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3.4. Characters and Character Tables  
  
3.4.1. Deriving character tables:  Where do all the numbers come from? 
 

 
 
• A general and rigorous method for deriving character tables is based on five theorems 

which in turn are based on something called The Great Orthogonality Theorem.  
(e.g. F.A. Cotton, “Chemical Applications of Group Theory”, QD 461.C65 1990) 

 
The five theorems are: 
 
1) The number of irreducible representations is equal 

to the number of classes in the group. 
 
e.g. NH3, point group C3v: 
 
Which C3v symmetry operations are the inverse of 
which… and which are together in one class? 
 

E-1 = E  σv
-1 = σv C3

-1 = C2
3   

  
σ′v-1 = σ′v  (C2

3)-1 = C3 σ″v
-1 = σ″v  

 
Using the above relationships we can set up the following similarity transformations: 
 
 σv x C3 x σv = C2

3  C2
3 x σv x C3 = σ″v  C2

3 x E x C3 = E 
 
 σ″v x C3 x σ″v = C2

3  σv x σv x σv = σv   σv x E x σv = E 
 
 C2

3 x C2
3 x C3 = C2

3   C3 x σv x C2
3 = σ′v  σ″v x E x σ″v = E 

 
 σ′v x C2

3 x σ′v = C3  σ″v x σ′v x σ″v = σv 
 
     σ′v x σ″v x σ′v = σv 
 
→ Apparently {C3, C2

3}, {σv, σ′v, σ″v}, and {E} are each in a class. 
→ In C3v  there are three classes and hence three irreducible representations. 
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2) The characters of all operations in the same class are equal in each given 
irreducible (or reducible) representation. 

 
In above example, all rotations C3, C2

3 will have the same character; all mirror planes 
σv, σ′v, σ″v will have the same character, etc. 

 
 
Def.: The character of a matrix is the sum of all its diagonal elements 
 (also called the trace of a matrix). 
 

Example:  Consider the 3x3 matrix that represents the symmetry operation E as 
performed on a vector (x,y,z) in 3D space: 

 
 
  
 

                                                                     →    trace = 3 
 
 

THEREFORE: A reducible representation for a vector (x,y,z) in 3D space will 
have a character 3 for the symmetry element E. 

 
 
 
Example:  Consider the 3x3 matrix that represents the symmetry operation C3 as 

performed on a vector (x,y,z) in 3D space: 
 
 
 
 
                                               →   trace = 0 
 
 
THEREFORE: A reducible representation for a vector (x,y,z) in 3D space will 

have a character 0 for the symmetry element C3. 
 
 
HOMEWORK: Prove that a reducible representation for a vector (x,y,z) in 3D space will 
also have a character 0 for the symmetry operation C3

2.  
 
NOTE: The reducible representation for a vector (x,y,z) in 3D space is often shown at the 
bottom of a character table. For the C3v character table it is: 
 

C3v E C3 C3
2 σv σv′ σv

″ 
Γx,y,z 3 0 0 1 1 1 
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3) The sum of the squares of all characters in any irreducible representation is 

equal to the order of the group. 
 
… order of the group = number of symmetry operators … 
 

C3v E C3 C3
2

 σv σv′ σv″ 
A1 1 1 1 1 1 1 
A2 1 1 1 -1 -1 -1 
E 2 -1 -1 0 0 0 

 
 Check A1: 12 + 12 +12 + 12 + 12 + 12 = 6 
 Check A2: 12 + 12 +12 + (-1)2 + (-1)2 + (-1)2 = 6 
 Check E: 22 + (-1)2 +(-1)2 + 02 + 02 + 02 = 6 
 
 
4) The point product of the characters of any two irreducible representations is 0. 
 
… let’s check that with the C3v character table above: 
 
ΓA1 * ΓA2 = (1x1) + (1x1) + (1x1) + (1x-1) + (1x-1) + (1x-1) = 0 
 
Γ A2 * ΓE = (1x2) + (1x-1) + (1x-1) + (-1x0) + (-1x0) + (-1x0) = 0 
 
… This is equivalent to saying that all irreducible representations are ORTHOGONAL! 
 
 
5) The sum of the squares of the dimensions of the irreducible representations is 

equal to the order of the group. 
 
Def.:   The dimension of a representation is the trace of the matrix of the identity  

operator (E). 
 

Example:  A vector (x,y,z) in 3D space is (obviously) 3-dimensional: 
 
  
 

                                                                     →    trace = 3 
 
 
Since the characters in the character table are the traces of matrices: 
 
In the point group C3v, the irreducible representation A1 is 1-dimensional 
         A2 is 1-dimensional 
          E is 2-dimensional 
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The order of the group is 6: 12 + 12 + 22 = 6 
A fully worked out example:  
The derivation of the C4v character table 
 
 
The symmetry operations in this point group are:  E, C4, C2

4 = C2, C3
4, σv, σ′v, σd, σ′d. 

 
There are five classes of symmetry operations derived using a multiplication table: 
 
[E], [C2], [C4,C3

4], [σv,σ′v], and [σd,σ′d], i.e. there will be five irreducible representations. 
 
 
• There is always a totally symmetric representation denoted by a set of 1x1 matrices:  
 

i.e., We need ALL symmetry operations!   **none are redundant** 
 

C4v [E] [C4 3C4] [C2 = 2C4] [σv σ′v] [σd σ′d] 
Γ1 [1] [1 1] [1] [1 1] [1 1] 
Γ2         
Γ3         
Γ4         
Γ5         

 
 
• Theorem 5 says, that the sum of the squares of the dimensions of the group must be 

equal to the order of the group: 
 

C4v E C4 3C4 C2 σv σ′v σd σ′d 
Γ1 1 1 1 1 1 1 1 1 
Γ2 1        
Γ3 1        
Γ4 1        
Γ5 2        

 
 
… because 12 + 12 + 12 + 12 + 22 = 8 = order of the group, i.e. one of the irreducible 
representations will be two-dimensional ! 
 
• based on the theorems we also know that … 
 
- the characters of all operations in the same class are the same in each the irreducible 

representations 
 

- the sum of the squares of each row must be = 8 
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- the point product of any two rows must be = 0  ⇐ ORTHOGONAL!! 
… ok let’s play with that 
 

C4v [E] [C4 C3
4] [C2] [σv σ′v] [σd σ′d] 

Γ1 [1] [1 1] [1] [1 1] [1 1] 
Γ2 [1] [1 1] [1] [-1 -1] [-1 -1] 
Γ3 [1] [-1 -1] [1] [-1 -1] [1 1] 
Γ4 [1] [-1 -1] [1] [1 1] [-1 -1] 
Γ5 [2] [       ] [  ] [    ] [   ] 

 
 
… because of theorem # 2 we can actually simplify this a little: 
 

C4v E 2C4 C2 2σv 2σd 
Γ1 1 1 1 1 1 
Γ2 1 1 1 -1 -1 
Γ3 1 -1 1 -1 1 
Γ4 1 -1 1 1 -1 
Γ5 2 a b c d 

 
 
• Using theorem # 4 we can now write down 4 equations that uniquely determine the 

remaining 4 unknown characters a, b, c, d: 
 
Γ1 * Γ5 = 1 * 2 + 2 * 1 * a + 1 * b * + 2 * 1 * c + 2 * 1 * d 
 

= 2 + 2a + b + 2c + 2d  = 0 
 

Γ2 * Γ5 = 2 + 2a + b – 2c – 2d = 0 
 
Γ3 * Γ5 = 2 – 2a + b + -2c + 2d = 0 
 
Γ4 * Γ5 = 2 – 2a + b + 2c – 2d = 0 
 
From this we find:   a = 0,   b = -2,   c = 0,   d = 0 
 
• Using our definitions of Mulliken symbols, we can complete the character table by 

naming the reducible representations:  
 

C4v E 2C4 C2 2σv 2σd 
A1 1 1 1 1 1 
A2 1 1 1 -1 -1 
B1 1 -1 1 -1 1 
B2 1 -1 1 1 -1 
E 2 0 -2 0 0 
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3.4.2. Using Character tables … you will be doing this a lot! 
 
• Again the C4v character table – this time the “extended version”: 
 

C4v E 2C4 C2 2σv 2σd Basis Basis 
Function 

A1 1 1 1 1 1 z x2 + y2, z2 
A2 1 1 1 -1 -1 Rz  
B1 1 -1 1 1     -1  x2-y2 

B2 1 -1 1 -1 1  xy 
E 2 0 -2 0 0 (x,y) (Rx,Ry) (xz, yz) 

 
 
Basis and Basis functions:  
 
• Consider the matrix representations of all the symmetry operations in C4v : 
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Conclusions: 
 
- z never “mixes” with x or y 
- x and y are “mixed” by C4 and σd 

 
→ Can separate to set of block diagonalized matrices: 
 
 E 2 C4 C2 σxz σyz σd σ′d 
Γx,y 

  

 

   

 
Γz [1] [1] [1] [1] [1] [1] [1] 
 
 
The characters of the matrices of Γx,y and Γz are: 
 
Γz: all = 1 
 
 E 2 C4 C2 σxz σyz σd σ′d 
Γx,y 2 0 -2 0 0 0 0 
 
Comparing this result with the complete character table above, we can say: 
 
→  x and y form a basis for the irreducible representation E in C4v 
 
→  z forms a basis for the irreducible representation A1 in C4v 
 
What can we do  
with basis functions ? 
 
Consider a dx2-y2 orbital: 
 
- Any symmetry operation on 

C4v transforms dx2-y2 onto 
itself or it’s negative. 
 

- The orbital transforms in a 
one-dimensional 
representation, i.e. with no 
mixing of coordinates. 
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The correct irreducible representation for a dx2-y2 under C4v is thus: 
 

C4v E 2C4 C2 2σv 2σd Basis Basis 
Function 

B1 1 -1 1 1 -1  x2-y2 

 
We say: “x2-y2 transforms like B1 under C4v” 
 
Next consider a rotation about the 
z-axis shown here as a curved 
arrow: 
 
Key:  Look along the axis of 
rotation and determine the sense 
of rotation before and after the 
symmetry operation performed on 
the curved arrow. 
 
 
→  Only the two σ operations 
have an effect leading to the 
following irreducible 
representation: 
 
 

C4v E 2C4 C2 2σv 2σd Basis Basis 
Function 

A2 1 1 1 -1 -1 Rz  
 
“Rz transforms like A2 under C4v” 
 
• Similarly one finds that rotations Rx and Ry mix and together form a basis for the E 

representation under C4v. 
 
 
 
 

In general the basis functions denoted by x, y, z, xz, xy, yz, x2-y2, and z2 directly 
relate to the symmetries of the orbitals and their transformations in the point group 
of the molecule under consideration. 
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… further complications: 
 
• Many point groups (in particular the ones with primary axis of rotation with an odd #) 

have imaginary characters represented either by ± i or ε and ε*. 
 

• for any point group with principal axis Cn:   
 

• Using Euler’s relationship: 
 

 

 
• Imaginary characters always appear in pairs of conjugated complex numbers – their 

occurrence is a mathematical necessity. 
 
e.g.:  Point group C3 (cf. B(OH)3 from homework example): 
 

 
Since the principle axis is C3,  ε = exp(2πi/3) 
 
• In order to use this character table on a real physical problem, we need real numbers;  

they are obtained by adding the pair-wise complex conjugated numbers to give real 
numbers, e.g. for C3: 

using  

 

 

 
→ {1 + 1} {ε + ε*} {ε* + ε}  =  {2}    {-1}   {-1} 

 
A usable form of the C3 table is thus: 
 

C3 E C3 C2
3 

A 1 1 1 
E 2 -1 -1 
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Meaning:  x and y form a basis for the E representation 
 
• Using the general rotation matrices developed earlier: 
 

 

 

 

 
The traces of these matrices are both = -1   
These are the characters shown in the usable table. 
 
 
3.4.3. Deconstructing reducible representations  **will become v. important** 
 
CONCEPT:  An infinite number of reducible representations is possible. Each reducible 

representation can be deconstructed (reduced) to a sum of a finite set of 
irreducible representations. 

 
 e.g.: Consider an arbitrary reducible representation Γred in C2v symmetry: 
 

C2v E C2 σv σ’v 

A1 1 1 1 1 
A2 1 1 -1 -1 
B1 1 -1 1 -1 
B2 1 -1 -1 1 
Γred 3 1 3 1 

 
 
By inspection, we see that it is the sum of two A1 and one B1 irreducible representations: 
 
  2 A1  = 2 2 2 2 
 B1 = 1 -1 1 -1 
        
 
Γred = 2 A1 + B1 = 3 1 3 1 
   
Clearly, in more complicated case, the inspection method can be extremely difficult.  
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There exists a very simple formula that deconvolutes any reducible representation into its 
irreducible components: 
 

 

 
ai =  number of times that the irreducible representation Γi occurs in the reducible 

representation Γred under investigation. 
 
h =  order of the point group (= number of symmetry operations) 
 
R =  operation in the point group 
 
χR =  character of the operation R in Γred 
 
χi

R =  character of the operation R in Γi 
 
 
… let’s apply this formula to the previous example in C2v: 
 

 E C2 σv σ’v 

Γred 3 1 3 1 
 
 

  
      i.e.,  need 2 x A1 
 
 

 

 

 

 

 

 
 

→ Γred = 2 A1 + B1 
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3.4.4.  The Direct Product (… for completeness sake, important in spectroscopy) 
 
Def.:  The direct product of two (ir)reducible representations is obtained by multiplying 
the respective characters of the representations.  The result is again an (ir)reducible 
representation of the same group. 
 
e.g.: 
 

D3 E 2 C3 3 C2 

A1 1 1 1 
A2 1 1 -1 
E 2 -1 0 

A1 x E 2 -1 0 
A2 x E 2 -1 0 
E x E 4 1 0 

A2 x A2 1 1 1 
 
 
Literature list for further reading on symmetry (if you like…): 
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QD461.C32 1998 
 
“Group Theory and Chemistry” 
David M. Bishop, Dover Publications, 1993, New York. 
QD455.3.G75B57 
 
“Group Theory and Symmetry in Chemistry” 
Lowell H. Hall, Mcgraw-Hill, 1969, New York. 
QD 461.H17 
 
“Molecular Symmetry; An Introduction to Group Theory and Its Uses in Chemistry” 
David S. Schonland, van Nostrand, 1965, London. 
QD 461.S35 
 
“Symmetry and Group Theory in Chemistry” 
Mark Ladd ; foreword by Lord Lewis, Horwood chemical science series, Horwood 
Publishing, Chichester, England, 1998. 
QD455.3.G75 L33x 1998 
 


