Inductive Effect

Lesson 3

Dr. Erum A Hussain Associate Professor Chemistry Department, LCWU

Learning Objectives

Inductive Effect

The polarization of a σ bond due to electron withdrawing or electron donating effect of adjacent groups or atoms is called *inductive effect*.

- In covalent compounds unlike atoms never share electron pair equally in forming sigma bond.
- The e flow is slightly towards more electronegative atom.

Salient features

- * It arises due to electronegativity difference between two atoms forming a sigma bond.
- * It is transmitted through the **sigma bonds**.
- * The magnitude of inductive effect decreases while moving away from the groups causing it.
- * It is a permanent effect.
- * It influences the chemical and physical properties of compounds.

Types of inductive effect

Negative Inductive Effect (-I)

The electron withdrawing nature of groups or atoms is called as negative inductive effect.

Positive Inductive Effect (+*I*)

The electron releasing nature of groups or atoms is called as negative inductive effect.

Some Electronegative groups

It is linear phenomenon, operates bond to bond.

How it operates?

$$\delta\delta\delta\delta+$$
 $\delta\delta+$ $\delta+$ $\delta H_3C\longrightarrow CH_2\longrightarrow CH_2\longrightarrow CH_2$

The inductive effect weakens away along the chain and is not significant beyond 3rd carbon atom.

Some facts.....

 The inductive effect is less influencing than other effects like resonance effect and hyperconjugation.

Exceptions

 In halogens, the negative inductive effect is more dominating than positive resonance effect. This is observed in benzene.

Let's do it!

 How it plays in predicting acidity of acetic acid and its analogues?

Class activity