==ifx.p}=0 Z, =1 —d=0 £ =/f.— M. =1
5. Hiee: Distingzuish between identical equality and conditional cqualiry.

Exercise 12.3
Loy [ =42 isamaximume (o) [H] = =22 2% ig 4 minimgm.

Exerclse 12.4

2. {e) (haasiconcave, but not swicthy 2o, {c} Smaly guasiconcase,
4, (@) Nenber, (o} Chuasiconyex, bud not quasicencave.

5. HMint: Review Sec. 9.4

. it Use either {12217 or {12257,

Exercise 12.5

Litp i =5x"=181"=1] () |J:f'| = 4§ conditivn i= s=lisfied,

L (A8 =100 =0 (di ol =-(F+ P}.},."EPE < [
(da™fdP = 12F =10 o,

% Mot vald,

T Moto bodh (ad and (Bp—see (1232} and {12,317

Exercise 12.6

1. {21 Homogeneous of degeee one.  {¢d Mot homogencous.
(3 Homoeeoeows of degree 1w,

A, They are true,

T. (a1 Homegeacows ol degree o +h + ¢

B (a) j°0=g(fK,fLY B Him: Letj = 175,
ja} Homogeneous of degree ane in A and L.
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Exercise 12.7

Ly l:2:3 {1:4:%

Y. Hine: Review Figs. 2.7 and 5 3.

4. Hint: This is a otal derivative.

6. [a) Dewmward-sloping strieght s, (0 0 — o0as p — |
B.{a1 7 {chImd-1

Exercise 13.1
3. The conditions x, (1237, 1 = 0 amd the conditions 4002 ¢éa ) = 0 can be condensed,
% Comastenc

Exercise 13.2

1, Mo qualifiinye arc can be foumd for 2 st vector such as {(dx) do:p =L 0).

X (x7, x5 = {0,0) 15 a cusp, The congtramt qualication 14 sansficd (all wst vectors are
horizental and pointing castward); the Knhn-Tocker conditions are satisfied, (o0,

4, All the conditipns can br satisficd by choaging vy = Dand v} = 0.

Exercise 13.4

2o0a) Yes. (b1 Yes. (£ Mo
d. 1) Yes. (M Yes

Exercise 14,2

Lig) B 4ox #0 (0) ¥ —3xl 4o

o) L3t 4o (o) Se¥ — 3~ Loz 20
33 Fnlx| + e 20 [c) ].11{3'2 3 4o

i) Sr+ PPx +3)— S+ 1P e

Exercise 14.3

L st (813 o) 2(; +c)

24 e~ - e (0} (3t - 1t +e—1)

3. th) Underestimate, (e} Six) is Riemant integrable.

Exercise 14.4

1. Mone.

2. ta) ted {d) andde).

3. {a), () anet {df] converpemt; o) divergent.

Exercise 14.5

Lota) R(QI =140 - 20+ B 5y ROY= 10041 + O)
3 (g KE) = 9745 425
B (e} 20000
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Exercise 14.6

L. Capital alone is considered. Since labor is normally necesary Bor production as well,
the wnelerlying assumption a5 that K and L are always wsed in 3 tixed proportion.

3. Hine: Use (h.8),

"
d Hint:lngt —lnr=ln -
r_l

Exercise 15.1

Ll il =~ 43 () = M- o)
Lo pi=41—e (o po =6 ) =8 -

Exercise 15.2

1. The D cwrve should be siecper,
3, The price adjustment mechanism generates a differential equation.

gt of .
£ Pl = deup(— p {)+f} 3 it} Yes,

Exercise 15.3

L yit) = de™™ 4

= e_": + %

5 outl=¢ Y -3¢

b, Himi: Review 5ec, 142, Exampl; 17

Exercise 15.4
L) it =7 ) p =

Exercise 15.5

dy 1
L () Sepurable: linear when writion 1 ﬁ bop=0

te) Beparable; roducible to a Bernoulh cquatinn.
3. p{f =14 -5t

Exercise 15.6

1. i) Upward-shoping phasc fine: dynamically unstable wuilibrium.
{} Downward-shoping phase line; dynamucally stable cquibibrium.

A, The sign of the decivalive measurcs 1he slope of the phase line.

Exercise 15.7
L vy =rp —=Fy [ 10.35]

4. (a) Plor {3 — ») and |n 3 a3 two separate curves, and then sublreet. A single
equilibriyra exists {at a v value botween 1 and 3) and is dynamically siable,
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Exercise 16.1
Loia) ye =2/5 (& ¥=3 & r=w'
Lie) wfit=0 427 -3 (c) vith=¢ +#c' 43
6. Himt: Apply I'Hopital s role,
Exercise 16,2
Ly 4363 (o) - £ 30
3. 15} Hine. When & = x/4. line OF 18 2 45" line,
d . d
X il T : M oot = — W gin
(u) 7 gin f{R) = f{F)cos f1F) (fr} 17 CO% e ain
o) VIHE ek L=

Exercise 16.3
Loty =& (3eosd + 3 3 Sin 1)

7 7
Ropl =g r (- LU %E + % sin -‘:i-:-.:!)
S pit) = Tros3s +sindr + 4
Exerclse 16.4
W M-k P48 wty | Cwty
L[n}P+ﬂ_“IP pameviiaben in = w) 1b]pp_ﬁ+a

3 (@) P(y=e"{2eos g7 + 2ande) + 2
Exercise 16,5

e
1 ia) ;,-?HH —gh=jla =T =AU

{0 Mo complex mots: no Auciuation.

3. i} Both are firg-ovder differennial equatons. fd) g # 1
2 2 - - 1 1
4 (m) wit)=e"’ (,qﬁcu-_-; §;+Aﬁsin %i’) + #t ey F=unll = i am

Exercise 16.6
g ={-1 i p=3¢

Exercise 16.7
L oda) 3, =4 (e} ¥y = —.I'
3. ta) Dvergent. i} Lu:rmergent.

Exercise 17.2
L gl by =w+7 (e} yrg) = 31, = ¥
3.y = 1044 o} by =y —pll4u+a+.--+a")
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Exercise 17.3

L. (ay Nonoscillatonys diverzens, () Oscillawoey; convergent,
1o(a) wo= -1+ 4 fe) y == —2(—1/4¥ + 4

Exercise 17.4

L Qi =w—pth - Pi-sipy - 4P

3. fa) P =3 eaplosive oscillation.  (¢) P = I; uniform oscillalion,
5. The lag in the supply tooction.

Exercise 17.%

L o#=-1
3. P =R — -0 3, wich explosive osaillaion.

Exercise 17.6

1. Mu,
2. {5 Nonosaillatory, explosive downward movemenlt.
() Danapid, gieady downward powvemen waward K.
d. () At fird downward-sloping, then becoming horizonlal,

Exercise 18.1

L+t {0 f.-1

Yo distusonaryl {0} S (atignary)
A

d. (= Ji’(me If + sin EI) + 1

Exercise 18.2

1. (g) Subwasc 100 (0) Subcase |C
3. Mo D {15 16)

Exercise 18.3

3. Possibulities v, viif, x, and o will become feasible.

4. (@) po:—[2 =300 =g - Blp L= AL — @b = Ak = jh]pe = ifkm
e) Bh 24

Exercise 18.4

I {m) 1 (e 354 341

kR {E'j .blﬂ":&-r fl _'|-"||r=2—|'-‘|'||':lt
& (@) 12— and |
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Exercise 19.2

L4 —3ht2m

il v == +H -2 +T7 #m=UNW+A-I+5
@) xit) =4 3N +12  pie)=—e"T eV +d

Exercise 19.3

Ly b=l = .-‘i]_lu

Ay p=ipf +7—A)"i

5 ch i) = 410 4 2o WDy Bl o) = eI — o 1NN 4 il

Exercise 19.4

4. ([ =, A B4 Y A 33 - Y103}
[L".~.]= - V19 ( fil )+ 23+ 193 ( ad )
T.ﬂi] ; T H
i
11’.!—.11}
&

Exercise 19.5

L. The sinple equation Cam b Tewtitien as tey Hirst-order equations,
2. Yes.

d, 1¢) Saddle poimt

Exercise 19.6
L b [fe| = 1 and ir s = 22 locally unstable noda,
ic) |.g] = 5 andir S = =1 locally stable focns
2. 1) Locally a saddle pednt. () Locally stable node or stable [cus,
4. gy The x' =0 and »' = 0 cucves comcide, and provide a lineful of equilibrium

puinds,
Exercise 20.2
1-¢ ;i
I..*.*II— t=— o 2
fows— ¥e5ogt

b L =33 =2 =7 =2

Exercise 20.4
Lo =884 Kr=1/HE +a)
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