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PREFACE

This ninth edition of Biostatistics: A Foundation for Analysis in the Health Sciences
should appeal to the same audience for which the first eight editions were written:
advanced undergraduate students, beginning graduate students, and health professionals
in need of a reference book on statistical methodology.

Like its predecessors, this edition requires few mathematical prerequisites. Only
reasonable proficiency in algebra is required for an understanding of the concepts and
methods underlying the calculations. The emphasis continues to be on an intuitive
understanding of principles rather than an understanding based on mathematical
sophistication.

For most of the statistical techniques covered in this edition, we discuss the capa-
bilities of one or more software packages (MINITAB, SAS, SPSS, and NCSS) that may
be used to perform the calculations needed for their application. Resulting screen dis-
plays are also shown.

NEW TO THIS EDITION

Chapter Overviews. In this edition, we introduce each chapter with a brief chapter
overview that alerts students to the concepts that they will encounter as they read and
study the chapter. The chapter overviews use non-technical language in order to provide
students with a general understanding of the chapter contents without having to be con-
fronted with unfamiliar terminology.

Leaning Outcomes. Before they begin reading each chapter, students are provided with
a list of learning outcomes that inform them of what they will be expected to know after
having read and studied the chapter. Instructors may also use the learning outcomes as
guides when preparing chapter-by-chapter syllabi.

Summaries of Equations. Where appropriate, students will find at the ends of chapters
a summary of the equations that were used in the chapter. This feature will provide stu-
dents with a quick reference source when working on homework assignments. Instruc-
tors who wish to do so may allow students to bring copies of the equation summaries
to the classroom for use during tests.

New Topics. Following is a chapter-by-chapter summary of the topics that are new to
this edition of Biostatistics.
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Chapter 1 Introduction to Biostatistics. The sampling topic is expanded to include a
discussion of systematic sampling, including comments on stratified systematic sampling
and stratified sampling proportional to size. A new section is devoted to the scientific
method and the design of experiments.

Chapter 2 Descriptive Statistics. Skewness and kurtosis are discussed in considerable
detail and illustrated with computer-generated graphs.

Chapter 3 Some Basic Probability Concepts. The discussion of Bayesian proba-
bility is expanded to enhance students’ understanding of the application of Bayes’s
theorem.

Chapter 4 Probability Distributions. The discussion of probability distributions is
expanded.

Chapter 5 Some Important Sampling Distributions. This chapter is essentially
unchanged.

Chapter 6 Estimation. Several brief comments and new computer output are added for
the purpose of clarifying certain topics.

Chapter 7 Hypothesis Testing. This chapter contains several new computer printouts.

Chapter 8 Analysis of Variance. Additional comments and new computer printouts are
added to help clarify several topics covered in this chapter.

Chapter 9 Simple Linear Regression and Correlation. Several explanatory comments,
a section on testing the regression assumptions, and several computer printouts are new
to this chapter.

Chapter 10 Multiple Regression and Correlation. New to this chapter are several com-
puter printouts and comments for added clarification.

Chapter 11 Regression Analysis: Some Additional Techniques. The discussion of
regression assumptions is expanded to include the following topics: non-normal data,
unequal error variances, and correlated independent variables. The discussion of variable
selection procedures is expanded to include forward selection and backward elimination
strategies. Discussions of multiple logistic regression and polytomous logistic regression
have been added to the logistic regression section.

Chapter 12 The Chi-Square Distribution and the Analysis of Frequencies. This
chapter contains several new explanatory paragraphs, new examples, and new computer
printouts. The section on survival analysis has been expanded and augmented with new
computer output.
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Chapter 13 Nonparametric and Distribution-Free Statistics. New explanatory com-
ments and computer printouts have been added in this chapter.

Chapter 14 Vital Statistics. The introduction now includes a paragraph on epidemiology.

SUPPLEMENTS

Instructor’s Solutions Manual. Prepared by Chad Cross, University of Nevada, Las
Vegas. Includes solutions to all problems found in the text. Available only to instructors
who have adopted the text.

New! Student Solutions Manual. Prepared by Chad Cross, University of Nevada, Las
Vegas. Includes solutions to all odd numbered exercises. May be packaged with the text
at a discounted price.

Data Sets. More than 250 data sets of varying sizes have been integrated throughout the
exposition, evidencing this edition’s focus on currency and relevance to modern students.
All examples, section exercises, and review exercises of more then 20 entries are avail-
able at the Wiley Web site below. The large data sets are designed for analysis by the
following techniques: probability (Chapter 3), interval estimation (Chapter 6), hypothesis
testing (Chapter 7), analysis of variance (Chapter 8), simple linear regression (Chapter 9),
multiple regression (Chapter 10), advanced regression analysis (Chapter 11), and chi-
square (Chapter 12). Exercises at the end of these chapters instruct students on how to
use the large data sets. The data sets are available to both instructor and student for down-
load from the Wiley Web site at

www.wiley.com/college/daniel

If you do not have Internet access, please contact the publisher at 111 River Street,
Hoboken, NJ 07030-5774, telephone: 1-877-762-2974 to obtain the electronic files.
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CHAPTER 1

INTRODUCTION TO
BIOSTATISTICS

CHAPTER OVERVIEW

This chapter is intended to provide an overview of the basic statistical con-
cepts used throughout the textbook. A course in statistics requires the student
to learn many new terms and concepts. This chapter lays the foundation nec-
essary for the understanding of basic statistical terms and concepts and the
role that statisticians play in promoting scientific discovery and wisdom.

TOPICS

1.1 INTRODUCTION

1.2 SOME BASIC CONCEPTS

1.3 MEASUREMENT AND MEASUREMENT SCALES

1.4 SAMPLING AND STATISTICAL INFERENCE

1.5 THE SCIENTIFIC METHOD ANDTHE DESIGN OF EXPERIMENTS
1.6 COMPUTERS AND BIOSTATISTICAL ANALYSIS

1.7 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand the basic concepts and terminology of biostatistics, including the
various kinds of variables, measurement, and measurement scales.

2. be able to select a simple random sample and other scientific samples from a
population of subjects.

3. understand the processes involved in the scientific method and the design of
experiments.

4. appreciate the advantages of using computers in the statistical analysis of data
generated by studies and experiments conducted by researchers in the health
sciences.
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CHAPTER 1

INTRODUCTION TO BIOSTATISTICS

INTRODUCTION

We are frequently reminded of the fact that we are living in the information age. Appro-
priately, then, this book is about information—how it is obtained, how it is analyzed,
and how it is interpreted. The information about which we are concerned we call data,
and the data are available to us in the form of numbers.

The objectives of this book are twofold: (1) to teach the student to organize and
summarize data, and (2) to teach the student how to reach decisions about a large body
of data by examining only a small part of the data. The concepts and methods necessary
for achieving the first objective are presented under the heading of descriptive statistics,
and the second objective is reached through the study of what is called inferential sta-
tistics. This chapter discusses descriptive statistics. Chapters 2 through 5 discuss topics
that form the foundation of statistical inference, and most of the remainder of the book
deals with inferential statistics.

Because this volume is designed for persons preparing for or already pursuing a
career in the health field, the illustrative material and exercises reflect the problems and
activities that these persons are likely to encounter in the performance of their duties.

1.2 SOME BASIC CONCEPTS

Like all fields of learning, statistics has its own vocabulary. Some of the words and
phrases encountered in the study of statistics will be new to those not previously exposed
to the subject. Other terms, though appearing to be familiar, may have specialized mean-
ings that are different from the meanings that we are accustomed to associating with
these terms. The following are some terms that we will use extensively in this book.

Data The raw material of statistics is data. For our purposes we may define data as
numbers. The two kinds of numbers that we use in statistics are numbers that result from
the taking—in the usual sense of the term—of a measurement, and those that result from
the process of counting. For example, when a nurse weighs a patient or takes a patient’s
temperature, a measurement, consisting of a number such as 150 pounds or 100 degrees
Fahrenheit, is obtained. Quite a different type of number is obtained when a hospital
administrator counts the number of patients—perhaps 20—discharged from the hospital
on a given day. Each of the three numbers is a datum, and the three taken together are
data.

Statistics The meaning of statistics is implicit in the previous section. More con-
cretely, however, we may say that statistics is a field of study concerned with (1) the
collection, organization, summarization, and analysis of data; and (2) the drawing of
inferences about a body of data when only a part of the data is observed.

The person who performs these statistical activities must be prepared to interpret
and to communicate the results to someone else as the situation demands. Simply put,
we may say that data are numbers, numbers contain information, and the purpose of sta-
tistics is to investigate and evaluate the nature and meaning of this information.
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Sources of Data The performance of statistical activities is motivated by the need
to answer a question. For example, clinicians may want answers to questions regarding
the relative merits of competing treatment procedures. Administrators may want answers
to questions regarding such areas of concern as employee morale or facility utilization.
When we determine that the appropriate approach to seeking an answer to a question
will require the use of statistics, we begin to search for suitable data to serve as the raw
material for our investigation. Such data are usually available from one or more of the
following sources:

1. Routinely kept records. It is difficult to imagine any type of organization that
does not keep records of day-to-day transactions of its activities. Hospital medical
records, for example, contain immense amounts of information on patients, while
hospital accounting records contain a wealth of data on the facility’s business activ-
ities. When the need for data arises, we should look for them first among routinely
kept records.

2. Surveys. If the data needed to answer a question are not available from routinely
kept records, the logical source may be a survey. Suppose, for example, that the
administrator of a clinic wishes to obtain information regarding the mode of trans-
portation used by patients to visit the clinic. If admission forms do not contain a
question on mode of transportation, we may conduct a survey among patients to
obtain this information.

3. Experiments. Frequently the data needed to answer a question are available only
as the result of an experiment. A nurse may wish to know which of several strate-
gies is best for maximizing patient compliance. The nurse might conduct an exper-
iment in which the different strategies of motivating compliance are tried with dif-
ferent patients. Subsequent evaluation of the responses to the different strategies
might enable the nurse to decide which is most effective.

4. External sources. The data needed to answer a question may already exist in
the form of published reports, commercially available data banks, or the research
literature. In other words, we may find that someone else has already asked
the same question, and the answer obtained may be applicable to our present
situation.

Biostatistics The tools of statistics are employed in many fields—business, edu-
cation, psychology, agriculture, and economics, to mention only a few. When the data
analyzed are derived from the biological sciences and medicine, we use the term biosta-
tistics to distinguish this particular application of statistical tools and concepts. This area
of application is the concern of this book.

Variable If, as we observe a characteristic, we find that it takes on different values
in different persons, places, or things, we label the characteristic a variable. We do this
for the simple reason that the characteristic is not the same when observed in different
possessors of it. Some examples of variables include diastolic blood pressure, heart rate,
the heights of adult males, the weights of preschool children, and the ages of patients
seen in a dental clinic.
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Quantitative Variables A quantitative variable is one that can be measured in
the usual sense. We can, for example, obtain measurements on the heights of adult males,
the weights of preschool children, and the ages of patients seen in a dental clinic. These
are examples of quantitative variables. Measurements made on quantitative variables
convey information regarding amount.

Qualitative Variables Some characteristics are not capable of being measured
in the sense that height, weight, and age are measured. Many characteristics can be
categorized only, as, for example, when an ill person is given a medical diagnosis, a
person is designated as belonging to an ethnic group, or a person, place, or object is
said to possess or not to possess some characteristic of interest. In such cases meas-
uring consists of categorizing. We refer to variables of this kind as qualitative vari-
ables. Measurements made on qualitative variables convey information regarding
attribute.

Although, in the case of qualitative variables, measurement in the usual sense of
the word is not achieved, we can count the number of persons, places, or things belong-
ing to various categories. A hospital administrator, for example, can count the number
of patients admitted during a day under each of the various admitting diagnoses. These
counts, or frequencies as they are called, are the numbers that we manipulate when our
analysis involves qualitative variables.

Random Variable Whenever we determine the height, weight, or age of an indi-
vidual, the result is frequently referred to as a value of the respective variable. When the
values obtained arise as a result of chance factors, so that they cannot be exactly pre-
dicted in advance, the variable is called a random variable. An example of a random
variable is adult height. When a child is born, we cannot predict exactly his or her height
at maturity. Attained adult height is the result of numerous genetic and environmental
factors. Values resulting from measurement procedures are often referred to as observa-
tions or measurements.

Discrete Random Variable Variables may be characterized further as to
whether they are discrete or continuous. Since mathematically rigorous definitions of dis-
crete and continuous variables are beyond the level of this book, we offer, instead, non-
rigorous definitions and give an example of each.

A discrete variable is characterized by gaps or interruptions in the values that it
can assume. These gaps or interruptions indicate the absence of values between particu-
lar values that the variable can assume. Some examples illustrate the point. The number
of daily admissions to a general hospital is a discrete random variable since the number
of admissions each day must be represented by a whole number, such as 0, 1, 2, or 3.
The number of admissions on a given day cannot be a number such as 1.5, 2.997, or
3.333. The number of decayed, missing, or filled teeth per child in an elementary school
is another example of a discrete variable.

Continuous Random Variable A continuous random variable does not
possess the gaps or interruptions characteristic of a discrete random variable. A con-
tinuous random variable can assume any value within a specified relevant interval of
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values assumed by the variable. Examples of continuous variables include the various
measurements that can be made on individuals such as height, weight, and skull cir-
cumference. No matter how close together the observed heights of two people, for
example, we can, theoretically, find another person whose height falls somewhere in
between.

Because of the limitations of available measuring instruments, however, observa-
tions on variables that are inherently continuous are recorded as if they were discrete.
Height, for example, is usually recorded to the nearest one-quarter, one-half, or whole
inch, whereas, with a perfect measuring device, such a measurement could be made as
precise as desired.

Population The average person thinks of a population as a collection of entities,
usually people. A population or collection of entities may, however, consist of animals,
machines, places, or cells. For our purposes, we define a population of entities as the
largest collection of entities for which we have an interest at a particular time. If we
take a measurement of some variable on each of the entities in a population, we gener-
ate a population of values of that variable. We may, therefore, define a population of
values as the largest collection of values of a random variable for which we have an
interest at a particular time. If, for example, we are interested in the weights of all the
children enrolled in a certain county elementary school system, our population consists
of all these weights. If our interest lies only in the weights of first-grade students in the
system, we have a different population—weights of first-grade students enrolled in the
school system. Hence, populations are determined or defined by our sphere of interest.
Populations may be finite or infinite. If a population of values consists of a fixed num-
ber of these values, the population is said to be finite. If, on the other hand, a popula-
tion consists of an endless succession of values, the population is an infinite one.

Sample A sample may be defined simply as a part of a population. Suppose our
population consists of the weights of all the elementary school children enrolled in a
certain county school system. If we collect for analysis the weights of only a fraction
of these children, we have only a part of our population of weights, that is, we have a
sample.

1.3 MEASUREMENT AND
MEASUREMENT SCALES

In the preceding discussion we used the word measurement several times in its usual sense,
and presumably the reader clearly understood the intended meaning. The word measure-
ment, however, may be given a more scientific definition. In fact, there is a whole body
of scientific literature devoted to the subject of measurement. Part of this literature is con-
cerned also with the nature of the numbers that result from measurements. Authorities on
the subject of measurement speak of measurement scales that result in the categorization
of measurements according to their nature. In this section we define measurement and the
four resulting measurement scales. A more detailed discussion of the subject is to be found
in the writings of Stevens (1, 2).
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Measurement This may be defined as the assignment of numbers to objects or
events according to a set of rules. The various measurement scales result from the fact
that measurement may be carried out under different sets of rules.

The Nominal Scale The lowest measurement scale is the nominal scale. As the
name implies it consists of “naming” observations or classifying them into various mutu-
ally exclusive and collectively exhaustive categories. The practice of using numbers to
distinguish among the various medical diagnoses constitutes measurement on a nominal
scale. Other examples include such dichotomies as male—female, well-sick, under 65
years of age—65 and over, child-adult, and married—not married.

The Ordinal Scale Whenever observations are not only different from category
to category but can be ranked according to some criterion, they are said to be measured
on an ordinal scale. Convalescing patients may be characterized as unimproved,
improved, and much improved. Individuals may be classified according to socioeconomic
status as low, medium, or high. The intelligence of children may be above average, aver-
age, or below average. In each of these examples the members of any one category are
all considered equal, but the members of one category are considered lower, worse, or
smaller than those in another category, which in turn bears a similar relationship to
another category. For example, a much improved patient is in better health than one clas-
sified as improved, while a patient who has improved is in better condition than one who
has not improved. It is usually impossible to infer that the difference between members
of one category and the next adjacent category is equal to the difference between mem-
bers of that category and the members of the next category adjacent to it. The degree of
improvement between unimproved and improved is probably not the same as that
between improved and much improved. The implication is that if a finer breakdown were
made resulting in more categories, these, too, could be ordered in a similar manner. The
function of numbers assigned to ordinal data is to order (or rank) the observations from
lowest to highest and, hence, the term ordinal.

The Interval Scale The interval scale is a more sophisticated scale than the
nominal or ordinal in that with this scale not only is it possible to order measurements,
but also the distance between any two measurements is known. We know, say, that the
difference between a measurement of 20 and a measurement of 30 is equal to the dif-
ference between measurements of 30 and 40. The ability to do this implies the use of a
unit distance and a zero point, both of which are arbitrary. The selected zero point is not
necessarily a true zero in that it does not have to indicate a total absence of the quan-
tity being measured. Perhaps the best example of an interval scale is provided by the
way in which temperature is usually measured (degrees Fahrenheit or Celsius). The unit
of measurement is the degree, and the point of comparison is the arbitrarily chosen “zero
degrees,” which does not indicate a lack of heat. The interval scale unlike the nominal
and ordinal scales is a truly quantitative scale.

The Ratio Scale The highest level of measurement is the ratio scale. This scale
is characterized by the fact that equality of ratios as well as equality of intervals may be
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determined. Fundamental to the ratio scale is a true zero point. The measurement of such
familiar traits as height, weight, and length makes use of the ratio scale.

1.4 SAMPLING AND
STATISTICAL INFERENCE

As noted earlier, one of the purposes of this book is to teach the concepts of statistical
inference, which we may define as follows:

DEFINITION
Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a
sample that has been drawn from that population.

There are many kinds of samples that may be drawn from a population. Not every
kind of sample, however, can be used as a basis for making valid inferences about a pop-
ulation. In general, in order to make a valid inference about a population, we need a sci-
entific sample from the population. There are also many kinds of scientific samples that
may be drawn from a population. The simplest of these is the simple random sample. In
this section we define a simple random sample and show you how to draw one from a
population.

If we use the letter N to designate the size of a finite population and the letter n
to designate the size of a sample, we may define a simple random sample as follows:

DEFINITION
If a sample of size n is drawn from a population of size /V in such a
way that every possible sample of size n has the same chance of being
selected, the sample is called a simple random sample.

The mechanics of drawing a sample to satisfy the definition of a simple random
sample is called simple random sampling.

We will demonstrate the procedure of simple random sampling shortly, but first let
us consider the problem of whether to sample with replacement or without replacement.
When sampling with replacement is employed, every member of the population is avail-
able at each draw. For example, suppose that we are drawing a sample from a population
of former hospital patients as part of a study of length of stay. Let us assume that the
sampling involves selecting from the shelves in the medical records department a sample
of charts of discharged patients. In sampling with replacement we would proceed as fol-
lows: select a chart to be in the sample, record the length of stay, and return the chart to
the shelf. The chart is back in the “population” and may be drawn again on some subse-
quent draw, in which case the length of stay will again be recorded. In sampling without
replacement, we would not return a drawn chart to the shelf after recording the length of
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stay, but would lay it aside until the entire sample is drawn. Following this procedure,
a given chart could appear in the sample only once. As a rule, in practice, sampling
is always done without replacement. The significance and consequences of this will be
explained later, but first let us see how one goes about selecting a simple random sam-
ple. To ensure true randomness of selection, we will need to follow some objective
procedure. We certainly will want to avoid using our own judgment to decide which
members of the population constitute a random sample. The following example illus-
trates one method of selecting a simple random sample from a population.

EXAMPLE 1.4.1

Gold et al. (A-1) studied the effectiveness on smoking cessation of bupropion SR, a nico-
tine patch, or both, when co-administered with cognitive-behavioral therapy. Consecutive
consenting patients assigned themselves to one of the three treatments. For illustrative pur-
poses, let us consider all these subjects to be a population of size N = 189. We wish to
select a simple random sample of size 10 from this population whose ages are shown in
Table 1.4.1.

TABLE 1.4.1 Ages of 189 Subjects Who Participated in a Study on Smoking
Cessation

Subject No. Age Subject No. Age Subject No. Age Subject No. Age

1 48 49 38 97 51 145 52
2 35 50 44 98 50 146 53
3 46 51 43 99 50 147 61
4 44 52 47 100 55 148 60
5 43 53 46 101 63 149 53
6 42 54 57 102 50 150 53
7 39 55 52 103 59 151 50
8 44 56 54 104 54 152 53
9 49 57 56 105 60 153 54
10 49 58 53 106 50 154 61
M 44 59 64 107 56 155 61
12 39 60 53 108 68 156 61
13 38 61 58 109 66 157 64
14 49 62 54 110 71 158 53
15 49 63 59 m 82 159 53
16 53 64 56 12 68 160 54
17 56 65 62 13 78 161 61
18 57 66 50 14 66 162 60
19 51 67 64 115 70 163 51
20 61 68 53 116 66 164 50
21 53 69 61 17 78 165 53
22 66 70 53 18 69 166 64
23 71 71 62 19 71 167 64
24 75 72 57 120 69 168 53

(Continued)
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Subject No. Age Subject No. Age Subject No. Age Subject No. Age
25 72 73 52 121 78 169 60
26 65 74 54 122 66 170 54
27 67 75 61 123 68 171 55
28 38 76 59 124 71 172 58
29 37 77 57 125 69 173 62
30 46 78 52 126 77 174 62
31 44 79 54 127 76 175 54
32 44 80 53 128 71 176 53
33 48 81 62 129 43 177 61
34 49 82 52 130 47 178 54
35 30 83 62 131 48 179 51
36 45 84 57 132 37 180 62
37 47 85 59 133 40 181 57
38 45 86 59 134 42 182 50
39 48 87 56 135 38 183 64
40 47 88 57 136 49 184 63
41 47 89 53 137 43 185 65
42 44 90 59 138 46 186 71
43 48 91 61 139 34 187 71
44 43 92 55 140 46 188 73
45 45 93 61 141 46 189 66
46 40 94 56 142 48

47 48 95 52 143 47

48 49 96 54 144 43

Source: Paul B. Gold, Ph.D. Used with permission.

Solution:

One way of selecting a simple random sample is to use a table of random
numbers like that shown in the Appendix, Table A. As the first step, we
locate a random starting point in the table. This can be done in a number
of ways, one of which is to look away from the page while touching it with
the point of a pencil. The random starting point is the digit closest to where
the pencil touched the page. Let us assume that following this procedure
led to a random starting point in Table A at the intersection of row 21 and
column 28. The digit at this point is 5. Since we have 189 values to choose
from, we can use only the random numbers 1 through 189. It will be con-
venient to pick three-digit numbers so that the numbers 001 through 189
will be the only eligible numbers. The first three-digit number, beginning
at our random starting point is 532, a number we cannot use. The next num-
ber (going down) is 196, which again we cannot use. Let us move down
past 196, 372, 654, and 928 until we come to 137, a number we can use.
The age of the 137th subject from Table 1.4.1 is 43, the first value in our
sample. We record the random number and the corresponding age in Table
1.4.2. We record the random number to keep track of the random numbers
selected. Since we want to sample without replacement, we do not want to
include the same individual’s age twice. Proceeding in the manner just
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TABLE 1.4.2 Sample of
10 Ages Drawn from the
Ages in Table 1.4.1

Random Sample
Number Subject Number Age

137
14
155
183
185
028
085
181
018
164

43
66
61
64
65
38
59
57
57
50
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described leads us to the remaining nine random numbers and their corre-
sponding ages shown in Table 1.4.2. Notice that when we get to the end of
the column, we simply move over three digits to 028 and proceed up the
column. We could have started at the top with the number 369.

Thus we have drawn a simple random sample of size 10 from a pop-
ulation of size 189. In future discussions, whenever the term simple random
sample is used, it will be understood that the sample has been drawn in this
or an equivalent manner. [ |

The preceding discussion of random sampling is presented because of the impor-

tant role that the sampling process plays in designing research studies and experiments.
The methodology and concepts employed in sampling processes will be described in
more detail in Section 1.5.

DEFINITION

A research study is a scientific study of a phenomenon of interest.
Research studies involve designing sampling protocols, collecting and
analyzing data, and providing valid conclusions based on the results of
the analyses.

DEFINITION
Experiments are a special type of research study in which observations
are made after specific manipulations of conditions have been carried
out; they provide the foundation for scientific research.

Despite the tremendous importance of random sampling in the design of research

studies and experiments, there are some occasions when random sampling may not be the
most appropriate method to use. Consequently, other sampling methods must be considered.
The intention here is not to provide a comprehensive review of sampling methods, but rather
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to acquaint the student with two additional sampling methods that are employed in the health
sciences, systematic sampling and stratified random sampling. Interested readers are referred
to the books by Thompson (3) and Levy and Lemeshow (4) for detailed overviews of var-
ious sampling methods and explanations of how sample statistics are calculated when these
methods are applied in research studies and experiments.

Systematic Sampling A sampling method that is widely used in healthcare
research is the systematic sample. Medical records, which contain raw data used in
healthcare research, are generally stored in a file system or on a computer and hence are
easy to select in a systematic way. Using systematic sampling methodology, a researcher
calculates the total number of records needed for the study or experiment at hand. A ran-
dom numbers table is then employed to select a starting point in the file system. The
record located at this starting point is called record x. A second number, determined by
the number of records desired, is selected to define the sampling interval (call this inter-
val k). Consequently, the data set would consist of records x, x + k, x + 2k, x + 3k,
and so on, until the necessary number of records are obtained.

EXAMPLE 1.4.2

Continuing with the study of Gold et al. (A-1) illustrated in the previous example, imag-
ine that we wanted a systematic sample of 10 subjects from those listed in Table 1.4.1.

Solution: To obtain a starting point, we will again use Appendix Table A. For pur-
poses of illustration, let us assume that the random starting point in Table
A was the intersection of row 10 and column 25. The digit is a 4 and will
serve as our starting point, x. Since we are starting at subject 4, this leaves
185 remaining subjects from which to choose. Since we wish to select 10
subjects, one method to define the sample interval, k, would be to take
185/10 = 18.5. To ensure that there will be enough subjects, it is custom-
ary to round this quotient down, and hence we will round the result to 18.
The resulting sample is shown in Table 1.4.3.

TABLE 1.4.3 Sample of 10 Ages Selected
Using a Systematic Sample from the Ages

in Table 1.4.1

Systematically Selected Subject Number Age

4 44

22 66

40 47

58 53

76 59

94 56

12 68

130 47

148 60

166 64
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Stratified Random Sampling A common situation that may be encountered
in a population under study is one in which the sample units occur together in a grouped
fashion. On occasion, when the sample units are not inherently grouped, it may be pos-
sible and desirable to group them for sampling purposes. In other words, it may be desir-
able to partition a population of interest into groups, or strata, in which the sample units
within a particular stratum are more similar to each other than they are to the sample
units that compose the other strata. After the population is stratified, it is customary to
take a random sample independently from each stratum. This technique is called strati-
fied random sampling. The resulting sample is called a stratified random sample.
Although the benefits of stratified random sampling may not be readily observable, it is
most often the case that random samples taken within a stratum will have much less vari-
ability than a random sample taken across all strata. This is true because sample units
within each stratum tend to have characteristics that are similar.

EXAMPLE 1.4.3

Hospital trauma centers are given ratings depending on their capabilities to treat various
traumas. In this system, a level 1 trauma center is the highest level of available trauma
care and a level 4 trauma center is the lowest level of available trauma care. Imagine
that we are interested in estimating the survival rate of trauma victims treated at hospi-
tals within a large metropolitan area. Suppose that the metropolitan area has a level 1, a
level 2, and a level 3 trauma center. We wish to take samples of patients from these
trauma centers in such a way that the total sample size is 30.

Solution: We assume that the survival rates of patients may depend quite significantly
on the trauma that they experienced and therefore on the level of care that
they receive. As a result, a simple random sample of all trauma patients,
without regard to the center at which they were treated, may not represent
true survival rates, since patients receive different care at the various trauma
centers. One way to better estimate the survival rate is to treat each trauma
center as a stratum and then randomly select 10 patient files from each of
the three centers. This procedure is based on the fact that we suspect that
the survival rates within the trauma centers are less variable than the sur-
vival rates across trauma centers. Therefore, we believe that the stratified
random sample provides a better representation of survival than would a
sample taken without regard to differences within strata. [ |

It should be noted that two slight modifications of the stratified sampling technique
are frequently employed. To illustrate, consider again the trauma center example. In the
first place, a systematic sample of patient files could have been selected from each trauma
center (stratum). Such a sample is called a stratified systematic sample.

The second modification of stratified sampling involves selecting the sample from
a given stratum in such a way that the number of sample units selected from that stra-
tum is proportional to the size of the population of that stratum. Suppose, in our trauma
center example that the level 1 trauma center treated 100 patients and the level 2 and
level 3 trauma centers treated only 10 each. In that case, selecting a random sample of 10
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from each trauma center overrepresents the trauma centers with smaller patient loads. To
avoid this problem, we adjust the size of the sample taken from a stratum so that it is pro-
portional to the size of the stratum’s population. This type of sampling is called stratified
sampling proportional to size. The within-stratum samples can be either random or sys-
tematic as described above.

EXERCISES

1.4.1 Using the table of random numbers, select a new random starting point, and draw another simple
random sample of size 10 from the data in Table 1.4.1. Record the ages of the subjects in this new
sample. Save your data for future use. What is the variable of interest in this exercise? What meas-
urement scale was used to obtain the measurements?

1.4.2 Select another simple random sample of size 10 from the population represented in Table 1.4.1.
Compare the subjects in this sample with those in the sample drawn in Exercise 1.4.1. Are there
any subjects who showed up in both samples? How many? Compare the ages of the subjects in
the two samples. How many ages in the first sample were duplicated in the second sample?

1.4.3 Using the table of random numbers, select a random sample and a systematic sample, each of size
15, from the data in Table 1.4.1. Visually compare the distributions of the two samples. Do they
appear similar? Which appears to be the best representation of the data?

1.4.4 Construct an example where it would be appropriate to use stratified sampling. Discuss how you
would use stratified random sampling and stratified sampling proportional to size with this exam-
ple. Which do you think would best represent the population that you described in your example?
Why?

1.5 THE SCIENTIFIC METHOD AND
THE DESIGN OF EXPERIMENTS

Data analyses by statistical methods play a significant role in scientific studies. The pre-
vious section highlighted the importance of obtaining samples in a scientific manner.
Appropriate sampling techniques enhance the likelihood that the results of statistical
analyses of a data set will provide valid and scientifically defensible results. Because of
the importance of the proper collection of data to support scientific discovery, it is nec-
essary to consider the foundation of such discovery—the scientific method—and to
explore the role of statistics in the context of this method.

DEFINITION
The scientific method is a process by which scientific information is
collected, analyzed, and reported in order to produce unbiased and
replicable results in an effort to provide an accurate representation of
observable phenomena.

The scientific method is recognized universally as the only truly acceptable way to
produce new scientific understanding of the world around us. It is based on an empirical
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approach, in that decisions and outcomes are based on data. There are several key ele-
ments associated with the scientific method, and the concepts and techniques of statistics
play a prominent role in all these elements.

Making an Observation First, an observation is made of a phenomenon or a
group of phenomena. This observation leads to the formulation of questions or uncer-
tainties that can be answered in a scientifically rigorous way. For example, it is readily
observable that regular exercise reduces body weight in many people. It is also readily
observable that changing diet may have a similar effect. In this case there are two observ-
able phenomena, regular exercise and diet change, that have the same endpoint. The
nature of this endpoint can be determined by use of the scientific method.

Formulating a Hypothesis In the second step of the scientific method a
hypothesis is formulated to explain the observation and to make quantitative predic-
tions of new observations. Often hypotheses are generated as a result of extensive back-
ground research and literature reviews. The objective is to produce hypotheses that are
scientifically sound. Hypotheses may be stated as either research hypotheses or statis-
tical hypotheses. Explicit definitions of these terms are given in Chapter 7, which dis-
cusses the science of testing hypotheses. Suffice it to say for now that a research
hypothesis from the weight-loss example would be a statement such as, “Exercise
appears to reduce body weight.” There is certainly nothing incorrect about this con-
jecture, but it lacks a truly quantitative basis for testing. A statistical hypothesis may
be stated using quantitative terminology as follows: “The average (mean) loss of body
weight of people who exercise is greater than the average (mean) loss of body weight
of people who do not exercise.” In this statement a quantitative measure, the “aver-
age” or “mean” value, is hypothesized to be greater in the sample of patients who exer-
cise. The role of the statistician in this step of the scientific method is to state the
hypothesis in a way that valid conclusions may be drawn and to interpret correctly the
results of such conclusions.

Designing an Experiment The third step of the scientific method involves
designing an experiment that will yield the data necessary to validly test an appropriate
statistical hypothesis. This step of the scientific method, like that of data analysis,
requires the expertise of a statistician. Improperly designed experiments are the leading
cause of invalid results and unjustified conclusions. Further, most studies that are chal-
lenged by experts are challenged on the basis of the appropriateness or inappropriate-
ness of the study’s research design.

Those who properly design research experiments make every effort to ensure that
the measurement of the phenomenon of interest is both accurate and precise. Accuracy
refers to the correctness of a measurement. Precision, on the other hand, refers to the
consistency of a measurement. It should be noted that in the social sciences, the term
validity is sometimes used to mean accuracy and that reliability is sometimes used to
mean precision. In the context of the weight-loss example given earlier, the scale used
to measure the weight of study participants would be accurate if the measurement is
validated using a scale that is properly calibrated. If, however, the scale is off by +3
pounds, then each participant’s weight would be 3 pounds heavy; the measurements
would be precise in that each would be wrong by +3 pounds, but the measurements
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would not be accurate. Measurements that are inaccurate or imprecise may invalidate
research findings.

The design of an experiment depends on the type of data that need to be collected
to test a specific hypothesis. As discussed in Section 1.2, data may be collected or made
available through a variety of means. For much scientific research, however, the standard
for data collection is experimentation. A true experimental design is one in which study
subjects are randomly assigned to an experimental group (or treatment group) and a con-
trol group that is not directly exposed to a treatment. Continuing the weight-loss exam-
ple, a sample of 100 participants could be randomly assigned to two conditions using
the methods of Section 1.4. A sample of 50 of the participants would be assigned to a
specific exercise program and the remaining 50 would be monitored, but asked not to
exercise for a specific period of time. At the end of this experiment the average (mean)
weight losses of the two groups could be compared. The reason that experimental designs
are desirable is that if all other potential factors are controlled, a cause—effect relation-
ship may be tested; that is, all else being equal, we would be able to conclude or fail to
conclude that the experimental group lost weight as a result of exercising.

The potential complexity of research designs requires statistical expertise, and
Chapter 8 highlights some commonly used experimental designs. For a more in-depth
discussion of research designs, the interested reader may wish to refer to texts by Kuehl
(5), Keppel and Wickens (6), and Tabachnick and Fidell (7).

Conclusion In the execution of a research study or experiment, one would hope
to have collected the data necessary to draw conclusions, with some degree of confi-
dence, about the hypotheses that were posed as part of the design. It is often the case
that hypotheses need to be modified and retested with new data and a different design.
Whatever the conclusions of the scientific process, however, results are rarely considered
to be conclusive. That is, results need to be replicated, often a large number of times,
before scientific credence is granted them.

EXERCISES

1.5.1

1.5.2

Using the example of weight loss as an endpoint, discuss how you would use the scientific method
to test the observation that change in diet is related to weight loss. Include all of the steps, includ-
ing the hypothesis to be tested and the design of your experiment.

Continuing with Exercise 1.5.1, consider how you would use the scientific method to test the obser-
vation that both exercise and change in diet are related to weight loss. Include all of the steps,
paying particular attention to how you might design the experiment and which hypotheses would
be testable given your design.

1.6 COMPUTERS AND
BIOSTATISTICAL ANALYSIS

The widespread use of computers has had a tremendous impact on health sciences
research in general and biostatistical analysis in particular. The necessity to perform
long and tedious arithmetic computations as part of the statistical analysis of data lives
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only in the memory of those researchers and practitioners whose careers antedate the
so-called computer revolution. Computers can perform more calculations faster and far
more accurately than can human technicians. The use of computers makes it possible
for investigators to devote more time to the improvement of the quality of raw data and
the interpretation of the results.

The current prevalence of microcomputers and the abundance of available statis-
tical software programs have further revolutionized statistical computing. The reader in
search of a statistical software package may wish to consult The American Statistician,
a quarterly publication of the American Statistical Association. Statistical software
packages are regularly reviewed and advertised in the periodical.

Many of the computers currently on the market are equipped with random number
generating capabilities. As an alternative to using printed tables of random numbers,
investigators may use computers to generate the random numbers they need. Actu-
ally, the “random” numbers generated by most computers are in reality pseudoran-
dom numbers because they are the result of a deterministic formula. However, as
Fishman (8) points out, the numbers appear to serve satisfactorily for many practical
purposes.

The usefulness of the computer in the health sciences is not limited to statistical
analysis. The reader interested in learning more about the use of computers in the health
sciences will find the books by Hersh (4), Johns (5), Miller et al. (6), and Saba and
McCormick (7) helpful. Those who wish to derive maximum benefit from the Internet
may wish to consult the books Physicians’ Guide to the Internet (13) and Computers in
Nursing’s Nurses’ Guide to the Internet (14). Current developments in the use of com-
puters in biology, medicine, and related fields are reported in several periodicals devoted
to the subject. A few such periodicals are Computers in Biology and Medicine, Comput-
ers and Biomedical Research, International Journal of Bio-Medical Computing, Computer
Methods and Programs in Biomedicine, Computer Applications in the Biosciences, and
Computers in Nursing.

Computer printouts are used throughout this book to illustrate the use of computers
in biostatistical analysis. The MINITAB, SPSS, and SAS® statistical software packages for
the personal computer have been used for this purpose.

1.7 SUNMMARY

In this chapter we introduced the reader to the basic concepts of statistics. We defined
statistics as an area of study concerned with collecting and describing data and with
making statistical inferences. We defined statistical inference as the procedure by
which we reach a conclusion about a population on the basis of information contained
in a sample drawn from that population. We learned that a basic type of sample
that will allow us to make valid inferences is the simple random sample. We learned
how to use a table of random numbers to draw a simple random sample from a
population.

The reader is provided with the definitions of some basic terms, such as variable
and sample, that are used in the study of statistics. We also discussed measurement and
defined four measurement scales—nominal, ordinal, interval, and ratio. The reader is also



REVIEW QUESTIONS AND EXERCISES 17

introduced to the scientific method and the role of statistics and the statistician in this
process.

Finally, we discussed the importance of computers in the performance of the activ-
ities involved in statistics.

REVIEW QUESTIONS AND EXERCISES

1. Explain what is meant by descriptive statistics.

2. Explain what is meant by inferential statistics.

3. Define:
(a) Statistics (b) Biostatistics
(c) Variable (d) Quantitative variable
(e) Qualitative variable (f) Random variable
(g) Population (h) Finite population
(i) Infinite population (j) Sample
(k) Discrete variable (I) Continuous variable
(m) Simple random sample (n) Sampling with replacement

(o) Sampling without replacement
4. Define the word measurement.
5. List, describe, and compare the four measurement scales.
6. For each of the following variables, indicate whether it is quantitative or qualitative and specify
the measurement scale that is employed when taking measurements on each:
(a) Class standing of the members of this class relative to each other
(b) Admitting diagnosis of patients admitted to a mental health clinic
(c) Weights of babies born in a hospital during a year
(d) Gender of babies born in a hospital during a year

(e) Range of motion of elbow joint of students enrolled in a university health sciences
curriculum

(f) Under-arm temperature of day-old infants born in a hospital

7. For each of the following situations, answer questions a through e:
(a) What is the sample in the study?
(b) What is the population?
(¢) What is the variable of interest?
(d) How many measurements were used in calculating the reported results?
(e) What measurement scale was used?

Situation A. A study of 300 households in a small southern town revealed that 20 percent had at
least one school-age child present.

Situation B. A study of 250 patients admitted to a hospital during the past year revealed that, on
the average, the patients lived 15 miles from the hospital.

8. Consider the two situations given in Exercise 7. For Situation A describe how you would use a
stratified random sample to collect the data. For Situation B describe how you would use system-
atic sampling of patient records to collect the data.
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CHAPTER 2

DESCRIPTIVE STATISTICS

CHAPTER OVERVIEW

This chapter introduces a set of basic procedures and statistical measures for
describing data. Data generally consist of an extensive number of measure-
ments or observations that are too numerous or complicated to be under-
stood through simple observation. Therefore, this chapter introduces several
techniques including the construction of tables, graphical displays, and basic
statistical computations that provide ways to condense and organize infor-
mation into a set of descriptive measures and visual devices that enhance the
understanding of complex data.

TOPICS

2.1 INTRODUCTION

2.2 THE ORDERED ARRAY

2.3 GROUPED DATA:THE FREQUENCY DISTRIBUTION

2.4 DESCRIPTIVE STATISTICS: MEASURES OF CENTRALTENDENCY
2.5 DESCRIPTIVE STATISTICS: MEASURES OF DISPERSION

2.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand how data can be appropriately organized and displayed.
2. understand how to reduce data sets into a few useful, descriptive measures.

3. be able to calculate and interpret measures of central tendency, such as the
mean, median, and mode.

4. be able to calculate and interpret measures of dispersion, such as the range,
variance, and standard deviation.
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2.1

CHAPTER 2 DESCRIPTIVE STATISTICS

INTRODUCTION

In Chapter 1 we stated that the taking of a measurement and the process of counting yield
numbers that contain information. The objective of the person applying the tools of sta-
tistics to these numbers is to determine the nature of this information. This task is made
much easier if the numbers are organized and summarized. When measurements of a ran-
dom variable are taken on the entities of a population or sample, the resulting values are
made available to the researcher or statistician as a mass of unordered data. Measurements
that have not been organized, summarized, or otherwise manipulated are called raw data.
Unless the number of observations is extremely small, it will be unlikely that these raw
data will impart much information until they have been put into some kind of order.

In this chapter we learn several techniques for organizing and summarizing data
so that we may more easily determine what information they contain. The ultimate
in summarization of data is the calculation of a single number that in some way con-
veys important information about the data from which it was calculated. Such single
numbers that are used to describe data are called descriptive measures. After study-
ing this chapter you will be able to compute several descriptive measures for both
populations and samples of data.

The purpose of this chapter is to equip you with skills that will enable you to manip-
ulate the information—in the form of numbers—that you encounter as a health sciences
professional. The better able you are to manipulate such information, the better under-
standing you will have of the environment and forces that generate the information.

2.2 THE ORDERED ARRAY

A first step in organizing data is the preparation of an ordered array. An ordered array is a
listing of the values of a collection (either population or sample) in order of magnitude from
the smallest value to the largest value. If the number of measurements to be ordered is of
any appreciable size, the use of a computer to prepare the ordered array is highly desirable.

An ordered array enables one to determine quickly the value of the smallest meas-
urement, the value of the largest measurement, and other facts about the arrayed data
that might be needed in a hurry. We illustrate the construction of an ordered array with
the data discussed in Example 1.4.1.

EXAMPLE 2.2.1

Table 1.4.1 contains a list of the ages of subjects who participated in the study on smok-
ing cessation discussed in Example 1.4.1. As can be seen, this unordered table requires
considerable searching for us to ascertain such elementary information as the age of the
youngest and oldest subjects.

Solution: Table 2.2.1 presents the data of Table 1.4.1 in the form of an ordered array.
By referring to Table 2.2.1 we are able to determine quickly the age of the
youngest subject (30) and the age of the oldest subject (82). We also readily
note that about one-third of the subjects are 50 years of age or younger.
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TABLE 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1

30 34 35 37 37 38 38 38 38 39 39 40 40 42 42
43 43 43 43 43 43 44 44 44 44 44 44 44 45 45
45 46 46 46 46 46 46 47 47 47 47 47 47 48 48
48 48 48 48 48 49 49 49 49 49 49 49 50 50 50
50 50 50 50 50 51 51 51 51 52 52 52 52 52 52
53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
53 53 54 54 54 54 54 54 54 54 54 54 54 55 55
55 56 56 56 56 56 56 57 57 57 57 57 57 57 58
58 59 59 59 59 59 59 60 60 60 60 61 61 61 61
61 61 61 61 61 61 61 62 62 62 62 62 62 62 63
63 64 64 64 64 64 64 65 65 66 66 66 66 66 66
67 68 68 68 69 69 69 70 71 71 71 71 71 71 7
72 73 75 76 77 78 78 78 82

Computer Analysis If additional computations and organization of a data set
have to be done by hand, the work may be facilitated by working from an ordered array.
If the data are to be analyzed by a computer, it may be undesirable to prepare an ordered
array, unless one is needed for reference purposes or for some other use. A computer does
not need its user to first construct an ordered array before entering data for the construc-
tion of frequency distributions and the performance of other analyses. However, almost
all computer statistical packages and spreadsheet programs contain a routine for sorting
data in either an ascending or descending order. See Figure 2.2.1, for example.

Dialog box: Session command:
Data » Sort MTB > Sort Cl C2;
SUBC> By Cl.
N x| Y
T Sontcolumnfs]:
=
L

By column:
By column:

By column:

By column:

Store sorted data in:
& New worksheet

Name: | [Optional)

 Original columnfs]
© Columnfs] of current worksheer:

|
Jelect L]
Help [iTs cancel |

FIGURE 2.2.1 MINITAB dialog box for Example 2.2.1.
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2.3 GROUPED DATA: THE
FREQUENCY DISTRIBUTION

Although a set of observations can be made more comprehensible and meaningful by
means of an ordered array, further useful summarization may be achieved by grouping
the data. Before the days of computers one of the main objectives in grouping large data
sets was to facilitate the calculation of various descriptive measures such as percentages
and averages. Because computers can perform these calculations on large data sets with-
out first grouping the data, the main purpose in grouping data now is summarization.
One must bear in mind that data contain information and that summarization is a way
of making it easier to determine the nature of this information.

To group a set of observations we select a set of contiguous, nonoverlapping inter-
vals such that each value in the set of observations can be placed in one, and only one,
of the intervals. These intervals are usually referred to as class intervals.

One of the first considerations when data are to be grouped is how many intervals
to include. Too few intervals are undesirable because of the resulting loss of information.
On the other hand, if too many intervals are used, the objective of summarization will not
be met. The best guide to this, as well as to other decisions to be made in grouping data,
is your knowledge of the data. It may be that class intervals have been determined by
precedent, as in the case of annual tabulations, when the class intervals of previous years
are maintained for comparative purposes. A commonly followed rule of thumb states that
there should be no fewer than five intervals and no more than 15. If there are fewer than
five intervals, the data have been summarized too much and the information they contain
has been lost. If there are more than 15 intervals, the data have not been summarized
enough.

Those who need more specific guidance in the matter of deciding how many class
intervals to employ may use a formula given by Sturges (1). This formula gives
k=1 + 3.322(logyn), where k stands for the number of class intervals and n is the
number of values in the data set under consideration. The answer obtained by applying
Sturges’s rule should not be regarded as final, but should be considered as a guide only.
The number of class intervals specified by the rule should be increased or decreased for
convenience and clear presentation.

Suppose, for example, that we have a sample of 275 observations that we want to
group. The logarithm to the base 10 of 275 is 2.4393. Applying Sturges’s formula gives
k=1 + 3.322(2.4393) = 9. In practice, other considerations might cause us to use
eight or fewer or perhaps 10 or more class intervals.

Another question that must be decided regards the width of the class intervals. Class
intervals generally should be of the same width, although this is sometimes impossible to
accomplish. This width may be determined by dividing the range by k, the number of class
intervals. Symbolically, the class interval width is given by

2.3.1)

w =

R
k

where R (the range) is the difference between the smallest and the largest observation in
the data set. As a rule this procedure yields a width that is inconvenient for use. Again,
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we may exercise our good judgment and select a width (usually close to one given by
Equation 2.3.1) that is more convenient.

There are other rules of thumb that are helpful in setting up useful class intervals.
When the nature of the data makes them appropriate, class interval widths of 5 units, 10
units, and widths that are multiples of 10 tend to make the summarization more com-
prehensible. When these widths are employed it is generally good practice to have the
lower limit of each interval end in a zero or 5. Usually class intervals are ordered from
smallest to largest; that is, the first class interval contains the smaller measurements and
the last class interval contains the larger measurements. When this is the case, the lower
limit of the first class interval should be equal to or smaller than the smallest measure-
ment in the data set, and the upper limit of the last class interval should be equal to or
greater than the largest measurement.

Most statistical packages allow users to interactively change the number of class
intervals and/or the class widths, so that several visualizations of the data can be obtained
quickly. This feature allows users to exercise their judgment in deciding which data dis-
play is most appropriate for a given purpose. Let us use the 189 ages shown in Table
1.4.1 and arrayed in Table 2.2.1 to illustrate the construction of a frequency distribution.

EXAMPLE 2.3.1

We wish to know how many class intervals to have in the frequency distribution of the
data. We also want to know how wide the intervals should be.

Solution: To get an idea as to the number of class intervals to use, we can apply
Sturges’s rule to obtain

k =1+ 3.322(log 189)
1 + 3.322(2.2764618)
~ 9

Now let us divide the range by 9 to get some idea about the class
interval width. We have

BB 0,
k 9 9 '

It is apparent that a class interval width of 5 or 10 will be more con-
venient to use, as well as more meaningful to the reader. Suppose we decide
on 10. We may now construct our intervals. Since the smallest value in Table
2.2.1 is 30 and the largest value is 82, we may begin our intervals with 30
and end with 89. This gives the following intervals:

30-39
4049
50-59
60-69
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70-79
80-89

We see that there are six of these intervals, three fewer than the number
suggested by Sturges’s rule.

It is sometimes useful to refer to the center, called the midpoint, of a
class interval. The midpoint of a class interval is determined by obtaining
the sum of the upper and lower limits of the class interval and dividing
by 2. Thus, for example, the midpoint of the class interval 30-39 is found
to be (30 + 39)/2 = 34.5. [ |

When we group data manually, determining the number of values falling into each
class interval is merely a matter of looking at the ordered array and counting the num-
ber of observations falling in the various intervals. When we do this for our example,
we have Table 2.3.1.

A table such as Table 2.3.1 is called a frequency distribution. This table shows the
way in which the values of the variable are distributed among the specified class inter-
vals. By consulting it, we can determine the frequency of occurrence of values within
any one of the class intervals shown.

Relative Frequencies It may be useful at times to know the proportion, rather
than the number, of values falling within a particular class interval. We obtain this infor-
mation by dividing the number of values in the particular class interval by the total num-
ber of values. If, in our example, we wish to know the proportion of values between 50 and
59, inclusive, we divide 70 by 189, obtaining .3704. Thus we say that 70 out of 189, or
70/189ths, or .3704, of the values are between 50 and 59. Multiplying .3704 by 100 gives
us the percentage of values between 50 and 59. We can say, then, that 37.04 percent of the
subjects are between 50 and 59 years of age. We may refer to the proportion of values
falling within a class interval as the relative frequency of occurrence of values in that inter-
val. In Section 3.2 we shall see that a relative frequency may be interpreted also as the
probability of occurrence within the given interval. This probability of occurrence is also
called the experimental probability or the empirical probability.

TABLE 2.3.1 Frequency Distribution of
Ages of 189 Subjects Shown in Tables 1.4.1

and 2.2.1

Class Interval Frequency
30-39 1
40-49 46
50-59 70
60-69 45
70-79 16
80-89 1

Total 189
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TABLE 2.3.2 Frequency, Cumulative Frequency, Relative Frequency, and
Cumulative Relative Frequency Distributions of the Ages of Subjects Described
in Example 1.4.1

Cumulative
Class Cumulative Relative Relative
Interval Frequency Frequency Frequency Frequency
30-39 1 1 .0582 .0582
40-49 46 57 .2434 .3016
50-59 70 127 .3704 .6720
60-69 45 172 .2381 9101
70-79 16 188 .0847 .9948
80-89 1 189 .0053 1.0001

Total 189 1.0001

Note: Frequencies do not add to 1.0000 exactly because of rounding.

In determining the frequency of values falling within two or more class intervals,
we obtain the sum of the number of values falling within the class intervals of interest.
Similarly, if we want to know the relative frequency of occurrence of values falling within
two or more class intervals, we add the respective relative frequencies. We may sum, or
cumulate, the frequencies and relative frequencies to facilitate obtaining information
regarding the frequency or relative frequency of values within two or more contiguous
class intervals. Table 2.3.2 shows the data of Table 2.3.1 along with the cumulative fre-
quencies, the relative frequencies, and cumulative relative frequencies.

Suppose that we are interested in the relative frequency of values between 50 and 79.
We use the cumulative relative frequency column of Table 2.3.2 and subtract .3016 from
.9948, obtaining .6932.

We may use a statistical package to obtain a table similar to that shown in Table
2.3.2. Tables obtained from both MINITAB and SPSS software are shown in Figure 2.3.1.

The Histogram We may display a frequency distribution (or a relative frequency
distribution) graphically in the form of a histogram, which is a special type of bar graph.

When we construct a histogram the values of the variable under consideration are
represented by the horizontal axis, while the vertical axis has as its scale the frequency
(or relative frequency if desired) of occurrence. Above each class interval on the hori-
zontal axis a rectangular bar, or cell, as it is sometimes called, is erected so that the
height corresponds to the respective frequency when the class intervals are of equal
width. The cells of a histogram must be joined and, to accomplish this, we must take into
account the true boundaries of the class intervals to prevent gaps from occurring between
the cells of our graph.

The level of precision observed in reported data that are measured on a continuous
scale indicates some order of rounding. The order of rounding reflects either the reporter’s
personal preference or the limitations of the measuring instrument employed. When a fre-
quency distribution is constructed from the data, the class interval limits usually reflect
the degree of precision of the raw data. This has been done in our illustrative example.
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Dialog box: Session command:

Stat » Tables » Tally Individual Variables MTB > Tally C2;
SUBC> Counts;

Type C2 in Variables. Check Counts, Percents, SUBC>  CumCounts;

Cumulative counts, and Cumulative percents in SUBC>  Percents;

Display. Click OK. SUBC>  CumPercents;

Output:

Tally for Discrete Variables: C2

MINITAB Output SPSS Output
C2 Count CumCnt Percent CumPct Valid |Cumulative
0 11 11 5.82 5.82 Frequency | Percent | Percent Percent
1 46 57 24.34 30.16 valid 30-39 11 5.8 5.8 5.8
2 70 127 37.04 67.20 40-49 46 24.3 24.3 30.2
3 45 172 23.81 91.01 50-59 70 37.0 37.0 67.2
4 16 188 8.47 99.47 60-69 45 23.8 23.8 91.0
70-79 16 8.5 8.5 99.5
5 1 189 0.53 100.00 80-89 1 . . 100.0
N= 189 Total| 189 100.0 | 100.0

FIGURE 2.3.1 Frequency, cumulative frequencies, percent, and cumulative percent distri-
bution of the ages of subjects described in Example 1.4.1 as constructed by MINITAB and
SPSS.

We know, however, that some of the values falling in the second class interval, for exam-
ple, when measured precisely, would probably be a little less than 40 and some would be
a little greater than 49. Considering the underlying continuity of our variable, and assum-
ing that the data were rounded to the nearest whole number, we find it convenient to think
of 39.5 and 49.5 as the true limits of this second interval. The true limits for each of the
class intervals, then, we take to be as shown in Table 2.3.3.

If we construct a graph using these class limits as the base of our rectangles, no
gaps will result, and we will have the histogram shown in Figure 2.3.2. We used
MINITAB to construct this histogram, as shown in Figure 2.3.3.

We refer to the space enclosed by the boundaries of the histogram as the area of the
histogram. Each observation is allotted one unit of this area. Since we have 189 observa-
tions, the histogram consists of a total of 189 units. Each cell contains a certain propor-
tion of the total area, depending on the frequency. The second cell, for example, contains
46/189 of the area. This, as we have learned, is the relative frequency of occurrence of val-
ues between 39.5 and 49.5. From this we see that subareas of the histogram defined by
the cells correspond to the frequencies of occurrence of values between the horizontal scale
boundaries of the areas. The ratio of a particular subarea to the total area of the histogram
is equal to the relative frequency of occurrence of values between the corresponding points
on the horizontal axis.
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TABLE 2.3.3 The Data of 70 —
Table 2.3.1 Showing True Class
Limits 60 -
True Class Limits Frequency 50 —
>
29.5-39.5 " § 40 [~
39.5-49.5 46 2
49.5-59.5 70 £ 30
59.5-69.5 45 20
69.5-79.5 16
79.5-89.5 1 10~
Total 189 L L L

34.5 445 54,5 64.5 74.5 84.5
Age
FIGURE 2.3.2 Histogram of ages of
189 subjects from Table 2.3.1.

The Frequency Polygon A frequency distribution can be portrayed graphi-
cally in yet another way by means of a frequency polygon, which is a special kind of
line graph. To draw a frequency polygon we first place a dot above the midpoint of each
class interval represented on the horizontal axis of a graph like the one shown in Figure
2.3.2. The height of a given dot above the horizontal axis corresponds to the frequency
of the relevant class interval. Connecting the dots by straight lines produces the frequency
polygon. Figure 2.3.4 is the frequency polygon for the age data in Table 2.2.1.

Note that the polygon is brought down to the horizontal axis at the ends at points
that would be the midpoints if there were an additional cell at each end of the corre-
sponding histogram. This allows for the total area to be enclosed. The total area under
the frequency polygon is equal to the area under the histogram. Figure 2.3.5 shows the
frequency polygon of Figure 2.3.4 superimposed on the histogram of Figure 2.3.2. This
figure allows you to see, for the same set of data, the relationship between the two
graphic forms.

Dialog box: Session command:
Graph » Histogram » Simple » OK MTB > Histogram 'Age';

SUBC> MidPoint 34.5:84.5/10;
Type Age in Graph Variables: Click OK. SUBC> Bar.

Now double click the histogram and click Binning Tab.
Type 34.5:84.5/10 in MidPoint/CutPoint positions:

Click OK.

FIGURE 2.3.3 MINITAB dialog box and session command for constructing histogram from
data on ages in Example 1.4.1.
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70 — *
60 /\
50 — / \
) &
c c 40— \
[} ()
3 =]
g g 30
[T [T
20 — \
10 — / \
0 0 / [ Y ) \ -
245 345 445 54.5 64.5 74.5 84.5 945 24,5 34.5 445 54.5 64.5 74.5 84.5 945
Age Age
FIGURE 2.3.4 Frequency polygon for the ages of FIGURE 2.3.5 Histogram and frequency polygon
189 subjects shown in Table 2.2.1. for the ages of 189 subjects shown in Table 2.2.1.

Stem-and-Leaf Displays Another graphical device that is useful for represent-
ing quantitative data sets is the stem-and-leaf display. A stem-and-leaf display bears a
strong resemblance to a histogram and serves the same purpose. A properly constructed
stem-and-leaf display, like a histogram, provides information regarding the range of the
data set, shows the location of the highest concentration of measurements, and reveals the
presence or absence of symmetry. An advantage of the stem-and-leaf display over the his-
togram is the fact that it preserves the information contained in the individual measure-
ments. Such information is lost when measurements are assigned to the class intervals of
a histogram. As will become apparent, another advantage of stem-and-leaf displays is the
fact that they can be constructed during the tallying process, so the intermediate step of
preparing an ordered array is eliminated.

To construct a stem-and-leaf display we partition each measurement into two parts.
The first part is called the stem, and the second part is called the leaf. The stem consists
of one or more of the initial digits of the measurement, and the leaf is composed of one
or more of the remaining digits. All partitioned numbers are shown together in a single
display; the stems form an ordered column with the smallest stem at the top and the largest
at the bottom. We include in the stem column all stems within the range of the data even
when a measurement with that stem is not in the data set. The rows of the display con-
tain the leaves, ordered and listed to the right of their respective stems. When leaves con-
sist of more than one digit, all digits after the first may be deleted. Decimals when pres-
ent in the original data are omitted in the stem-and-leaf display. The stems are separated
from their leaves by a vertical line. Thus we see that a stem-and-leaf display is also an
ordered array of the data.

Stem-and-leaf displays are most effective with relatively small data sets. As a rule
they are not suitable for use in annual reports or other communications aimed at the gen-
eral public. They are primarily of value in helping researchers and decision makers under-
stand the nature of their data. Histograms are more appropriate for externally circulated
publications. The following example illustrates the construction of a stem-and-leaf
display.
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Stem Leaf

04577888899

0022333333444444455566666677777788888889999999
0000000011112222223333333333333333344444444444555666666777777788999999
000011111111111222222233444444556666667888999

0111111123567888

2

0 J o Ul W

FIGURE 2.3.6 Stem-and-leaf display of ages of 189 subjects shown in Table 2.2.1
(stem unit = 10, leaf unit = 1).

EXAMPLE 2.3.2

Let us use the age data shown in Table 2.2.1 to construct a stem-and-leaf display.

Solution: Since the measurements are all two-digit numbers, we will have one-digit
stems and one-digit leaves. For example, the measurement 30 has a stem of

3 and a leaf of 0. Figure 2.3.6 shows the stem-and-leaf display for the data.

The MINITAB statistical software package may be used to construct

stem-and-leaf displays. The MINITAB procedure and output are as shown

in Figure 2.3.7. The increment subcommand specifies the distance from one

stem to the next. The numbers in the leftmost output column of Figure 2.3.7

Dialog box: Session command:
Graph » Stem-and-Leaf MTB > Stem-and-Leaf 'Age';

SUBC> Increment 10.

Type Age in Graph Variables. Type /0 in Increment.
Click OK.

Output:
Stem-and-Leaf Display: Age

Stem-and-leaf of Age N = 189

Leaf Unit = 1.0
11 3 04577888899
57 4 0022333333444444455566666677777788888889999999
(70) 5 00000000111122222233333333333333333444444444445556666667777777889+
62 6 000011111111111222222233444444556666667888999
17 7 0111111123567888
1 8 2

FIGURE 2.3.7 Stem-and-leaf display prepared by MINITAB from the data on subjects’
ages shown in Table 2.2.1.
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Stem-and-leaf of Age N = 189
Leaf Unit = 1.0

2 3 04

11 3 577888899

28 4 00223333334444444

57 4 55566666677777788888889999999
(46) 5 0000000011112222223333333333333333344444444444
86 5 555666666777777788999999

62 6 000011111111111222222233444444
32 6 556666667888999

17 7 0111111123

7 7 567888

1 8 2

FIGURE 2.3.8 Stem-and-leaf display prepared by MINITAB from the data on subjects’
ages shown in Table 2.2.1; class interval width = 5.

provide information regarding the number of observations (leaves) on a
given line and above or the number of observations on a given line and
below. For example, the number 57 on the second line shows that there are
57 observations (or leaves) on that line and the one above it. The number
62 on the fourth line from the top tells us that there are 62 observations on
that line and all the ones below. The number in parentheses tells us that
there are 70 observations on that line. The parentheses mark the line con-
taining the middle observation if the total number of observations is odd or
the two middle observations if the total number of observations is even.
The + at the end of the third line in Figure 2.3.7 indicates that the fre-
quency for that line (age group 50 through 59) exceeds the line capacity, and
that there is at least one additional leaf that is not shown. In this case, the
frequency for the 50-59 age group was 70. The line contains only 65 leaves,
so the + indicates that there are five more leaves, the number 9, that are not
shown. [ |

One way to avoid exceeding the capacity of a line is to have more lines. This is
accomplished by making the distance between lines shorter, that is, by decreasing the
widths of the class intervals. For the present example, we may use class interval widths
of 5, so that the distance between lines is 5. Figure 2.3.8 shows the result when MINITAB
is used to produce the stem-and-leaf display.

EXERCISES

2.3.1 In a study of the oral home care practice and reasons for seeking dental care among individuals
on renal dialysis, Atassi (A-1) studied 90 subjects on renal dialysis. The oral hygiene status of all
subjects was examined using a plaque index with a range of 0 to 3 (0 = no soft plaque deposits,
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3 = an abundance of soft plaque deposits). The following table shows the plaque index scores for
all 90 subjects.

1.17 250 200 233 167 133
.17 217 217 133 217 2.00
217 1.17 250 200 150 1.50
1.00 2.17 217 1.67 2.00 2.00
133 217 283 150 250 233
033 217 1.83 200 217 2.00
1.00 217 217 133 217 250
0.83 1.17 217 250 2.00 250
050 150 2.00 200 200 2.00
1.17 133  1.67 217 150 2.00
1.67 033 150 217 233 233
1.17  0.00 150 233 1.83 267
0.83 1.17 150 217 267 1.50
200 217 133 200 233 200
217 217 200 217 200 2.17

Source: Farhad Atassi, DDS, MSc, FICOI.
Used with permission.

(a) Use these data to prepare:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon
(b) What percentage of the measurements are less than 2.00?
(¢) What proportion of the subjects have measurements greater than or equal to 1.50?
(d) What percentage of the measurements are between 1.50 and 1.99 inclusive?
(e¢) How many of the measurements are greater than 2.49?
(f) What proportion of the measurements are either less than 1.0 or greater than 2.49?

(g) Someone picks a measurement at random from this data set and asks you to guess the value.
What would be your answer? Why?

(h) Frequency distributions and their histograms may be described in a number of ways depend-
ing on their shape. For example, they may be symmetric (the left half is at least approximately a
mirror image of the right half), skewed to the left (the frequencies tend to increase as the meas-
urements increase in size), skewed to the right (the frequencies tend to decrease as the measure-
ments increase in size), or U-shaped (the frequencies are high at each end of the distribution and
small in the center). How would you describe the present distribution?

Janardhan et al. (A-2) conducted a study in which they measured incidental intracranial aneurysms
(IIAs) in 125 patients. The researchers examined postprocedural complications and concluded that
IIAs can be safely treated without causing mortality and with a lower complications rate than pre-
viously reported. The following are the sizes (in millimeters) of the 159 IIAs in the sample.

81 10.0 5.0 7.0 100 3.0
20.0 4.0 4.0 6.0 6.0 7.0

(Continued)
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2.3.3

10.0 4.0 3.0 5.0 6.0 6.0
6.0 6.0 6.0 5.0 4.0 5.0
6.0 250 100 14.0 6.0 6.0
4.0 150 5.0 5.0 8.0 19.0

21.0 8.3 7.0 8.0 5.0 8.0
5.0 7.5 7.0 100 15.0 8.0

10.0 3.0 15.0 6.0 10.0 8.0
7.0 50 10.0 3.0 7.0 3.3

15.0 5.0 5.0 3.0 7.0 8.0
3.0 6.0 6.0 10.0 15.0 6.0
3.0 3.0 7.0 5.0 4.0 9.2

16.0 7.0 8.0 50 100 10.0
9.0 5.0 5.0 4.0 8.0 4.0
3.0 4.0 5.0 8.0 300 14.0

15.0 2.0 8.0 7.0 12.0 4.0
3.8 10.0 25.0 8.0 9.0 14.0

30.0 2.0 10.0 5.0 50 10.0

22.0 5.0 5.0 3.0 4.0 8.0
7.5 5.0 8.0 3.0 5.0 7.0
8.0 5.0 9.0 11.0 2.0 10.0
6.0 5.0 50 12.0 9.0 8.0

15.0 18.0 10.0 9.0 5.0 6.0
6.0 8.0 120 10.0 5.0
50 16.0 8.0 5.0 8.0
40 16.0 3.0 7.0 13.0

Source: Vallabh Janardhan, M.D. Used with

permission.

(a) Use these data to prepare:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon
(b) What percentage of the measurements are between 10 and 14.9 inclusive?
(¢) How many observations are less than 20?
(d) What proportion of the measurements are greater than or equal to 25?
(e) What percentage of the measurements are either less than 10.0 or greater than 19.95?

(f) Refer to Exercise 2.3.1, part h. Describe the distribution of the size of the aneurysms in this
sample.

Hoekema et al. (A-3) studied the craniofacial morphology of patients diagnosed with obstructive
sleep apnea syndrome (OSAS) in healthy male subjects. One of the demographic variables the
researchers collected for all subjects was the Body Mass Index (calculated by dividing weight in kg
by the square of the patient’s height in cm). The following are the BMI values of 29 OSAS subjects.

33.57 27.78 40.81
38.34  29.01 47.78
26.86 54.33 28.99

(Continued)
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25.21
36.42
24.54
24.49
29.07
26.54
31.44

30.49
41.50
41.75
33.23
28.21
27.74
30.08

27.38
29.39
44.68
47.09
42.10
33.48

Source: A. Hoekema, D.D.S.

Used with permission.

(a) Use these data to construct:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution

A cumulative relative frequency distribution

A histogram
A frequency polygon

(b) What percentage of the measurements are less than 30?

EXERCISES

(¢) What percentage of the measurements are between 40.0 and 49.99 inclusive?

(d) What percentage of the measurements are greater than 34.99?

33

(e) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,

part h.

(f) How many of the measurements are less than 40?

David Holben (A-4) studied selenium levels in beef raised in a low selenium region of the United
States. The goal of the study was to compare selenium levels in the region-raised beef to selenium
levels in cooked venison, squirrel, and beef from other regions of the United States. The data below
are the selenium levels calculated on a dry weight basis in ug/100 g for a sample of 53 region-

raised cattle.

11.23  15.82
29.63 2774
2042 2235
10.12  34.78
3991  35.09
32.66 32.60
38.38  37.03
36.21  27.00
16.39 4420
2744  13.09
17.29  33.03
56.20 9.69
2894 3245
20.11  37.38
2535 34091
21.77  27.99
31.62 2236
32.63 22.68
3031 26.52
46.16  46.01

(Continued)
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56.61 38.04
2447  30.88
29.39  30.04
40.71 2591
18.52  18.54
27.80 2551
19.49

Source: David Holben, Ph.D.
Used with permission.
(a) Use these data to construct:
A frequency distribution
A relative frequency distribution
A cumulative frequency distribution
A cumulative relative frequency distribution
A histogram
A frequency polygon
(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.
(c¢) How many of the measurements are greater than 40?
(d) What percentage of the measurements are less than 25?

2.3.5 The following table shows the number of hours 45 hospital patients slept following the adminis-
tration of a certain anesthetic.

7 10 12 4 8 7 3 8 5
12 11 3 8 1 1 13 10 4
4 5 5 8 7 7 3 2 3
8§ 13 1 7 17 3 4 5 5
3 1 17 10 4 7 7 11 8

(a) From these data construct:

A frequency distribution

A relative frequency distribution
A histogram

A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.
2.3.6 The following are the number of babies born during a year in 60 community hospitals.

30 55 27 45 56 48 45 49 32 57 47 56
37 55 52 34 54 42 32 59 35 46 24 57
32 26 40 28 53 54 29 42 42 54 53 59
39 56 59 58 49 53 30 53 21 34 28 50
52 57 43 46 54 31 22 31 24 24 57 29

(a) From these data construct:

A frequency distribution
A relative frequency distribution
A frequency polygon

(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.
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2.3.7 In a study of physical endurance levels of male college freshman, the following composite
endurance scores based on several exercise routines were collected.

254 281 192 260 212 179 225 179 181 149
182 210 235 239 258 166 159 223 186 190
180 188 135 233 220 204 219 211 245 151
198 190 151 157 204 238 205 229 191 200
222 187 134 193 264 312 214 227 190 212
165 194 206 193 218 198 241 149 164 225
265 222 264 249 175 205 252 210 178 159
220 201 203 172 234 198 173 187 189 237
272 195 227 230 168 232 217 249 196 223
232 191 175 236 152 258 155 215 197 210
214 278 252 283 205 184 172 228 193 130
218 213 172 159 203 212 117 197 206 198
169 187 204 180 261 236 217 205 212 218
191 124 199 235 139 231 116 182 243 217
251 206 173 236 215 228 183 204 186 134
188 195 240 163 208

(a) From these data construct:
A frequency distribution
A relative frequency distribution
A frequency polygon
A histogram
(b) Describe these data relative to symmetry and skewness as discussed in Exercise 2.3.1, part h.

2.3.8 The following are the ages of 30 patients seen in the emergency room of a hospital on a Friday
night. Construct a stem-and-leaf display from these data. Describe these data relative to symme-
try and skewness as discussed in Exercise 2.3.1, part h.

35 32 21 43 39 60
36 12 54 45 37 53
45 23 64 10 34 22
36 45 55 44 55 46
22 38 35 56 45 57

2.3.9 The following are the emergency room charges made to a sample of 25 patients at two city hos-
pitals. Construct a stem-and-leaf display for each set of data. What does a comparison of the two
displays suggest regarding the two hospitals? Describe the two sets of data with respect to sym-
metry and skewness as discussed in Exercise 2.3.1, part h.

Hospital A

249.10 202.50 222.20 214.40 205.90
214.30 195.10 213.30 225.50 191.40
201.20 239.80 245.70 213.00 238.80
171.10 222.00 212.50 201.70 184.90
248.30 209.70 233.90 229.80 217.90
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2.3.10

2.3.11

Hospital B
199.50 184.00 173.20 186.00 214.10
125.50 143.50 190.40 152.00 165.70
154.70 145.30 154.60 190.30 135.40
167.70 203.40 186.70 155.30 195.90
168.90 166.70 178.60 150.20 212.40

Refer to the ages of patients discussed in Example 1.4.1 and displayed in Table 1.4.1.

(a) Use class interval widths of 5 and construct:

A frequency distribution

A relative frequency distribution

A cumulative frequency distribution
A cumulative relative frequency distribution

A histogram
A frequency polygon

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,

part h.

The objectives of a study by Skjelbo et al. (A-5) were to examine (a) the relationship between
chloroguanide metabolism and efficacy in malaria prophylaxis and (b) the mephenytoin metabo-
lism and its relationship to chloroguanide metabolism among Tanzanians. From information pro-
vided by urine specimens from the 216 subjects, the investigators computed the ratio of unchanged

S-mephenytoin to R-mephenytoin (S/R ratio). The results were as follows:

0.0269
0.0760
0.0990
0.0990
0.0990
0.0990
0.1050
0.1190
0.1460
0.1550
0.1690
0.1810
0.2070
0.2390
0.2470
0.2710
0.2990
0.3400
0.3630
0.4090
0.4300
0.4680
0.5340
0.5930

0.0400
0.0850
0.0990
0.0990
0.0990
0.0990
0.1050
0.1200
0.1480
0.1570
0.1710
0.1880
0.2100
0.2400
0.2540
0.2800
0.3000
0.3440
0.3660
0.4090
0.4360
0.4810
0.5340
0.6010

0.0550
0.0870
0.0990
0.0990
0.0990
0.0990
0.1080
0.1230
0.1490
0.1600
0.1720
0.1890
0.2100
0.2420
0.2570
0.2800
0.3070
0.3480
0.3830
0.4100
0.4370
0.4870
0.5460
0.6240

0.0550
0.0870
0.0990
0.0990
0.0990
0.0990
0.1080
0.1240
0.1490
0.1650
0.1740
0.1890
0.2140
0.2430
0.2600
0.2870
0.3100
0.3490
0.3900
0.4160
0.4390
0.4910
0.5480
0.6280

0.0650
0.0880
0.0990
0.0990
0.0990
0.0990
0.1090
0.1340
0.1500
0.1650
0.1780
0.1920
0.2150
0.2450
0.2620
0.2880
0.3110
0.3520
0.3960
0.4210
0.4410
0.4980
0.5480
0.6380

0.0670
0.0900
0.0990
0.0990
0.0990
0.1000
0.1090
0.1340
0.1500
0.1670
0.1780
0.1950
0.2160
0.2450
0.2650
0.2940
0.3140
0.3530
0.3990
0.4260
0.4410
0.5030
0.5490
0.6600

0.0700
0.0900
0.0990
0.0990
0.0990
0.1020
0.1090
0.1370
0.1500
0.1670
0.1790
0.1970
0.2260
0.2460
0.2650
0.2970
0.3190
0.3570
0.4080
0.4290
0.4430
0.5060
0.5550
0.6720

0.0720
0.0990
0.0990
0.0990
0.0990
0.1040
0.1160
0.1390
0.1540
0.1677
0.1790
0.2010
0.2290
0.2460
0.2680
0.2980
0.3210
0.3630
0.4080
0.4290
0.4540
0.5220
0.5920
0.6820

(Continued)
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0.6870  0.6900 0.6910 0.6940 0.7040 0.7120 0.7200 0.7280
0.7860  0.7950 0.8040 0.8200 0.8350 0.8770 0.9090  0.9520
0.9530 0.9830 0.9890 1.0120 1.0260 1.0320 1.0620 1.1600
Source: Erik Skjelbo, M.D. Used with permission.

(a) From these data construct the following distributions: frequency, relative frequency, cumula-
tive frequency, and cumulative relative frequency; and the following graphs: histogram, frequency
polygon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(c) The investigators defined as poor metabolizers of mephenytoin any subject with an S/R mepheny-
toin ratio greater than .9. How many and what percentage of the subjects were poor metabolizers?
(d) How many and what percentage of the subjects had ratios less than .7? Between .3 and .6999
inclusive? Greater than .4999?

Schmidt et al. (A-6) conducted a study to investigate whether autotransfusion of shed mediastinal
blood could reduce the number of patients needing homologous blood transfusion and reduce the
amount of transfused homologous blood if fixed transfusion criteria were used. The following table
shows the heights in centimeters of the 109 subjects of whom 97 were males.

1.720  1.710 1.700  1.655 1.800  1.700
1.730  1.700 1.820 1.810 1.720  1.800
1.800  1.800 1.790  1.820 1.800  1.650
1.680  1.730 1.820 1.720 1.710  1.850
1.760  1.780 1.760  1.820 1.840  1.690
1.770  1.920 1.690  1.690 1.780  1.720
1.750  1.710 1.690  1.520 1.805 1.780
1.820  1.790 1.760  1.830 1.760  1.800
1.700  1.760 1.750  1.630 1.760  1.770
1.840  1.690 1.640  1.760 1.850 1.820
1.760  1.700 1.720  1.780 1.630  1.650
1.660  1.880 1.740  1.900 1.830

1.600  1.800 1.670  1.780 1.800

1.750  1.610 1.840  1.740 1.750

1.960  1.760 1.730  1.730 1.810

1.810 1.775 1.710  1.730 1.740

1.790  1.880 1.730  1.560 1.820

1.780  1.630 1.640  1.600 1.800

1.800  1.780 1.840  1.830

1.770  1.690 1.800  1.620

Source: Erik Skjelbo, M.D. Used with permission.

(a) For these data construct the following distributions: frequency, relative frequency, cumulative
frequency, and cumulative relative frequency; and the following graphs: histogram, frequency poly-
gon, and stem-and-leaf plot.

(b) Describe these data with respect to symmetry and skewness as discussed in Exercise 2.3.1,
part h.

(¢) How do you account for the shape of the distribution of these data?
(d) How tall were the tallest 6.42 percent of the subjects?
(e) How tall were the shortest 10.09 percent of the subjects?
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2.4 DESCRIPTIVE STATISTICS:
MEASURES OF CENTRAL TENDENCY

Although frequency distributions serve useful purposes, there are many situations that
require other types of data summarization. What we need in many instances is the abil-
ity to summarize the data by means of a single number called a descriptive measure.
Descriptive measures may be computed from the data of a sample or the data of a pop-
ulation. To distinguish between them we have the following definitions:

DEFINITIONS

1. A descriptive measure computed from the data of a sample is
called a statistic.

2. A descriptive measure computed from the data of a population is
called a parameter.

Several types of descriptive measures can be computed from a set of data. In this
chapter, however, we limit discussion to measures of central tendency and measures of dis-
persion. We consider measures of central tendency in this section and measures of disper-
sion in the following one.

In each of the measures of central tendency, of which we discuss three, we have
a single value that is considered to be typical of the set of data as a whole. Measures of
central tendency convey information regarding the average value of a set of values. As
we will see, the word average can be defined in different ways.

The three most commonly used measures of central tendency are the mean, the
median, and the mode.

Arithmetic Mean The most familiar measure of central tendency is the arith-
metic mean. It is the descriptive measure most people have in mind when they speak of
the “average.” The adjective arithmetic distinguishes this mean from other means that
can be computed. Since we are not covering these other means in this book, we shall
refer to the arithmetic mean simply as the mean. The mean is obtained by adding all the
values in a population or sample and dividing by the number of values that are added.

EXAMPLE 2.4.1

We wish to obtain the mean age of the population of 189 subjects represented in Table
1.4.1.

Solution: We proceed as follows:

48 +35+46 + --- + 73 + 66
mean age = = 55.032
189 [ |

The three dots in the numerator represent the values we did not show in order to
save space.
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General Formula for the Mean It will be convenient if we can generalize
the procedure for obtaining the mean and, also, represent the procedure in a more com-
pact notational form. Let us begin by designating the random variable of interest by the
capital letter X. In our present illustration we let X represent the random variable, age.
Specific values of a random variable will be designated by the lowercase letter x. To dis-
tinguish one value from another, we attach a subscript to the x and let the subscript refer
to the first, the second, the third value, and so on. For example, from Table 1.4.1 we have

x1=48,x2=35, ey x189=66

In general, a typical value of a random variable will be designated by x; and the final

value, in a finite population of values, by x», where N is the number of values in the

population. Finally, we will use the Greek letter w to stand for the population mean. We

may now write the general formula for a finite population mean as follows:

N
Xi

=1

1

= 2.4.1

7 N ( )
The symbol Efi] instructs us to add all values of the variable from the first to the last.
This symbol X, called the summation sign, will be used extensively in this book. When
from the context it is obvious which values are to be added, the symbols above and below

> will be omitted.

The Sample Mean When we compute the mean for a sample of values, the pro-
cedure just outlined is followed with some modifications in notation. We use x to desig-
nate the sample mean and » to indicate the number of values in the sample. The sample
mean then is expressed as

(2.4.2)

EXAMPLE 2.4.2

In Chapter 1 we selected a simple random sample of 10 subjects from the population of
subjects represented in Table 1.4.1. Let us now compute the mean age of the 10 subjects
in our sample.

Solution: We recall (see Table 1.4.2) that the ages of the 10 subjects in our sam-
ple were x; = 43,x, = 66,x3 = 61,x, = 64,x5 = 65,x6 = 38,x7 = 59,
xg = 57,x9 = 57,x19 = 50. Substitution of our sample data into Equa-
tion 2.4.2 gives

;’xi 43 + 66 + -+ + 50
n 10 [ |
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Properties of the Mean The arithmetic mean possesses certain properties,
some desirable and some not so desirable. These properties include the following:

1. Uniqueness. For a given set of data there is one and only one arithmetic mean.
2. Simplicity. The arithmetic mean is easily understood and easy to compute.

3. Since each and every value in a set of data enters into the computation of the mean,
it is affected by each value. Extreme values, therefore, have an influence on the
mean and, in some cases, can so distort it that it becomes undesirable as a meas-
ure of central tendency.

As an example of how extreme values may affect the mean, consider the follow-
ing situation. Suppose the five physicians who practice in an area are surveyed to deter-
mine their charges for a certain procedure. Assume that they report these charges: $75,
$75, $80, $80, and $280. The mean charge for the five physicians is found to be $118,
a value that is not very representative of the set of data as a whole. The single atypical
value had the effect of inflating the mean.

Median The median of a finite set of values is that value which divides the set into
two equal parts such that the number of values equal to or greater than the median is
equal to the number of values equal to or less than the median. If the number of values
is odd, the median will be the middle value when all values have been arranged in order
of magnitude. When the number of values is even, there is no single middle value. Instead
there are two middle values. In this case the median is taken to be the mean of these
two middle values, when all values have been arranged in the order of their magnitudes.
In other words, the median observation of a data set is the (n + 1)/2th one when the
observation have been ordered. If, for example, we have 11 observations, the median is
the (11 + 1)/2 = 6th ordered observation. If we have 12 observations the median is the
(12 + 1)/2 = 6.5th ordered observation and is a value halfway between the 6th and 7th
ordered observations.

EXAMPLE 2.4.3

Let us illustrate by finding the median of the data in Table 2.2.1.

Solution: The values are already ordered so we need only to find the two middle
values. The middle value is the (n + 1)/2 = (189 + 1)/2 = 190/2 =

95th one. Counting from the smallest up to the 95th value we see that it is
54. Thus the median age of the 189 subjects is 54 years. ]

EXAMPLE 2.4.4

We wish to find the median age of the subjects represented in the sample described in
Example 2.4.2.

Solution: Arraying the 10 ages in order of magnitude from smallest to largest gives 38,
43, 50, 57, 57, 59, 61, 64, 65, 66. Since we have an even number of ages,
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there is no middle value. The two middle values, however, are 57 and 59. The
median, then, is (57 + 59)/2 = 38. ]

Properties of the Median Properties of the median include the following:

1. Uniqueness. As is true with the mean, there is only one median for a given set of
data.

2. Simplicity. The median is easy to calculate.

3. It is not as drastically affected by extreme values as is the mean.

The Mode The mode of a set of values is that value which occurs most frequently.
If all the values are different there is no mode; on the other hand, a set of values may
have more than one mode.

EXAMPLE 2.4.5

Find the modal age of the subjects whose ages are given in Table 2.2.1.

Solution: A count of the ages in Table 2.2.1 reveals that the age 53 occurs most fre-
quently (17 times). The mode for this population of ages is 53. [ |

For an example of a set of values that has more than one mode, let us consider
a laboratory with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27,
and 27. We could say that these data have two modes, 20 and 27. The sample
consisting of the values 10, 21, 33, 53, and 54 has no mode since all the values are
different.

The mode may be used for describing qualitative data. For example, suppose the
patients seen in a mental health clinic during a given year received one of the following
diagnoses: mental retardation, organic brain syndrome, psychosis, neurosis, and person-
ality disorder. The diagnosis occurring most frequently in the group of patients would
be called the modal diagnosis.

An attractive property of a data distribution occurs when the mean, median, and
mode are all equal. The well-known “bell-shaped curve” is a graphical representation of
a distribution for which the mean, median, and mode are all equal. Much statistical infer-
ence is based on this distribution, the most common of which is the normal distribution.
The normal distribution is introduced in Section 4.6 and discussed further in subsequent
chapters. Another common distribution of this type is the ¢-distribution, which is intro-
duced in Section 6.3.

Skewness Data distributions may be classified on the basis of whether they are
symmetric or asymmetric. If a distribution is symmetric, the left half of its graph (his-
togram or frequency polygon) will be a mirror image of its right half. When the left half
and right half of the graph of a distribution are not mirror images of each other, the dis-
tribution is asymmetric.
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DEFINITION

If the graph (histogram or frequency polygon) of a distribution is
asymmetric, the distribution is said to be skewed. If a distribution is
not symmetric because its graph extends further to the right than to
the left, that is, if it has a long tail to the right, we say that the distri-
bution is skewed to the right or is positively skewed. If a distribution is
not symmetric because its graph extends further to the left than to the
right, that is, if it has a long tail to the left, we say that the distribu-
tion is skewed to the left or is negatively skewed.

A distribution will be skewed to the right, or positively skewed, if its mean is
greater than its mode. A distribution will be skewed to the left, or negatively skewed, if
its mean is less than its mode. Skewness can be expressed as follows:

\/Zi;jlu,. e \/al_:iloc,- %)}
(S ) om0Vt

i=1

Skewness = 24.3)

In Equation 2.4.3, s is the standard deviation of a sample as defined in Equation 2.5.4.
Most computer statistical packages include this statistic as part of a standard printout. A
value of skewness > 0 indicates positive skewness and a value of skewness < O indi-
cates negative skewness. An illustration of skewness is shown in Figure 2.4.1.

EXAMPLE 2.4.6

Consider the three distributions shown in Figure 2.4.1. Given that the histograms repre-
sent frequency counts, the data can be easily re-created and entered into a statistical pack-
age. For example, observation of the “No Skew” distribution would yield the following
data: 5,5,6,6,6,7,7,7,7,8,8,8,8,8,9,9,9,9, 10, 10, 10, 11, 11. Values can be

Frequency

B

g

No Skew Right Skew Left Skew
61 &
51 ]
z 5 °
4 i
g1
o 31 o 34
2 2
w 2- w 2.
11 1
, v v gl At 1 1 1 g
600 800 1000 1200 4.00 6.00 800 1000 4.00 6.00 8.00 10,00
Mean = Median = Mode
Median Medianl
Mode Mode

FIGURE 2.4.1 Three histograms illustrating skewness.
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obtained from the skewed distributions in a similar fashion. Using SPSS software, the
following descriptive statistics were obtained for these three distributions

No Skew Right Skew  Left Skew

Mean 8.0000 6.6667 8.3333

Median 8.0000 6.0000 9.0000

Mode 8.00 5.00 10.00

Skewness .000 .627 —.627 [ ]

2.5 DESCRIPTIVE STATISTICS:
MEASURES OF DISPERSION

The dispersion of a set of observations refers to the variety that they exhibit. A measure
of dispersion conveys information regarding the amount of variability present in a set of
data. If all the values are the same, there is no dispersion; if they are not all the same,
dispersion is present in the data. The amount of dispersion may be small when the val-
ues, though different, are close together. Figure 2.5.1 shows the frequency polygons for
two populations that have equal means but different amounts of variability. Population
B, which is more variable than population A, is more spread out. If the values are widely
scattered, the dispersion is greater. Other terms used synonymously with dispersion
include variation, spread, and scatter.

The Range One way to measure the variation in a set of values is to compute the
range. The range is the difference between the largest and smallest value in a set of
observations. If we denote the range by R, the largest value by x;, and the smallest value
by x,, we compute the range as follows:

R:.XL_XS (251)

Population A

o« .
s Population B

N
A

FIGURE 2.5.1 Two frequency distributions with equal means
but different amounts of dispersion.
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EXAMPLE 2.5.1

We wish to compute the range of the ages of the sample subjects discussed in Example
242,

Solution: Since the youngest subject in the sample is 30 years old and the oldest is
82, we compute the range to be

R =182 —-30=52 [ |

The usefulness of the range is limited. The fact that it takes into account only two val-
ues causes it to be a poor measure of dispersion. The main advantage in using the range
is the simplicity of its computation. Since the range, expressed as a single measure,
imparts minimal information about a data set and therefore, is of limited use, it is often
preferable to express the range as a number pair, [xg, x1], in which xg and x; are the
smallest and largest values in the data set, respectively. For the data in Example 2.5.1,
we may express the range as the number pair [30, 82]. Although this is not the tradi-
tional expression for the range, it is intuitive to imagine that knowledge of the minimum
and maximum values in this data set would convey more information than knowing only
that the range is equal to 52. An infinite number of distributions, each with quite differ-
ent minimum and maximum values, may have a range of 52.

The Variance When the values of a set of observations lie close to their mean,
the dispersion is less than when they are scattered over a wide range. Since this is true,
it would be intuitively appealing if we could measure dispersion relative to the scatter
of the values about their mean. Such a measure is realized in what is known as the vari-
ance. In computing the variance of a sample of values, for example, we subtract the
mean from each of the values, square the resulting differences, and then add up the
squared differences. This sum of the squared deviations of the values from their mean
is divided by the sample size, minus 1, to obtain the sample variance. Letting 5% stand
for the sample variance, the procedure may be written in notational form as follows:

st= At (2.5.2)

EXAMPLE 2.5.2

Let us illustrate by computing the variance of the ages of the subjects discussed in
Example 2.4.2.

Solution:
(43 — 56)* + (66 — 56)> + - -+ + (50 — 56)*
9

9 |

Degrees of Freedom The reason for dividing by n — 1 rather than n, as we
might have expected, is the theoretical consideration referred to as degrees of freedom.
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In computing the variance, we say that we have n — 1 degrees of freedom. We reason
as follows. The sum of the deviations of the values from their mean is equal to zero, as
can be shown. If, then, we know the values of n — 1 of the deviations from the mean,
we know the nth one, since it is automatically determined because of the necessity for
all n values to add to zero. From a practical point of view, dividing the squared differ-
ences by n — 1 rather than n is necessary in order to use the sample variance in the
inference procedures discussed later. The concept of degrees of freedom will be revis-
ited in a later Chapter. Students interested in pursuing the matter further at this time
should refer to the article by Walker (2).

When we compute the variance from a finite population of N values, the proce-
dures outlined above are followed except that we subtract u from each x and divide by
N rather than N — 1. If we let o* stand for the finite population variance, the formula
is as follows:

o2 == (2.5.3)

Standard Deviation The variance represents squared units and, therefore, is not
an appropriate measure of dispersion when we wish to express this concept in terms of
the original units. To obtain a measure of dispersion in original units, we merely take
the square root of the variance. The result is called the standard deviation. In general,
the standard deviation of a sample is given by

s = Vi =

(2.5.4)

The standard deviation of a finite population is obtained by taking the square root of the
quantity obtained by Equation 2.5.3.

The Coefficient of Variation The standard deviation is useful as a measure
of variation within a given set of data. When one desires to compare the dispersion in two
sets of data, however, comparing the two standard deviations may lead to fallacious results.
It may be that the two variables involved are measured in different units. For example, we
may wish to know, for a certain population, whether serum cholesterol levels, measured in
milligrams per 100 ml, are more variable than body weight, measured in pounds.

Furthermore, although the same unit of measurement is used, the two means may
be quite different. If we compare the standard deviation of weights of first-grade chil-
dren with the standard deviation of weights of high school freshmen, we may find that
the latter standard deviation is numerically larger than the former, because the weights
themselves are larger, not because the dispersion is greater.

What is needed in situations like these is a measure of relative variation rather than
absolute variation. Such a measure is found in the coefficient of variation, which expresses
the standard deviation as a percentage of the mean. The formula is given by

C.V. = = (100)% (2.5.5)

=l | v
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We see that, since the mean and standard deviations are expressed in the same unit
of measurement, the unit of measurement cancels out in computing the coefficient of vari-
ation. What we have, then, is a measure that is independent of the unit of measurement.

EXAMPLE 2.5.3

Suppose two samples of human males yield the following results:

Sample 1 Sample 2

Age 25 years 11 years
Mean weight 145 pounds 80 pounds
Standard deviation 10 pounds 10 pounds

We wish to know which is more variable, the weights of the 25-year-olds or the weights
of the 11-year-olds.

Solution: A comparison of the standard deviations might lead one to conclude that
the two samples possess equal variability. If we compute the coefficients of
variation, however, we have for the 25-year-olds

10

V. = ——(100) = 6.
C.V. = 7,5 (100) = 6.9%

and for the 11-year-olds

10

C.V. = —(100) = 12.5%
80

If we compare these results, we get quite a different impression. It is clear

from this example that variation is much higher in the sample of 11-year-

olds than in the sample of 25-year-olds. ]

The coefficient of variation is also useful in comparing the results obtained by
different persons who are conducting investigations involving the same variable. Since
the coefficient of variation is independent of the scale of measurement, it is a useful
statistic for comparing the variability of two or more variables measured on different
scales. We could, for example, use the coefficient of variation to compare the variabil-
ity in weights of one sample of subjects whose weights are expressed in pounds with
the variability in weights of another sample of subjects whose weights are expressed in
kilograms.

Computer Analysis Computer software packages provide a variety of possibil-
ities in the calculation of descriptive measures. Figure 2.5.2 shows a printout of the
descriptive measures available from the MINITAB package. The data consist of the ages
from Example 2.4.2.

In the printout Q | and Q 5 are the first and third quartiles, respectively. These meas-
ures are described later in this chapter. N stands for the number of data observations, and
N* stands for the number of missing values. The term SEMEAN stands for standard
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Variable
C1l

N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
10 0 56.00 3.00 9.49 38.00 48.25 58.00 64.25 66.00

FIGURE 2.5.2 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, MINITAB software package.

error of the mean. This measure will be discussed in detail in a later chapter. Figure
2.5.3 shows, for the same data, the SAS® printout obtained by using the PROC MEANS
statement.

Percentiles and Quartiles The mean and median are special cases of a fam-
ily of parameters known as location parameters. These descriptive measures are called
location parameters because they can be used to designate certain positions on the hori-
zontal axis when the distribution of a variable is graphed. In that sense the so-called loca-
tion parameters “locate” the distribution on the horizontal axis. For example, a distribution
with a median of 100 is located to the right of a distribution with a median of 50 when
the two distributions are graphed. Other location parameters include percentiles and quar-
tiles. We may define a percentile as follows:

DEFINITION
Given a set of n observations x,x,,...Xx,, the pth percentile P is the
value of X such that p percent or less of the observations are less than P
and (100 — p) percent or less of the observations are greater than P.

Subscripts on P serve to distinguish one percentile from another. The 10th per-
centile, for example, is designated Py, the 70th is designated P, and so on. The 50th
percentile is the median and is designated P5y. The 25th percentile is often referred to as
the first quartile and denoted Q ;. The 50th percentile (the median) is referred to as
the second or middle quartile and written Q,, and the 75th percentile is referred to
as the third quartile, Q ;.

Std Error
3.0000000

The MEANS Procedure

Analysis Variable: Age

Mean Std Dev Minimum Maximum
56.0000000 9.4868330 38.0000000 66.0000000
Coeff of
Sum Variance Variation
560.0000000 90.0000000 16.9407732

FIGURE 2.5.3 Printout of descriptive measures computed from the sample of ages in
Example 2.4.2, SAS® software package.
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When we wish to find the quartiles for a set of data, the following formulas are

used:
n+1 . \
0, = th ordered observation
2zn+1) n+1 )
0, = 1 = th ordered observation > (2.5.6)
3(n+1)
03 = T th ordered observation )

Interquartile Range As we have seen, the range provides a crude measure of
the variability present in a set of data. A disadvantage of the range is the fact that it is
computed from only two values, the largest and the smallest. A similar measure that
reflects the variability among the middle 50 percent of the observations in a data set is
the interquartile range.

DEFINITION

The interquartile range (IQR) is the difference between the third and
first quartiles: that is,

IQR = Q3 - Ql (2.5.7)

A large IQR indicates a large amount of variability among the middle 50 percent of the
relevant observations, and a small IQR indicates a small amount of variability among the
relevant observations. Since such statements are rather vague, it is more informative to
compare the interquartile range with the range for the entire data set. A comparison may
be made by forming the ratio of the IQR to the range (R) and multiplying by 100. That
is, 100(IQR/R) tells us what percent the IQR is of the overall range.

Kurtosis Just as we may describe a distribution in terms of skewness, we may
describe a distribution in terms of kurtosis.

DEFINITION
Kurtosis is a measure of the degree to which a distribution is ‘“peaked”
or flat in comparison to a normal distribution whose graph is charac-
terized by a bell-shaped appearance.

A distribution, in comparison to a normal distribution, may possess an excessive propor-
tion of observations in its tails, so that its graph exhibits a flattened appearance. Such a
distribution is said to be platykurtic. Conversely, a distribution, in comparison to a nor-
mal distribution, may possess a smaller proportion of observations in its tails, so that its
graph exhibits a more peaked appearance. Such a distribution is said to be leptokurtic.
A normal, or bell-shaped distribution, is said to be mesokurtic.
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Kurtosis can be expressed as

YL w3 (x; - 9

Kurtosis = ——— — 3 =

Manual calculation using Equation 2.5.8 is usually not necessary, since most statisti-
cal packages calculate and report information regarding kurtosis as part of the descrip-
tive statistics for a data set. Note that each of the two parts of Equation 2.5.8 has been
reduced by 3. A perfectly mesokurtic distribution has a kurtosis measure of 3 based
on the equation. Most computer algorithms reduce the measure by 3, as is done in
Equation 2.5.8, so that the kurtosis measure of a mesokurtic distribution will be equal
to 0. A leptokurtic distribution, then, will have a kurtosis measure > 0, and a platykur-
tic distribution will have a kurtosis measure < 0. Be aware that not all computer pack-
ages make this adjustment. In such cases, comparisons with a mesokurtic distribution
are made against 3 instead of against 0. Graphs of distributions representing the three
types of kurtosis are shown in Figure 2.5.4.

~3 (2.5.8)

EXAMPLE 2.5.4

Consider the three distributions shown in Figure 2.5.4. Given that the histograms rep-
resent frequency counts, the data can be easily re-created and entered into a statistical
package. For example, observation of the “mesokurtic” distribution would yield the fol-
lowing data: 1, 2, 2, 3,3,3,3,3,...,9,9,9,9,9, 10, 10, 11. Values can be obtained
from the other distributions in a similar fashion. Using SPSS software, the following
descriptive statistics were obtained for these three distributions:

Mesokurtic Leptokurtic Platykurtic

Mean 6.0000 6.0000 6.0000
Median 6.0000 6.0000 6.0000
Mode 6.00 6.00 6.00
Skewness .000 .608 —1.158 -
Mesokurtic Leptokurtic Platykurtic
20 304| 4 =
254
5 151 5 20{ §3
210 215 $2
£ g m{ £
]
00.60 2.60 4.‘00 6.‘0CI 8.‘00 10.00 12’.00 0 D.ICIO 200 400 600 8.0010.00 IZI.DCI 0D.CICI 200 400 600 800 10.0012.00

FIGURE 2.5.4 Three histograms representing kurtosis.
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Box-and-Whisker Plots A useful visual device for communicating the infor-
mation contained in a data set is the box-and-whisker plot. The construction of a box-
and-whisker plot (sometimes called, simply, a boxplof) makes use of the quartiles of a
data set and may be accomplished by following these five steps:

1. Represent the variable of interest on the horizontal axis.

2. Draw a box in the space above the horizontal axis in such a way that the left end
of the box aligns with the first quartile O and the right end of the box aligns with
the third quartile Q ;.

3. Divide the box into two parts by a vertical line that aligns with the median Q ,.

4. Draw a horizontal line called a whisker from the left end of the box to a point that
aligns with the smallest measurement in the data set.

5. Draw another horizontal line, or whisker, from the right end of the box to a point
that aligns with the largest measurement in the data set.

Examination of a box-and-whisker plot for a set of data reveals information regard-
ing the amount of spread, location of concentration, and symmetry of the data.
The following example illustrates the construction of a box-and-whisker plot.

EXAMPLE 2.5.5

Evans et al. (A-7) examined the effect of velocity on ground reaction forces (GRF) in
dogs with lameness from a torn cranial cruciate ligament. The dogs were walked and
trotted over a force platform, and the GRF was recorded during a certain phase of their
performance. Table 2.5.1 contains 20 measurements of force where each value shown is
the mean of five force measurements per dog when trotting.

Solution: The smallest and largest measurements are 14.6 and 44, respectively. The
first quartile is the Q; = (20 + 1)/4 = 5.25th measurement, which is
27.2 + (.25)(27.4 — 27.2) = 27.25. The median is the 0, + (20 + 1)
/2 = 10.5th measurement or 30.7 + (.5)(31.5 — 30.7) = 31.1; and the
third quartile is the Q3 + 3(20 + 1)/4 = 15.75th measurement, which is
equal to 33.3 + (.75)(33.6 — 33.3) = 33.525. The interquartile range
is IQR = 33.525 — 27.25 = 6.275. The range is 29.4, and the IQR is
100(6.275/29.4) = 21 percent of the range. The resulting box-and-whisker
plot is shown in Figure 2.5.5. [ |

Examination of Figure 2.5.5 reveals that 50 percent of the measurements are
between about 27 and 33, the approximate values of the first and third quartiles, respec-
tively. The vertical bar inside the box shows that the median is about 31.

TABLE 2.5.1 GRF Measurements When Trotting of 20 Dogs with a Lame Ligament

14.6 24.3 24.9 270 27.2 274 28.2 28.8 29.9 30.7
315 31.6 32.3 32.8 33.3 33.6 34.3 36.9 38.3 44.0

Source: Richard Evans, Ph.D. Used with permission.
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14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
GRF Measurements

FIGURE 2.5.5 Box-and-whisker plot for Example 2.5.5.

Many statistical software packages have the capability of constructing box-and-
whisker plots. Figure 2.5.6 shows one constructed by MINITAB and one constructed by
NCSS from the data of Table 2.5.1. The procedure to produce the MINITAB plot is shown
in Figure 2.5.7. The asterisks in Figure 2.5.6 alert us to the fact that the data set contains
one unusually large and one unusually small value, called outliers. The outliers are the
dogs that generated forces of 14.6 and 44. Figure 2.5.6 illustrates the fact that box-and-
whisker plots may be displayed vertically as well as horizontally.

An outlier, or a typical observation, may be defined as follows.

DEFINITION

An outlier is an observation whose value, x, either exceeds the value of
the third quartile by a magnitude greater than 1.5(IQR) or is less than
the value of the first quartile by a magnitude greater than 1.5(IQR).
That is, an observation of x > Q; + 1.5(IQR) or an observation of

x < Q1 — 1.5(IQR) is called an outlier.

For the data in Table 2.5.1 we may use the previously computed values of Q;, O3, and
IQR to determine how large or how small a value would have to be in order to be con-
sidered an outlier. The calculations are as follows:

x> 2725 — 1.5(6275) = 17.8375 and x > 33.525 + 1.5(6.275) = 42.9375

For the data in Table 2.5.1, then, an observed value smaller than 17.8375 or larger than
42.9375 would be considered an outlier.

_ 45.0 -
45 % ] .
35 | 33.3
€
=
5]
E
| <<
25 21.7
L]
15 — * .
10.0 .
Force
Variables

FIGURE 2.5.6 Box-and-whisker plot constructed by MINITAB (left) and by NCSS (right)
from the data of Table 2.5.1.
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Dialog box: Session command:
Stat » EDA » Boxplot » Simple MTB > Boxplot ‘Force’;
Click OK. SUBC> IQRbox;

SUBC> Outlier.
Type Force Graph Variables.
Click OK.

FIGURE 2.5.7 MINITAB procedure to produce Figure 2.5.6.

The SAS® statement PROC UNIVARIATE may be used to obtain a box-and-
whisker plot. The statement also produces other descriptive measures and displays,
including stem-and-leaf plots, means, variances, and quartiles.

Exploratory Data Analysis Box-and-whisker plots and stem-and-leaf dis-
plays are examples of what are known as exploratory data analysis techniques. These
techniques, made popular as a result of the work of Tukey (3), allow the investigator to
examine data in ways that reveal trends and relationships, identify unique features of
data sets, and facilitate their description and summarization.

EXERCISES

251

For each of the data sets in the following exercises compute (a) the mean, (b) the median, (c) the
mode, (d) the range, (e) the variance, (f) the standard deviation, (g) the coefficient of variation,
and (h) the interquartile range. Treat each data set as a sample. For those exercises for which you
think it would be appropriate, construct a box-and-whisker plot and discuss the usefulness in under-
standing the nature of the data that this device provides. For each exercise select the measure of
central tendency that you think would be most appropriate for describing the data. Give reasons
to justify your choice.

Porcellini et al. (A-8) studied 13 HIV-positive patients who were treated with highly active antiretro-
viral therapy (HAART) for at least 6 months. The CD4 T cell counts (X 10%/L) at baseline for the
13 subjects are listed below.

230 205 313 207 227 245 173
58 103 181 105 301 169

Source: Simona Porcellini, Guiliana Vallanti, Silvia
Nozza, Guido Poli, Adriano Lazzarin, Guiseppe
Tambussi, Antonio Grassia, “Improved Thymopoi-
etic Potential in Aviremic HIV Infected Individuals
with HAART by Intermittent IL-2 Administration,”
AIDS, 17 (2003), 1621-1630.

2.5.2 Shair and Jasper (A-9) investigated whether decreasing the venous return in young rats would affect

ultrasonic vocalizations (USVs). Their research showed no significant change in the number of
ultrasonic vocalizations when blood was removed from either the superior vena cava or the carotid
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artery. Another important variable measured was the heart rate (bmp) during the withdrawal of
blood. The table below presents the heart rate of seven rat pups from the experiment involving the
carotid artery.

500 570 560 570 450 560

Source: Harry N. Shair and Anna Jasper,
“Decreased Venous Return Is Neither Sufficient
nor Necessary to Elicit Ultrasonic Vocalization of
Infant Rat Pups,” Behavioral Neuroscience, 117
(2003), 840-853.

570

Butz et al. (A-10) evaluated the duration of benefit derived from the use of noninvasive positive-
pressure ventilation by patients with amyotrophic lateral sclerosis on symptoms, quality of life,
and survival. One of the variables of interest is partial pressure of arterial carbon dioxide (PaCQO,).
The values below (mm Hg) reflect the result of baseline testing on 30 subjects as established by
arterial blood gas analyses.

40.0 47.0 340 420 540 480 53.6 569 580 450
545 540 430 443 539 418 330 431 524 379
345 40.1 33.0 599 626 541 457 406 56.6 59.0

Source: M. Butz, K. H. Wollinsky, U. Widemuth-Catrinescu, A. Sperfeld,

S. Winter, H. H. Mehrkens, A. C. Ludolph, and H. Schreiber, “Longitudinal
Effects of Noninvasive Positive-Pressure Ventilation in Patients with Amyotrophic
Lateral Sclerosis,” American Journal of Medical Rehabilitation, 82 (2003),
597-604.

According to Starch et al. (A-11), hamstring tendon grafts have been the “weak link” in anterior
cruciate ligament reconstruction. In a controlled laboratory study, they compared two techniques
for reconstruction: either an interference screw or a central sleeve and screw on the tibial side. For
eight cadaveric knees, the measurements below represent the required force (in newtons) at which
initial failure of graft strands occurred for the central sleeve and screw technique.

1725  216.63 21262 9897 6695 23976 19.57 195.72

Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and
David M. Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Cen-
tral Four-Quadrant or a Standard Tibial Interference Screw for Anterior Cruciate
Ligament Reconstruction,” American Journal of Sports Medicine, 31 (2003),
338-344.

Cardosi et al. (A-12) performed a 4-year retrospective review of 102 women undergoing radical
hysterectomy for cervical or endometrial cancer. Catheter-associated urinary tract infection was
observed in 12 of the subjects. Below are the numbers of postoperative days until diagnosis of the
infection for each subject experiencing an infection.

16 10 49 15 6 15
8§ 19 11 22 13 17

Source: Richard J. Cardosi, Rosemary Cardosi, Edward

C. Grendys Jr., James V. Fiorica, and Mitchel S. Hoffman,
“Infectious Urinary Tract Morbidity with Prolonged Bladder
Catheterization After Radical Hysterectomy,” American Journal
of Obstetrics and Gynecology, 189 (2003), 380-384.

The purpose of a study by Nozawa et al. (A-13) was to evaluate the outcome of surgical repair
of a pars interarticularis defect by segmental wire fixation in young adults with lumbar spondy-
lolysis. The authors found that segmental wire fixation historically has been successful in the
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2.5.7
2.5.8
259
2.5.10
2511
2512
2.5.13
2.5.14

treatment of nonathletes with spondylolysis, but no information existed on the results of this type
of surgery in athletes. In a retrospective study, the authors found 20 subjects who had the sur-
gery between 1993 and 2000. For these subjects, the data below represent the duration in months
of follow-up care after the operation.

103 68 62 60 60 54 49 44 42 41

38 36 34 30 19 19 19 19 17 16
Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto,
and Mizuo Tanaka, “Repair of Pars Interarticularis Defect by
Segmental Wire Fixation in Young Athletes with Spondyloly-
sis,” American Journal of Sports Medicine, 31 (2003),
359-364.

See Exercise 2.3.1.
See Exercise 2.3.2.
See Exercise 2.3.3.
See Exercise 2.3.4.
See Exercise 2.3.5.
See Exercise 2.3.6.
See Exercise 2.3.7.

In a pilot study, Huizinga et al. (A-14) wanted to gain more insight into the psychosocial conse-
quences for children of a parent with cancer. For the study, 14 families participated in semistruc-
tured interviews and completed standardized questionnaires. Below is the age of the sick parent
with cancer (in years) for the 14 families.

37 48 53 46 42 49 44
38 32 32 51 51 48 41

Source: Gea A. Huizinga, Winette T.A. van der Graaf,
Annemike Visser, Jos S. Dijkstra, and Josette E. H. M.
Hoekstra-Weebers, “Psychosocial Consequences for Children
of a Parent with Cancer,” Cancer Nursing, 26 (2003),
195-202.

2.6 SUMMARY

In this chapter various descriptive statistical procedures are explained. These include the
organization of data by means of the ordered array, the frequency distribution, the rela-
tive frequency distribution, the histogram, and the frequency polygon. The concepts of
central tendency and variation are described, along with methods for computing their
more common measures: the mean, median, mode, range, variance, and standard devia-
tion. The reader is also introduced to the concepts of skewness and kurtosis, and to
exploratory data analysis through a description of stem-and-leaf displays and box-and-
whisker plots.

We emphasize the use of the computer as a tool for calculating descriptive meas-
ures and constructing various distributions from large data sets.
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Formula Number

Name

Formula

2.3.1

Class interval width
using Sturges’s rule

24.1 Mean of a population
— i=l1
Y
242 Sk = _
ewness \/’;2()6[ ~ ¥y
_ i=1
Skewness = VRN
<2(Xi - 7)2)
i=1
Vi (x; - x)°
i=1
(n—1)Vn—15s°
242 Mean of a sample i
Xi
_ =
X =
n
2.5.1 Range R =x; — xg
252 Sample variance u .
E (x; — x)
S2 — i=1
n—1
253 Population variance I )
E(xi - w)
0_2 — i=1
N
254 Standard deviation
VA
. o S
2.5.5 Coefficient of variation C.V. = =(100)%
X
. L 1
2.5.6 Quartile location in 0, = Z(n + 1)
ordered array 1
0, = 5(" +1)
3
=—(n+1
03 4(" )
2.5.7 Interquartile range IOR = Q5 — 0,

(Continued)
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k = number of class intervals
u = population mean

N = population size

n = sample size

(n = 1) = degrees of freedom

Q, = first quartile
Q, = second quartile = median
Q3 = third quartile

R = range

s = standard deviation

s> = sample variance

o? = population variance
x; = i"™ data observation
xp = largest data point
xs = smallest data point
X = sample mean

w = class width

2.5.8 Kurtosis “
! E(Xi - %)
Kurtosis = —— -3
n 2
<E(xi - x)2>
i=1
n
n> (x; — x)*
i=1
= -3
(n —1)%s*
Symbol Key e C.V. = coefficient of variation
¢ IQR = Interquartile range

REVIEW QUESTIONS AND

EXERCISES

1. Define:
(a)
(©
(e
(g

Percentile
Location parameter

Ordered array

(i) Relative frequency distribution

Parameter

(k)
(m)

True class limits

ok wD

Stem-and-leaf display

(b) Box-and-whisker plot

(d) Quartile

(f) Exploratory data analysis

(h) Frequency distribution

(j) Statistic
(1) Frequency polygon
(n) Histogram

What is the purpose of the coefficient of variation?

Define and compare the characteristics of the mean, the median, and the mode.
What are the advantages and limitations of the range as a measure of dispersion?

Explain the rationale for using n — 1 to compute the sample variance.
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What is the purpose of Sturges’s rule?
What is another name for the 50th percentile (second or middle quartile)?

Describe from your field of study a population of data where knowledge of the central tendency
and dispersion would be useful. Obtain real or realistic synthetic values from this population and
compute the mean, median, mode, variance, and standard deviation.

Collect a set of real, or realistic, data from your field of study and construct a frequency distribu-
tion, a relative frequency distribution, a histogram, and a frequency polygon.

Compute the mean, median, mode, variance, and standard deviation for the data in Exercise 9.

Find an article in a journal from your field of study in which some measure of central tendency
and dispersion have been computed.

The purpose of a study by Tam et al. (A-15) was to investigate the wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls. Subjects used a modi-
fied wheelchair to incorporate a rigid seat surface to facilitate the specified experimental measure-
ments. Interface pressure measurement was recorded by using a high-resolution pressure-sensitive
mat with a spatial resolution of 4 sensors per square centimeter taped on the rigid seat support.
During static sitting conditions, average pressures were recorded under the ischial tuberosities. The
data for measurements of the left ischial tuberosity (in mm Hg) for the SCI and control groups
are shown below.

Control| 131 115 124 131 122 117 88 114 150 169

SCIl 60 150 130 180 163 130 121 119 130 148

Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York

Y. Chow, “Pelvic Movement and Interface Pressure Distribution During Manual Wheel-
chair Propulsion,” Archives of Physical Medicine and Rehabilitation, 84 (2003),
1466-1472.

(a) Find the mean, median, variance, and standard deviation for the controls.
(b) Find the mean, median variance, and standard deviation for the SCI group.
(c) Construct a box-and-whisker plot for the controls.

(d) Construct a box-and-whisker plot for the SCI group.

(e) Do you believe there is a difference in pressure readings for controls and SCI subjects in this
study?

Johnson et al. (A-16) performed a retrospective review of 50 fetuses that underwent open fetal
myelomeningocele closure. The data below show the gestational age in weeks of the 50 fetuses
undergoing the procedure.

25 25 26 27 29 29 29 30 30 31
32 32 32 33 33 33 33 34 34 34
35 3 35 35 35 35 35 35 35 36
36 36 36 36 36 36 36 36 36 36
36 36 36 36 36 36 36 36 37 37

Source: Mark P. Johnson, Leslie N. Sutton, Natalie Rintoul, Timothy M.
Crombleholme, Alan W. Flake, Lori J. Howell, Holly L. Hedrick, R. Douglas
Wilson, and N. Scott Adzick, “Fetal Myelomeningocele Repair: Short-Term
Clinical Outcomes,” American Journal of Obstetrics and Gynecology, 189
(2003), 482-487.
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14.

15.

16.

(a) Construct a stem-and-leaf plot for these gestational ages.

(b) Based on the stem-and-leaf plot, what one word would you use to describe the nature of the

data?

(¢) Why do you think the stem-and-leaf plot looks the way it does?

(d) Compute the mean, median, variance, and standard deviation.

The following table gives the age distribution for the number of deaths in New York State due to

accidents for residents age 25 and older.

Age (Years)

Number of Deaths Due to Accidents

25-34
35-44
45-54
55-64
65-74
75-84
85-94*

393
514
460
341
365
616
618

Source: New York State Department of
Health, Vital Statistics of New York
State, 2000, Table 32: Death Summary
Information by Age.

*May include deaths due to accident for
adults over age 94.

For these data construct a cumulative frequency distribution, a relative frequency distribution, and

a cumulative relative frequency distribution.

Krieser et al. (A-17) examined glomerular filtration rate (GFR) in pediatric renal transplant recip-
ients. GFR is an important parameter of renal function assessed in renal transplant recipients. The
following are measurements from 19 subjects of GFR measured with diethylenetriamine penta-
acetic acid. (Note: some subjects were measured more than once.)

18
21
21
23
27
27
30
32
32
32
36
37
41
42

42
43
43
48
48
51
55
58
60
62
67
68
88
63

Source: D. M. Z. Krieser, M.D. Used with permission.
(a) Compute mean, median, variance, standard deviation, and coefficient of variation.

(b) Construct a stem-and-leaf display.

(c) Construct a box-and-whisker plot.

(d) What percentage of the measurements is within one standard deviation of the mean? Two stan-

dard deviations? Three standard deviations?

The following are the cystatin C levels (mg/L) for the patients described in Exercise 15 (A-17).
Cystatin C is a cationic basic protein that was investigated for its relationship to GFR levels. In
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addition, creatinine levels are also given. (Note: Some subjects were measured more than
once.)

Cystatin C (mg/L) Creatinine (mmol/L)
1.78 4.69 0.35 0.14
2.16 3.78 0.30 0.11
1.82 2.24 0.20 0.09
1.86 4.93 0.17 0.12
1.75 2.71 0.15 0.07
1.83 1.76 0.13 0.12
2.49 2.62 0.14 0.11
1.69 2.61 0.12 0.07
1.85 3.65 0.24 0.10
1.76 2.36 0.16 0.13
1.25 3.25 0.17 0.09
1.50 2.01 0.11 0.12
2.06 2.51 0.12 0.06
2.34

Source: D. M. Z. Krieser, M.D. Used with permission.

(a) For each variable, compute the mean, median, variance, standard deviation, and coefficient of
variation.

(b) For each variable, construct a stem-and-leaf display and a box-and-whisker plot.

(¢) Which set of measurements is more variable, cystatin C or creatinine? On what do you base
your answer?

Give three synonyms for variation (variability).

The following table shows the age distribution of live births in Albany County, New York,
for 2000.

Mother’s Age Number of Live Births

10-14 7
15-19 258
20-24 585
25-29 841
30-34 981
35-39 526
40-44 99
45-49% 4

Source: New York State Department of Health,
Annual Vital Statistics 2000, Table 7, Live Births
by Resident County and Mother’s Age.

*May include live births to mothers over age 49.

For these data construct a cumulative frequency distribution, a relative frequency distribution, and
a cumulative relative frequency distribution.
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19.

20.

21.

22.

23.

24,

Spivack (A-18) investigated the severity of disease associated with C. difficile in pediatric inpa-
tients. One of the variables they examined was number of days patients experienced diarrhea. The
data for the 22 subjects in the study appear below. Compute the mean, median, variance, and stan-
dard deviation.

3 11 3 4 14 2 4 5 3 11 2
2 3 21 1 7 2 1 1 3 2

Source: Jordan G. Spivack, Stephen C. Eppes, and Joel
D. Klien, “Clostridium Difficile—Associated Diarrhea in
a Pediatric Hospital,” Clinical Pediatrics, 42 (2003),
347-352.

Express in words the following properties of the sample mean:
(@) X(x — X)?> = aminimum

(b) nx = Xx

(© Z(x—x)=0

Your statistics instructor tells you on the first day of class that there will be five tests during the
term. From the scores on these tests for each student, the instructor will compute a measure of
central tendency that will serve as the student’s final course grade. Before taking the first test, you
must choose whether you want your final grade to be the mean or the median of the five test
scores. Which would you choose? Why?

Consider the following possible class intervals for use in constructing a frequency distribution of
serum cholesterol levels of subjects who participated in a mass screening:

(a) 50-74 (b) 50-74 (c) 50-75
75-99 75-99 75-100
100-149 100-124 100-125
150-174 125-149 125-150
175-199 150-174 150-175
200-249 175-199 175-200
250-274 200-224 200-225
etc. 225-249 225-250

etc. etc.

Which set of class intervals do you think is most appropriate for the purpose? Why? State specif-
ically for each one why you think the other two are less desirable.

On a statistics test students were asked to construct a frequency distribution of the blood creatine
levels (units/liter) for a sample of 300 healthy subjects. The mean was 95, and the standard devi-
ation was 40. The following class interval widths were used by the students:

(a) 1 d) 15
() 5 (e) 20
(c) 10 # 25

Comment on the appropriateness of these choices of widths.

Give a health sciences—related example of a population of measurements for which the mean would
be a better measure of central tendency than the median.
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28.

29.

REVIEW QUESTIONS AND EXERCISES 61

Give a health sciences—related example of a population of measurements for which the median
would be a better measure of central tendency than the mean.

Indicate for the following variables which you think would be a better measure of central ten-
dency, the mean, the median, or mode, and justify your choice:

(a) Annual incomes of licensed practical nurses in the Southeast.
(b) Diagnoses of patients seen in the emergency department of a large city hospital.
(c) Weights of high-school male basketball players.

Refer to Exercise 2.3.11. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
‘What does the comparison tell you about the variability of the observations?

Refer to Exercise 2.3.12. Compute the mean, median, variance, standard deviation, first quartile, third
quartile, and interquartile range. Construct a boxplot of the data. Are the mode, median, and mean
equal? If not, explain why. Discuss the data in terms of variability. Compare the IQR with the range.
What does the comparison tell you about the variability of the observations?

Thilothammal et al. (A-19) designed a study to determine the efficacy of BCG (bacillus Calmette-
Guérin) vaccine in preventing tuberculous meningitis. Among the data collected on each subject
was a measure of nutritional status (actual weight expressed as a percentage of expected weight for
actual height). The following table shows the nutritional status values of the 107 cases studied.

73.3 54.6 82.4 76.5 72.2 73.6 74.0

80.5 71.0 56.8 80.6 100.0 79.6 67.3

50.4 66.0 83.0 72.3 55.7 64.1 66.3

50.9 71.0 76.5 99.6 79.3 76.9 96.0

64.8 74.0 72.6 80.7 109.0 68.6 73.8

74.0 72.7 65.9 733 84.4 73.2 70.0

72.8 73.6 70.0 77.4 76.4 66.3 50.5

72.0 97.5 130.0 68.1 86.4 70.0 73.0

59.7 89.6 76.9 74.6 67.7 91.9 55.0

90.9 70.5 88.2 70.5 74.0 55.5 80.0

76.9 78.1 63.4 58.8 92.3 100.0 84.0

71.4 84.6 123.7 93.7 76.9 79.6

45.6 92.5 65.6 61.3 64.5 72.7

71.5 76.9 80.2 76.9 88.7 78.1

60.6 59.0 84.7 78.2 72.4 68.3 Source: Dr. N. Thilothammal.
67.5 76.9 82.6 85.4 65.7 65.9 Used with permission.

(a) For these data compute the following descriptive measures: mean, median, mode, variance,
standard deviation, range, first quartile, third quartile, and IQR.

(b) Construct the following graphs for the data: histogram, frequency polygon, stem-and-leaf plot,
and boxplot.

(c) Discuss the data in terms of variability. Compare the IQR with the range. What does the com-
parison tell you about the variability of the observations?

(d) What proportion of the measurements are within one standard deviation of the mean? Two
standard deviations of the mean? Three standard deviations of the mean?

(e) What proportion of the measurements are less than 100?

(f) What proportion of the measurements are less than 50?
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MU

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to the dataset NCBIRTH800. The North Carolina State Center for Health Statistics and
Howard W. Odum Institute for Research in Social Science at the University of North Carolina at
Chapel Hill (A-20) make publicly available birth and infant death data for all children born in the
state of North Carolina. These data can be accessed at www.irss.unc.edu/ncvital/bfd1down.html.
Records on birth data go back to 1968. This comprehensive data set for the births in 2001 con-
tains 120,300 records. The data represents a random sample of 800 of those births and selected
variables. The variables are as follows:

Variable Label Description
PLURALITY  Number of children born of the pregnancy
SEX Sex of child (1 = male,2 = female)

MAGE Age of mother (years)

WEEKS Completed weeks of gestation (weeks)
MARITAL Marital status (1 = married, 2 = not married)

RACEMOM Race of mother (0 = other non-White, 1 = White, 2 = Black 3 = American
Indian, 4 = Chinese, 5 = Japanese, 6 = Hawaiian, 7 = Filipino, 8 = Other
Asian or Pacific Islander)

HISPMOM Mother of Hispanic origin (C = Cuban, M = Mexican, N = Non-Hispanic,
O = other and unknown Hispanic, P = Puerto Rican, S = Central/South
American, U = not classifiable)

GAINED Weight gained during pregnancy (pounds)

SMOKE 0 = mother did not smoke during pregnancy
1 = mother did smoke during pregnancy

DRINK 0 = mother did not consume alcohol during pregnancy
1 = mother did consume alcohol during pregnancy

TOUNCES Weight of child (ounces)

TGRAMS Weight of child (grams)

LOW 0 = infant was not low birth weight

1 = infant was low birth weight
PREMIE 0 = infant was not premature

1 = infant was premature

Premature defined at 36 weeks or sooner

For the variables of MAGE, WEEKS, GAINED, TOUNCES, and TGRAMS:
Calculate the mean, median, standard deviation, IQR, and range.

For each, construct a histogram and comment on the shape of the distribution.
Do the histograms for TOUNCES and TGRAMS look strikingly similar? Why?
Construct box-and-whisker plots for all four variables.

Construct side-by-side box-and-whisker plots for the variable of TOUNCES for women who admit-
ted to smoking and women who did not admit to smoking. Do you see a difference in birth weight
in the two groups? Which group has more variability?

Construct side-by-side box-and-whisker plots for the variable of MAGE for women who are and
are not married. Do you see a difference in ages in the two groups? Which group has more vari-
ability? Are the results surprising?

Calculate the skewness and kurtosis of the data set. What do they indicate?


www.wiley.com/college/daniel
www.irss.unc.edu/ncvital/bfd1down.html

REFERENCES 63

REFERENCES

A-6.

A-8.

A-13.

A-14.

A-16.

Methodology References

H. A. STURGES, “The Choice of a Class Interval,” Journal of the American Statistical Association, 21 (1926),
65-66.

HELEN M. WALKER, “Degrees of Freedom,” Journal of Educational Psychology, 31 (1940), 253-269.

JouN W. TUKEY, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.

Applications References

FARHAD ATAssI, “Oral Home Care and the Reasons for Seeking Dental Care by Individuals on Renal Dialy-
sis,” Journal of Contemporary Dental Practice, 3 (2002), 31-41.

VALLABH JANARDHAN, ROBERT FRIEDLANDER, HOWARD RIINA, and PHILIP EDWIN STIEG, “Identifying Patients
at Risk for Postprocedural Morbidity after Treatment of Incidental Intracranial Aneurysms: The Role of
Aneurysm Size and Location,” Neurosurgical Focus, 13 (2002), 1-8.

A. HOEKEMA, B. HOVINGA, B. STEGENGA, and L. G. M. De BONT, “Craniofacial Morphology and Obstruc-
tive Sleep Apnoea: A Cephalometric Analysis,” Journal of Oral Rehabilitation, 30 (2003), 690-696.

Davip H. HOLBEN, “Selenium Content of Venison, Squirrel, and Beef Purchased or Produced in Ohio, a Low
Selenium Region of the United States,” Journal of Food Science, 67 (2002), 431-433.

ERIK SKIELBO, THEONEST K. MUTABINGWA, IB BYGBIERG, KARIN K. NIELSEN, LARS F. GRAM, and KiM BR@SEN,
“Chloroguanide Metabolism in Relation to the Efficacy in Malaria Prophylaxis and the S-Mephenytoin Oxida-
tion in Tanzanians,” Clinical Pharmacology & Therapeutics, 59 (1996), 304-311.

HENRIK SCHMIDT, POUL ERIK MORTENSEN, SAREN LARS FALSGAARD, and ESTHER A. JENSEN, “Autotransfu-
sion After Coronary Artery Bypass Grafting Halves the Number of Patients Needing Blood Transfusion,”
Annals of Thoracic Surgery, 61 (1996), 1178-1181.

RiCHARD EvANSs, WANDA GORDON, and MIKE CoNzeMIUS, “Effect of Velocity on Ground Reaction Forces in
Dogs with Lameness Attributable to Tearing of the Cranial Cruciate Ligament,” American Journal of Veteri-
nary Research, 64 (2003), 1479-1481.

SIMONA PORCELLINI, GUILIANA VALLANTI, SILVIA N0zzA, GUIDO PoLI, ADRIANO LAZZARIN, GUISEPPE
TAMBUSSI, and ANTONIO GRASSIA, “Improved Thymopoietic Potential in Aviremic HIV Infected Individu-
als with HAART by Intermittent IL-2 Administration,” AIDS, 17 (2003), 1621-1630.

HARRY N. SHAIR and ANNA JASPER, “Decreased Venous Return Is Neither Sufficient nor Necessary to Elicit
Ultrasonic Vocalization of Infant Rat Pups,” Behavioral Neuroscience, 117 (2003), 840-853.

M. Butz, K. H. WOLLINSKY, U. WIDEMUTH-CATRINESCU, A. SPERFELD, S. WINTER, H. H. MEHRKENS, A. C.
LupoLpH, and H. SCHREIBER, “Longitudinal Effects of Noninvasive Positive-Pressure Ventilation in Patients
with Amyotophic Lateral Sclerosis,” American Journal of Medical Rehabilitation, 82 (2003), 597-604.
DAvID W. STARCH, JERRY W. ALEXANDER, PHILIP C. NOBLE, SURAJ REDDY, and DAVID M. LINTNER, ‘“Multi-
stranded Hamstring Tendon Graft Fixation with a Central Four-Quadrant or a Standard Tibial Interference Screw
for Anterior Cruciate Ligament Reconstruction,” American Journal of Sports Medicine, 31 (2003), 338-344.
RICHARD J. CARDOSI, ROSEMARY CARDOSI, EDWARD C. GRENDYS Jr., JAMES V. FIORICA, and MITCHEL S.
HorrMAN, “Infectious Urinary Tract Morbidity with Prolonged Bladder Catheterization After Radical Hys-
terectomy,” American Journal of Obstetrics and Gynecology, 189 (2003), 380-384.

SarosHl Nozawa, Karsuit SHIMIzu, KEl M1YAMOTO, and Mizuo TANAKA, “Repair of Pars Interarticularis Defect
by Segmental Wire Fixation in Young Athletes with Spondylolysis,” American Journal of Sports Medicine, 31
(2003), 359-364.

GEA A. HuizINGA, WINETTE T. A. van der GRAAF, ANNEMIKE VISSER, JOs S. DUKSTRA, and JOSETTE E. H.
M. HOEKSTRA-WEEBERS, “Psychosocial Consequences for Children of a Parent with Cancer,” Cancer Nursing,
26 (2003), 195-202.

EriC W. TaM, ARTHUR F. MAK, WAI NGA LAM, JOHN H. Evans, and YORK Y. CHOW, “Pelvic Movement and
Interface Pressure Distribution During Manual Wheelchair Propulsion,” Archives of Physical Medicine and Reha-
bilitation, 84 (2003), 1466-1472.

MARK P. JOHNSON, LESLIE N. SUTTON, NATALIE RINTOUL, TIMOTHY M. CROMBLEHOLME, ALAN W. FLAKE,
Lori J. HoweLL, HoLLy L. HEDRICK, R. DouGLAS WILSON, and N. ScOTT ADzICK, “Fetal Myelomeningocele
Repair: Short-Term Clinical Outcomes,” American Journal of Obstetrics and Gynecology, 189 (2003), 482-487.



64

CHAPTER 2

A-19.

A-20.

DESCRIPTIVE STATISTICS

D. M. Z. KRIESER, A. R. ROSENBERG, G. KAINER, and D. NAIDOO, “The Relationship between Serum Crea-
tinine, Serum Cystatin C, and Glomerular Filtration Rate in Pediatric Renal Transplant Recipients: A Pilot
Study,” Pediatric Transplantation, 6 (2002), 392-395.

JORDAN G. SPIVACK, STEPHEN C. EpPPES, and JOEL D. KLIEN, “Clostridium Difficile—Associated Diarrhea in a
Pediatric Hospital,” Clinical Pediatrics, 42 (2003), 347-352.

N. THILOTHAMMAL, P. V. KRISHNAMURTHY, DESMOND K. RUNYAN, and K. BaNU, “Does BCG Vaccine Pre-
vent Tuberculous Meningitis?” Archives of Disease in Childhood, 74 (1996), 144—-147.

North Carolina State Center for Health Statistics and Howard W. Odum Institute for Research in Social Science
at the University of North Carolina at Chapel Hill. Birth data set for 2001 found at www.irss.unc.edu/ncvital/
bfdldown.html. All calculations were performed by John Holcomb and do not represent the findings of the
Center or Institute.


www.irss.unc.edu/ncvital/bfd1down.html
www.irss.unc.edu/ncvital/bfd1down.html

CHAPTER 3

SOME BASIC PROBABILITY
CONCEPTS

CHAPTER OVERVIEW

Probability lays the foundation for statistical inference. This chapter provides
a brief overview of the probability concepts necessary for the understanding
of topics covered in the chapters that follow. It also provides a context for
understanding the probability distributions used in statistical inference, and
introduces the student to several measures commonly found in the medical
literature (e.g., the sensitivity and specificity of a test).

TOPICS

3.1 INTRODUCTION

3.2 TWOVIEWS OF PROBABILITY: OBJECTIVE AND SUBJECTIVE
3.3 ELEMENTARY PROPERTIES OF PROBABILITY

3.4 CALCULATINGTHE PROBABILITY OF AN EVENT

3.5 BAYES'THEOREM, SCREENINGTESTS, SENSITIVITY, SPECIFICITY,
AND PREDICTIVE VALUE POSITIVE AND NEGATIVE

3.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand classical, relative frequency, and subjective probability.

2. understand the properties of probability and selected probability rules.
3. be able to calculate the probability of an event.

4. be able to apply Bayes’ theorem when calculating screening test results.

65
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CHAPTER 3 SOME BASIC PROBABILITY CONCEPTS

INTRODUCTION

The theory of probability provides the foundation for statistical inference. However, this
theory, which is a branch of mathematics, is not the main concern of this book, and,
consequently, only its fundamental concepts are discussed here. Students who desire to
pursue this subject should refer to the many books on probability available in most college
and university libraries. The books by Gut (1), Isaac (2), and Larson (3) are recommended.
The objectives of this chapter are to help students gain some mathematical ability in the
area of probability and to assist them in developing an understanding of the more impor-
tant concepts. Progress along these lines will contribute immensely to their success in under-
standing the statistical inference procedures presented later in this book.

The concept of probability is not foreign to health workers and is frequently
encountered in everyday communication. For example, we may hear a physician say that
a patient has a 50-50 chance of surviving a certain operation. Another physician may
say that she is 95 percent certain that a patient has a particular disease. A public health
nurse may say that nine times out of ten a certain client will break an appointment. As
these examples suggest, most people express probabilities in terms of percentages. In
dealing with probabilities mathematically, it is more convenient to express probabilities
as fractions. (Percentages result from multiplying the fractions by 100.) Thus, we meas-
ure the probability of the occurrence of some event by a number between zero and one.
The more likely the event, the closer the number is to one; and the more unlikely the
event, the closer the number is to zero. An event that cannot occur has a probability of
zero, and an event that is certain to occur has a probability of one.

Health sciences researchers continually ask themselves if the results of their
efforts could have occurred by chance alone or if some other force was operating to
produce the observed effects. For example, suppose six out of ten patients suffering
from some disease are cured after receiving a certain treatment. Is such a cure rate likely
to have occurred if the patients had not received the treatment, or is it evidence of a
true curative effect on the part of the treatment? We shall see that questions such as
these can be answered through the application of the concepts and laws of probability.

3.2 TWO VIEWS OF PROBABILITY:
OBJECTIVE AND SUBJECTIVE

Until fairly recently, probability was thought of by statisticians and mathematicians only
as an objective phenomenon derived from objective processes.

The concept of objective probability may be categorized further under the headings
of (1) classical, or a priori, probability; and (2) the relative frequency, or a posteriori, con-
cept of probability.

Classical Probability The classical treatment of probability dates back to the
17th century and the work of two mathematicians, Pascal and Fermat. Much of this the-
ory developed out of attempts to solve problems related to games of chance, such as
those involving the rolling of dice. Examples from games of chance illustrate very well
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the principles involved in classical probability. For example, if a fair six-sided die is
rolled, the probability that a 1 will be observed is equal to 1/6 and is the same for
the other five faces. If a card is picked at random from a well-shuffled deck of ordinary
playing cards, the probability of picking a heart is 13/52. Probabilities such as these are
calculated by the processes of abstract reasoning. It is not necessary to roll a die or draw
a card to compute these probabilities. In the rolling of the die, we say that each of the
six sides is equally likely to be observed if there is no reason to favor any one of the six
sides. Similarly, if there is no reason to favor the drawing of a particular card from a
deck of cards, we say that each of the 52 cards is equally likely to be drawn. We may
define probability in the classical sense as follows:

DEFINITION
If an event can occur in N mutually exclusive and equally likely
ways, and if m of these possess a trait E, the probability of the
occurrence of E is equal to m/N.

If we read P(E) as “the probability of E,” we may express this definition as
(3.2.1)

Relative Frequency Probability The relative frequency approach to prob-
ability depends on the repeatability of some process and the ability to count the number
of repetitions, as well as the number of times that some event of interest occurs. In this
context we may define the probability of observing some characteristic, E, of an event
as follows:

DEFINITION

If some process is repeated a large number of times, n, and if some
resulting event with the characteristic E occurs m times, the relative
frequency of occurrence of E, m/n, will be approximately equal to the
probability of E.

To express this definition in compact form, we write

P(E) = (3.2.2)

m
n

We must keep in mind, however, that, strictly speaking, m/n is only an estimate of P(E).

Subjective Probability In the early 1950s, L. J. Savage (4) gave considerable
impetus to what is called the “personalistic” or subjective concept of probability. This view



68

CHAPTER 3 SOME BASIC PROBABILITY CONCEPTS

holds that probability measures the confidence that a particular individual has in the truth
of a particular proposition. This concept does not rely on the repeatability of any process.
In fact, by applying this concept of probability, one may evaluate the probability of an
event that can only happen once, for example, the probability that a cure for cancer will
be discovered within the next 10 years.

Although the subjective view of probability has enjoyed increased attention over
the years, it has not been fully accepted by statisticians who have traditional orientations.

Bayesian Methods Bayesian methods are named in honor of the Reverend
Thomas Bayes (1702-1761), an English clergyman who had an interest in mathematics.
Bayesian methods are an example of subjective probability, since it takes into consider-
ation the degree of belief that one has in the chance that an event will occur. While
probabilities based on classical or relative frequency concepts are designed to allow for
decisions to be made solely on the basis of collected data, Bayesian methods make use
of what are known as prior probabilities and posterior probabilities.

DEFINITION
The prior probability of an event is a probability based on prior
knowledge, prior experience, or results derived from prior
data collection activity.

DEFINITION

The posterior probability of an event is a probability obtained by using
new information to update or revise a prior probability.

As more data are gathered, the more is likely to be known about the “true” probability of
the event under consideration. Although the idea of updating probabilities based on new
information is in direct contrast to the philosophy behind frequency-of-occurrence proba-
bility, Bayesian concepts are widely used. For example, Bayesian techniques have found
recent application in the construction of e-mail spam filters. Typically, the application of
Bayesian concepts makes use of a mathematical formula called Bayes’ theorem. In
Section 3.5 we employ Bayes’ theorem in the evaluation of diagnostic screening test data.

3.3 ELEMENTARY PROPERTIES
OF PROBABILITY

In 1933 the axiomatic approach to probability was formalized by the Russian mathe-
matician A. N. Kolmogorov (5). The basis of this approach is embodied in three prop-
erties from which a whole system of probability theory is constructed through the use
of mathematical logic. The three properties are as follows.
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1. Given some process (or experiment) with » mutually exclusive outcomes (called
events), E, I,, ..., E,, the probability of any event E; is assigned a nonnegative
number. That is,

P(E) =0 (3.3.1)

In other words, all events must have a probability greater than or equal to
zero, a reasonable requirement in view of the difficulty of conceiving of negative
probability. A key concept in the statement of this property is the concept of mutu-
ally exclusive outcomes. Two events are said to be mutually exclusive if they can-
not occur simultaneously.

2. The sum of the probabilities of the mutually exclusive outcomes is equal to 1.
P(El) +P(E2) + - +P(En) =1 (332)

This is the property of exhaustiveness and refers to the fact that the observer
of a probabilistic process must allow for all possible events, and when all are taken
together, their total probability is 1. The requirement that the events be mutually
exclusive is specifying that the events E|, E,,. .., E, do not overlap; that is, no
two of them can occur at the same time.

3. Consider any two mutually exclusive events, E; and E;. The probability of the occur-
rence of either E; or E; is equal to the sum of their individual probabilities.

P(E; + E) = P(E) + P(E) (3.3.3)

Suppose the two events were not mutually exclusive; that is, suppose they could
occur at the same time. In attempting to compute the probability of the occurrence of
either E; or E; the problem of overlapping would be discovered, and the procedure
could become quite complicated. This concept will be discussed further in the next
section.

3.4 CALCULATING THE PROBABILITY
OF AN EVENT

We now make use of the concepts and techniques of the previous sections in calculat-
ing the probabilities of specific events. Additional ideas will be introduced as needed.

EXAMPLE 3.4.1

The primary aim of a study by Carter et al. (A-1) was to investigate the effect of the age
at onset of bipolar disorder on the course of the illness. One of the variables investigated
was family history of mood disorders. Table 3.4.1 shows the frequency of a family his-
tory of mood disorders in the two groups of interest (Early age at onset defined to be
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TABLE 3.4.1 Frequency of Family History of Mood Disorder
by Age Group Among Bipolar Subjects

Family History of

Mood Disorders Early = 18(E) Later > 18(L) Total
Negative (A) 28 35 63
Bipolar disorder (B) 19 38 57
Unipolar (C) 41 44 85
Unipolar and bipolar (D) 53 60 113
Total 141 177 318

Source: Tasha D. Carter, Emanuela Mundo, Sagar V. Parkh, and James L. Kennedy,
“Early Age at Onset as a Risk Factor for Poor Outcome of Bipolar Disorder,” Journal
of Psychiatric Research, 37 (2003), 297-303.

18 years or younger and Later age at onset defined to be later than 18 years). Suppose
we pick a person at random from this sample. What is the probability that this person
will be 18 years old or younger?

Solution: For purposes of illustrating the calculation of probabilities, we consider
this group of 318 subjects to be the largest group for which we have an
interest. In other words, for this example, we consider the 318 subjects as
a population. We assume that Early and Later are mutually exclusive cat-
egories and that the likelihood of selecting any one person is equal to the
likelihood of selecting any other person. We define the desired probability
as the number of subjects with the characteristic of interest (Early) divided
by the total number of subjects. We may write the result in probability
notation as follows:

P(E) = number of Early subjects /total number of subjects
141/318 = .4434 |

Conditional Probability On occasion, the set of “all possible outcomes” may
constitute a subset of the total group. In other words, the size of the group of interest
may be reduced by conditions not applicable to the total group. When probabilities are
calculated with a subset of the total group as the denominator, the result is a conditional
probability.

The probability computed in Example 3.4.1, for example, may be thought of as an
unconditional probability, since the size of the total group served as the denominator. No
conditions were imposed to restrict the size of the denominator. We may also think of
this probability as a marginal probability since one of the marginal totals was used as
the numerator.

We may illustrate the concept of conditional probability by referring again to
Table 3.4.1.
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EXAMPLE 3.4.2

Suppose we pick a subject at random from the 318 subjects and find that he is 18 years
or younger (E). What is the probability that this subject will be one who has no family
history of mood disorders (A)?

Solution: The total number of subjects is no longer of interest, since, with the selec-
tion of an Early subject, the Later subjects are eliminated. We may define
the desired probability, then, as follows: What is the probability that a sub-
ject has no family history of mood disorders (A), given that the selected
subject is Early (E)? This is a conditional probability and is written as
P(A | E) in which the vertical line is read “given.” The 141 Early subjects
become the denominator of this conditional probability, and 28, the num-
ber of Early subjects with no family history of mood disorders, becomes
the numerator. Our desired probability, then, is

P(A|E) = 28/141 = .1986 ]

Joint Probability Sometimes we want to find the probability that a subject
picked at random from a group of subjects possesses two characteristics at the same time.
Such a probability is referred to as a joint probability. We illustrate the calculation of a
joint probability with the following example.

EXAMPLE 3.4.3

Let us refer again to Table 3.4.1. What is the probability that a person picked at random
from the 318 subjects will be Early (E) and will be a person who has no family history
of mood disorders (A)?

Solution: The probability we are seeking may be written in symbolic notation as
P(EMA) in which the symbol Nis read either as “intersection” or “and.”
The statement E M A indicates the joint occurrence of conditions E and A.
The number of subjects satisfying both of the desired conditions is found
in Table 3.4.1 at the intersection of the column labeled E and the row
labeled A and is seen to be 28. Since the selection will be made from the
total set of subjects, the denominator is 318. Thus, we may write the joint
probability as

P(ENA) = 28/318 = 0881 m

The Multiplication Rule A probability may be computed from other prob-
abilities. For example, a joint probability may be computed as the product of an appro-
priate marginal probability and an appropriate conditional probability. This relationship
is known as the multiplication rule of probability. We illustrate with the following
example.
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EXAMPLE 3.4.4

We wish to compute the joint probability of Early age at onset (E) and a negative family
history of mood disorders (A) from knowledge of an appropriate marginal probability and
an appropriate conditional probability.

Solution: The probability we seek is P(E M A). We have already computed a mar-
ginal probability, P(E) = 141/318 = .4434, and a conditional probability,
P(A|E) = 28/141 = .1986. It so happens that these are appropriate mar-
ginal and conditional probabilities for computing the desired joint proba-
bility. We may now compute P(ENA) = P(E)P(A | E) =(.4434)(.1986)
= .0881. This, we note, is, as expected, the same result we obtained earlier
for P(E N A). [ ]

We may state the multiplication rule in general terms as follows: For any two events A
and B,

P(ANB) = P(B)P(A|B), ifP(B)#0 (3.4.1)

For the same two events A and B, the multiplication rule may also be written as
P(ANB) = P(A)P(B| A),if P(A) # 0.

We see that through algebraic manipulation the multiplication rule as stated in
Equation 3.4.1 may be used to find any one of the three probabilities in its statement if
the other two are known. We may, for example, find the conditional probability P(A | B)
by dividing P(A N B) by P(B). This relationship allows us to formally define conditional
probability as follows.

DEFINITION

The conditional probability of A given B is equal to the probability
of AN B divided by the probability of B, provided the probability of
B is not zero.

That is,
P(ANB)

P(A|B) = P(B)

P(B) # 0 (3.4.2)

We illustrate the use of the multiplication rule to compute a conditional probability with
the following example.

EXAMPLE 3.4.5

We wish to use Equation 3.4.2 and the data in Table 3.4.1 to find the conditional prob-
ability, P(A | E).

Solution: According to Equation 3.4.2,

P(A|E) = P(ANE)/P(E) [ |
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Earlier we found P(ENA) = P(ANE) = 28/318 = .0881. We have also determined
that P(E) = 141/318 = .4434. Using these results we are able to compute
P(A | E) = .0881/.4434 = .1987, which, as expected, is the same result we obtained
by using the frequencies directly from Table 3.4.1. (The slight discrepancy is due to
rounding.)

The Addition Rule The third property of probability given previously states
that the probability of the occurrence of either one or the other of two mutually
exclusive events is equal to the sum of their individual probabilities. Suppose, for
example, that we pick a person at random from the 318 represented in Table 3.4.1.
What is the probability that this person will be Early age at onset (E) or Later age
at onset (L)? We state this probability in symbols as P(EU L), where the symbol
U is read either as “union” or “or.” Since the two age conditions are mutually exclusive,
P(E N L) = (141/318) + (177/318) = .4434 + .5566 = 1.

What if two events are not mutually exclusive? This case is covered by what is
known as the addition rule, which may be stated as follows:

DEFINITION

Given two events A and B, the probability that event A, or event B,
or both occur is equal to the probability that event A occurs, plus the
probability that event B occurs, minus the probability that the events
occur simultaneously.

The addition rule may be written
P(AUB) = P(A) + P(B) — P(ANB) (3.4.3)

When events A and B cannot occur simultaneously, P(A M B) is sometimes called
“exclusive or,” and P(AUB) = 0. When events A and B can occur simultaneously,
P(AUB) is sometimes called “inclusive or,” and we use the addition rule to calculate
P(AUB). Let us illustrate the use of the addition rule by means of an example.

EXAMPLE 3.4.6

If we select a person at random from the 318 subjects represented in Table 3.4.1, what
is the probability that this person will be an Early age of onset subject (E) or will have
no family history of mood disorders (A) or both?

Solution: The probability we seek is P(E U A). By the addition rule as expressed by
Equation 3.4.3, this probability may be written as P(EUA) = P(E) +
P(A) — P(ENA). We have already found that P(E) = 141/318 = .4434
and P(EMA) = 28/318 = .0881. From the information in Table 3.4.1
we calculate P(A) = 63/318 = .1981. Substituting these results into the
equation for P(EUA) we have P(EUA) = 4434 + 1981 — .0881 =
.5534. ]
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Note that the 28 subjects who are both Early and have no family history of mood dis-
orders are included in the 141 who are Early as well as in the 63 who have no family
history of mood disorders. Since, in computing the probability, these 28 have been added
into the numerator twice, they have to be subtracted out once to overcome the effect of
duplication, or overlapping.

Independent Events Suppose that, in Equation 3.4.2, we are told that event B
has occurred, but that this fact has no effect on the probability of A. That is, suppose
that the probability of event A is the same regardless of whether or not B occurs. In this
situation, P(A | B) = P(A). In such cases we say that A and B are independent events.
The multiplication rule for two independent events, then, may be written as

P(ANB) = P(A)P(B);  P(A) #0, P(B) # 0 (3.4.4)

Thus, we see that if two events are independent, the probability of their joint occur-
rence is equal to the product of the probabilities of their individual occurrences.

Note that when two events with nonzero probabilities are independent, each of the
following statements is true:

P(A|B) = P(A), P(B|A)=PB), PANB)=PA)P(B)

Two events are not independent unless all these statements are true. It is important to be
aware that the terms independent and mutually exclusive do not mean the same thing.
Let us illustrate the concept of independence by means of the following example.

EXAMPLE 3.4.7

In a certain high school class, consisting of 60 girls and 40 boys, it is observed that
24 girls and 16 boys wear eyeglasses. If a student is picked at random from this class,
the probability that the student wears eyeglasses, P(E), is 40/100, or .4.

(a) What is the probability that a student picked at random wears eyeglasses, given
that the student is a boy?

Solution: By using the formula for computing a conditional probability, we find this
to be

P(ENB) 16/100
P(B)  40/100 4

P(E|B) =

Thus the additional information that a student is a boy does not alter the
probability that the student wears eyeglasses, and P(E) = P(E | B). We say
that the events being a boy and wearing eyeglasses for this group are inde-
pendent. We may also show that the event of wearing eyeglasses, E, and
not being a boy, B are also independent as follows:

__P(ENB)  24/100 24
PEIB) = P(B)  60/100 60

(b) What is the probability of the joint occurrence of the events of wearing eyeglasses
and being a boy?
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Solution: Using the rule given in Equation 3.4.1, we have
P(ENB) = P(B)P(E | B)

but, since we have shown that events £ and B are independent we may
replace P(E | B) by P(E) to obtain, by Equation 3.4.4,

P(ENB) = P(B)P(E)

_ (40) <4O>
~\100/\ 100
= .16 =

Complementary Events Earlier, using the data in Table 3.4.1, we computed the
probability that a person picked at random from the 318 subjects will be an Early age of onset
subject as P(E) = 141/318 = .4434. We found the probability of a Later age at onset to
be P(L) = 177/318 = .5566. The sum of these two probabilities we found to be equal to
1. This is true because the events being Early age at onset and being Later age at onset are
complementary events. In general, we may make the following statement about complemen-
tary events. The probability of an event A is equal to 1 minus the probability of its comple-
ment, which is written A, and

P(A) = 1 — P(A) (3.4.5)

This follows from the third property of probability since the event, A, and its com-

plement, A, are mutually exclusive.

EXAMPLE 3.4.8

Suppose that of 1200 admissions to a general hospital during a certain period of time,
750 are private admissions. If we designate these as set A, then A is equal to 1200 minus
750, or 450. We may compute

P(A) = 750/1200 = .625
and
P(A) = 450/1200 = .375
and see that
P(A) =1 — P(A)
375 =1—.625
375 = 375 [ |

Marginal Probability Earlier we used the term marginal probability to refer to
a probability in which the numerator of the probability is a marginal total from a table
such as Table 3.4.1. For example, when we compute the probability that a person picked
at random from the 318 persons represented in Table 3.4.1 is an Early age of onset
subject, the numerator of the probability is the total number of Early subjects, 141. Thus,
P(E) = 141/318 = .4434. We may define marginal probability more generally as
follows:
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DEFINITION

Given some variable that can be broken down into m categories
designated by Ay, A5,..., A;, ..., A, and another jointly occurring
variable that is broken down into n categories designated by

By, B, ..., Bj, ..., B,, the marginal probability of A;, P(A;), is
equal to the sum of the joint probabilities of A; with all the cate-
gories of B. That is,

P(A;) = 2 P(A;NBy), for all values of j (3.4.6)

The following example illustrates the use of Equation 3.4.6 in the calculation of a marginal

probability.

Solution:

EXAMPLE 3.4.9

We wish to use Equation 3.4.6 and the data in Table 3.4.1 to compute the marginal prob-
ability P(E).

The variable age at onset is broken down into two categories, Early for
onset 18 years or younger (E) and Later for onset occurring at an age over
18 years (L). The variable family history of mood disorders is broken down
into four categories: negative family history (A), bipolar disorder only (B),
unipolar disorder only (C), and subjects with a history of both unipolar and
bipolar disorder (D). The category Early occurs jointly with all four cate-
gories of the variable family history of mood disorders. The four joint prob-
abilities that may be computed are

P(ENA) = 28/318 = .0881
P(ENB) = 19/318 = 0597
P(ENC) = 41/318 = .1289
P(END) = 53/318 = .1667

We obtain the marginal probability P(E) by adding these four joint proba-
bilities as follows:

P(E) = P(ENA) + P(ENB) + P(ENC) + P(END)

.0881 + .0597 + .1289 + .1667
= 4434 [ |

The result, as expected, is the same as the one obtained by using the marginal total for
Early as the numerator and the total number of subjects as the denominator.

EXERCISES

3.4.1 In a study of violent victimization of women and men, Porcerelli et al. (A-2) collected information
from 679 women and 345 men aged 18 to 64 years at several family practice centers in the met-
ropolitan Detroit area. Patients filled out a health history questionnaire that included a question about
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victimization. The following table shows the sample subjects cross-classified by sex and the type
of violent victimization reported. The victimization categories are defined as no victimization, part-
ner victimization (and not by others), victimization by persons other than partners (friends, family
members, or strangers), and those who reported multiple victimization.

Multiple
No Victimization Partners Nonpartners Victimization Total
Women 611 34 16 18 679
Men 308 10 17 10 345
Total 919 44 33 28 1024

Source: John H. Porcerelli, Ph.D., Rosemary Cogan, Ph.D. Used with permission.

(a) Suppose we pick a subject at random from this group. What is the probability that this sub-
ject will be a woman?

(b) What do we call the probability calculated in part a?
(c) Show how to calculate the probability asked for in part a by two additional methods.

(d) If we pick a subject at random, what is the probability that the subject will be a woman and
have experienced partner abuse?

(e) What do we call the probability calculated in part d?

(f) Suppose we picked a man at random. Knowing this information, what is the probability that
he experienced abuse from nonpartners?

(g) What do we call the probability calculated in part £?

(h) Suppose we pick a subject at random. What is the probability that it is a man or someone
who experienced abuse from a partner?

(i) What do we call the method by which you obtained the probability in part h?

Fernando et al. (A-3) studied drug-sharing among injection drug users in the South Bronx in
New York City. Drug users in New York City use the term “split a bag” or “get down on a
bag” to refer to the practice of dividing a bag of heroin or other injectable substances. A com-
mon practice includes splitting drugs after they are dissolved in a common cooker, a procedure
with considerable HIV risk. Although this practice is common, little is known about the preva-
lence of such practices. The researchers asked injection drug users in four neighborhoods in
the South Bronx if they ever “got down on” drugs in bags or shots. The results classified by
gender and splitting practice are given below:

Gender Split Drugs Never Split Drugs Total

Male 349 324 673
Female 220 128 348
Total 569 452 1021

Source: Daniel Fernando, Robert F. Schilling, Jorge Fontdevila,
and Nabila El-Bassel, “Predictors of Sharing Drugs Among
Injection Drug Users in the South Bronx: Implications for HIV
Transmission,” Journal of Psychoactive Drugs, 35 (2003),
227-236.
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343

344

(a) How many marginal probabilities can be calculated from these data? State each in probabil-
ity notation and do the calculations.

(b) How many joint probabilities can be calculated? State each in probability notation and do the
calculations.

(c) How many conditional probabilities can be calculated? State each in probability notation and
do the calculations.

(d) Use the multiplication rule to find the probability that a person picked at random never split
drugs and is female.

(e) What do we call the probability calculated in part d?

(f) Use the multiplication rule to find the probability that a person picked at random is male,
given that he admits to splitting drugs.

(g) What do we call the probability calculated in part £?

Refer to the data in Exercise 3.4.2. State the following probabilities in words and calculate:
(a) P(Male N Split Drugs)

(b) P(Male U Split Drugs)

(¢) P(Male | Split Drugs)

(d) P(Male)

Laveist and Nuru-Jeter (A-4) conducted a study to determine if doctor—patient race concordance was
associated with greater satisfaction with care. Toward that end, they collected a national sample of
African-American, Caucasian, Hispanic, and Asian-American respondents. The following table clas-
sifies the race of the subjects as well as the race of their physician:

Patient’s Race

Physician’s Race Caucasian African-American Hispanic Asian-American Total
White 779 436 406 175 1796
African-American 14 162 15 5 196
Hispanic 19 17 128 2 166
Asian/Pacific-Islander 68 75 71 203 417
Other 30 55 56 4 145
Total 910 745 676 389 2720

Source: Thomas A. Laveist and Amani Nuru-Jeter, “Is Doctor-Patient Race Concordance Associated with
Greater Satisfaction with Care?” Journal of Health and Social Behavior, 43 (2002), 296-306.

(a) What is the probability that a randomly selected subject will have an Asian/Pacific-Islander
physician?

(b) What is the probability that an African-American subject will have an African-American physician?
(c) What is the probability that a randomly selected subject in the study will be Asian-American
and have an Asian/Pacific-Islander physician?

(d) What is the probability that a subject chosen at random will be Hispanic or have a Hispanic
physician?

(e) Use the concept of complementary events to find the probability that a subject chosen at random
in the study does not have a white physician.
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3.4.5 If the probability of left-handedness in a certain group of people is .05, what is the probability of
right-handedness (assuming no ambidexterity)?

3.4.6 The probability is .6 that a patient selected at random from the current residents of a certain hos-
pital will be a male. The probability that the patient will be a male who is in for surgery is .2. A
patient randomly selected from current residents is found to be a male; what is the probability that
the patient is in the hospital for surgery?

3.4.7 In a certain population of hospital patients the probability is .35 that a randomly selected patient
will have heart disease. The probability is .86 that a patient with heart disease is a smoker. What
is the probability that a patient randomly selected from the population will be a smoker and have
heart disease?

3.5 BAYES’' THEOREM, SCREENING
TESTS, SENSITIVITY, SPECIFICITY,
AND PREDICTIVE VALUE POSITIVE
AND NEGATIVE

In the health sciences field a widely used application of probability laws and concepts
is found in the evaluation of screening tests and diagnostic criteria. Of interest to clini-
cians is an enhanced ability to correctly predict the presence or absence of a particular
disease from knowledge of test results (positive or negative) and/or the status of present-
ing symptoms (present or absent). Also of interest is information regarding the likeli-
hood of positive and negative test results and the likelihood of the presence or absence
of a particular symptom in patients with and without a particular disease.

In our consideration of screening tests, we must be aware of the fact that they are not
always infallible. That is, a testing procedure may yield a false positive or a false negative.

DEFINITIONS

1. A false positive results when a test indicates a positive status
when the true status is negative.

2. A false negative results when a test indicates a negative status
when the true status is positive.

In summary, the following questions must be answered in order to evaluate the
usefulness of test results and symptom status in determining whether or not a subject
has some disease:

1. Given that a subject has the disease, what is the probability of a positive test result
(or the presence of a symptom)?

2. Given that a subject does not have the disease, what is the probability of a negative
test result (or the absence of a symptom)?

3. Given a positive screening test (or the presence of a symptom), what is the prob-
ability that the subject has the disease?

4. Given a negative screening test result (or the absence of a symptom), what is the
probability that the subject does not have the disease?
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Table 3.5.1 Sample of n Subjects (Where n Is
Large) Cross-Classified According to Disease
Status and Screening Test Result

Disease

Test Result Present (D) Absent (D) Total

Positive (T) a b a+b
Negative (T) c d c+d
Total atec b+ d n

Suppose we have for a sample of n subjects (where n is a large number) the infor-
mation shown in Table 3.5.1. The table shows for these n subjects their status with regard
to a disease and results from a screening test designed to identify subjects with the dis-
ease. The cell entries represent the number of subjects falling into the categories defined
by the row and column headings. For example, a is the number of subjects who have the
disease and whose screening test result was positive.

As we have learned, a variety of probability estimates may be computed from the
information displayed in a two-way table such as Table 3.5.1. For example, we may
compute the conditional probability estimate P(T | D) = a/(a + c). This ratio is an
estimate of the sensitivity of the screening test.

DEFINITION

The sensitivity of a test (or symptom) is the probability of a positive test
result (or presence of the symptom) given the presence of the disease.

We may also compute the conditional probability estimate P(T | D) = d/(b + d).
This ratio is an estimate of the specificity of the screening test.

DEFINITION

The specificity of a test (or symptom) is the probability of a negative
test result (or absence of the symptom) given the absence of the disease.

From the data in Table 3.5.1 we answer Question 3 by computing the conditional
probability estimate P(D | T). This ratio is an estimate of a probability called the pre-
dictive value positive of a screening test (or symptom).

DEFINITION

The predictive value positive of a screening test (or symptom) is the
probability that a subject has the disease given that the subject has a
positive screening test result (or has the symptom).
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Similarly, the ratio P(D | T') is an estimate of the conditional probability that a
subject does not have the disease given that the subject has a negative screening test
result (or does not have the symptom). The probability estimated by this ratio is called
the predictive value negative of the screening test or symptom.

DEFINITION
The predictive value negative of a screening test (or symptom) is

the probability that a subject does not have the disease, given that the
subject has a negative screening test result (or does not have the
symptom).

Estimates of the predictive value positive and predictive value negative of a test
(or symptom) may be obtained from knowledge of a test’s (or symptom’s) sensitivity
and specificity and the probability of the relevant disease in the general population. To
obtain these predictive value estimates, we make use of Bayes’s theorem. The following
statement of Bayes’s theorem, employing the notation established in Table 3.5.1, gives
the predictive value positive of a screening test (or symptom):

P(T | D) P(D)
(T | D) P(D) + P(T | D) P(D)

P(D|T) = - (3.5.1)

It is instructive to examine the composition of Equation 3.5.1. We recall from
Equation 3.4.2 that the conditional probability P(D | T) is equal to P(DNT)/P(T).
To understand the logic of Bayes’s theorem, we must recognize that the numerator of
Equation 3.5.1 represents P(DMT) and that the denominator represents P(T). We
know from the multiplication rule of probability given in Equation 3.4.1 that the numer-
ator of Equation 3.5.1, P(T | D) P(D), is equal to P(DNT).

Now let us show that the denominator of Equation 3.5.1 is equal to P(T'). We know
that event 7T is the result of a subject’s being classified as positive with respect to a screen-
ing test (or classified as having the symptom). A subject classified as positive may have
the disease or may not have the disease. Therefore, the occurrence of T is the result of
a subject having the disease and being positive [P(D N T)] or not having the disease
and being positive [P(D N T)]. These two events are mutually exclusive (their intersec-
tion is zero), and consequently, by the addition rule given by Equation 3.4.3, we may
write

P(T)=P(DNT)+ P(DNT) (3.5.2)

Since, by the multiplication rule, P(DNT) = P(T | D) P(D) and P(DNT) =
P(T | D) P(D), we may rewrite Equation 3.5.2 as

P(T) = P(T | D) P(D) + P(T | D) P(D) (3.5.3)

which is the denominator of Equation 3.5.1.
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Note, also, that the numerator of Equation 3.5.1 is equal to the sensitivity times the
rate (prevalence) of the disease and the denominator is equal to the sensitivity times the
rate of the disease plus the term [ minus the sensitivity times the term I minus the rate of
the disease. Thus, we see that the predictive value positive can be calculated from knowl-
edge of the sensitivity, specificity, and the rate of the disease.

Evaluation of Equation 3.5.1 answers Question 3. To answer Question 4 we
follow a now familiar line of reasoning to arrive at the following statement of Bayes’s
theorem:

(3.5.4)

Equation 3.5.4 allows us to compute an estimate of the probability that a subject who is
negative on the test (or has no symptom) does not have the disease, which is the predic-
tive value negative of a screening test or symptom.

We illustrate the use of Bayes’ theorem for calculating a predictive value positive
with the following example.

EXAMPLE 3.5.1

A medical research team wished to evaluate a proposed screening test for Alzheimer’s dis-
ease. The test was given to a random sample of 450 patients with Alzheimer’s disease and
an independent random sample of 500 patients without symptoms of the disease. The two
samples were drawn from populations of subjects who were 65 years of age or older. The
results are as follows:

Alzheimer’s Diagnosis?

Test Result Yes (D) No (D)  Total

Positive (T) 436 5 441
Negative (T) 14 495 509
Total 450 500 950

Using these data we estimate the sensitivity of the test to be P(T | D) = 436/450 = .97.
The specificity of the test is estimated to be P(T | D) = 495/500 = .99. We now use the
results of the study to compute the predictive value positive of the test. That is, we wish
to estimate the probability that a subject who is positive on the test has Alzheimer’s
disease. From the tabulated data we compute P(T | D) = 436/450 = .9689 and
P(T | D) = 5/500 = .01. Substitution of these results into Equation 3.5.1 gives

(.9689) P(D)
(.9689) P(D) + (.01) P(D)

P(DI|T) = (3.5.5)
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We see that the predictive value positive of the test depends on the rate of the disease in
the relevant population in general. In this case the relevant population consists of subjects
who are 65 years of age or older. We emphasize that the rate of disease in the relevant
general population, P(D), cannot be computed from the sample data, since two independ-
ent samples were drawn from two different populations. We must look elsewhere for an
estimate of P(D). Evans et al. (A-5) estimated that 11.3 percent of the U.S. population
aged 65 and over have Alzheimer’s disease. When we substitute this estimate of P(D)
into Equation 3.5.5 we obtain

- (.9689)(.113) _
P(D|T) = (.9689)(.113) + (.01)(1 — .113) 93

As we see, in this case, the predictive value of the test is very high.

Similarly, let us now consider the predictive value negative of the test. We have
already calculated all entries necessary except for P(T | D) = 14/450 = .0311. Using
the values previously obtained and our new value, we find

(D | T) = (99)(1 — .113) ~ 006
(99)(1 — .113) + (0311)(.113)

As we see, the predictive value negative is also quite high. [ |

EXERCISES

351

3.5.2

A medical research team wishes to assess the usefulness of a certain symptom (call it S) in the
diagnosis of a particular disease. In a random sample of 775 patients with the disease, 744 reported
having the symptom. In an independent random sample of 1380 subjects without the disease,
21 reported that they had the symptom.

(a) In the context of this exercise, what is a false positive?
(b) What is a false negative?

(¢) Compute the sensitivity of the symptom.

(d) Compute the specificity of the symptom.

(e) Suppose it is known that the rate of the disease in the general population is .001. What is the
predictive value positive of the symptom?

(f) What is the predictive value negative of the symptom?

(g) Find the predictive value positive and the predictive value negative for the symptom for the
following hypothetical disease rates: .0001, .01, and .10.

(h) What do you conclude about the predictive value of the symptom on the basis of the results
obtained in part g?

In an article entitled “Bucket-Handle Meniscal Tears of the Knee: Sensitivity and Specificity of
MRI signs,” Dorsay and Helms (A-6) performed a retrospective study of 71 knees scanned by
MRI. One of the indicators they examined was the absence of the “bow-tie sign” in the MRI as
evidence of a bucket-handle or “bucket-handle type” tear of the meniscus. In the study, surgery
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confirmed that 43 of the 71 cases were bucket-handle tears. The cases may be cross-classified by
“bow-tie sign” status and surgical results as follows:

Tear Surgically Tear Surgically Confirmed As

Confirmed (D) Not Present (D) Total
Positive Test 38 10 48
(absent bow-tie sign) (T)
Negative Test 5 18 23
(bow-tie sign present) (T)
Total 43 28 71

Source: Theodore A. Dorsay and Clyde A. Helms, “Bucket-Handle Meniscal Tears of the Knee: Sensitivity
and Specificity of MRI Signs,” Skeletal Radiology, 32 (2003), 266-272.

(a) What is the sensitivity of testing to see if the absent bow-tie sign indicates a meniscal tear?
(b) What is the specificity of testing to see if the absent bow-tie sign indicates a meniscal tear?
(¢) What additional information would you need to determine the predictive value of the test?

3.5.3 Oexle et al. (A-7) calculated the negative predictive value of a test for carriers of X-linked ornithine
transcarbamylase deficiency (OTCD—a disorder of the urea cycle). A test known as the “allopuri-
nol test” is often used as a screening device of potential carriers whose relatives are OTCD patients.
They cited a study by Brusilow and Horwich (A-8) that estimated the sensitivity of the allopuri-
nol test as .927. Oexle et al. themselves estimated the specificity of the allopurinol test as .997.
Also they estimated the prevalence in the population of individuals with OTCD as 1/32000. Use
this information and Bayes’s theorem to calculate the predictive value negative of the allopurinol
screening test.

3.6 SUMMARY

In this chapter some of the basic ideas and concepts of probability were presented. The
objective has been to provide enough of a “feel” for the subject so that the probabilis-
tic aspects of statistical inference can be more readily understood and appreciated when
this topic is presented later.

We defined probability as a number between 0 and 1 that measures the likelihood
of the occurrence of some event. We distinguished between subjective probability and
objective probability. Objective probability can be categorized further as classical or rel-
ative frequency probability. After stating the three properties of probability, we defined
and illustrated the calculation of the following kinds of probabilities: marginal, joint, and
conditional. We also learned how to apply the addition and multiplication rules to
find certain probabilities. We learned the meaning of independent, mutually exclusive,
and complementary events. We learned the meaning of specificity, sensitivity, predic-
tive value positive, and predictive value negative as applied to a screening test or disease
symptom. Finally, we learned how to use Bayes’s theorem to calculate the probability
that a subject has a disease, given that the subject has a positive screening test result
(or has the symptom of interest).
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SUMMARY OF FORMULAS FOR CHAPTER 3

Formula Number Name Formula
321 Classical m
P(E) =—
probability (E) N
322 ?elative P(E) = m
requency n
probability
3.3.1-3.3.3 Properties of P(E)=0
probability P(E)) + P(Ey) + ... + P(E,) = 1
P(E; + E) = P(E) + P(E))
34.1 Multiplication P(ANB) = P(B)P(A| B) = P(A)P(B| A)
rule
342 Conditional P(ANB)
probability P(A|B) = TPB)
343 Addition rule P(AUB) = P(A) + P(B) — P(ANB)
344 Independent P(ANB) = P(A)P(B)
events
34.5 Complementary P(A) =1 — P(A)
events
3.4.6 Marginal P(A;) = D P(A;NB))
Probability
Sensitivity of a P(T| D) = a
screening test (a+c)
Specificity of a o d
screening test P(T| D) = (b +4d)
35.1 Predictive value P(T| D)P(D)
positive of a P(D|T) = —
screening test P(T| D)P(D) + P(T| D)P(D)
352 Predictive value o P(T | D)P(D)
negative of a P(D|T) = ———— —
screening test P(T | D)P(D) + P(T | D)P(D)
Symbol Key e D = disease

* m = the number of times an event E; occurs

* n = sample size or the total number of time a process occurs

e N = population size or the total number of mutually exclusive and
equally likely events

(Continued)
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+ P(A) = a complementary event; the probability of an event A, not
occurring

e P(E;) = probability of some event E; occurring

P(ANB) = an “intersection” or “and” statement; the probability of

an event A and an event B occurring

P(AUB) = a “union” or “or” statement; the probability of an event

A or an event B or both occurring

+ P(A| B) = a conditional statement; the probability of an event A
occurring given that an event B has already occurred

e T = test results

REVIEW QUESTIONS AND EXERCISES

1. Define the following:

(a) Probability (b) Objective probability

(c) Subjective probability (d) Classical probability

(e) The relative frequency concept of probability (f) Mutually exclusive events
(g) Independence (h) Marginal probability

(i) Joint probability (j) Conditional probability
(k) The addition rule (1) The multiplication rule
(m) Complementary events (n) False positive

(o) False negative (p) Sensitivity

(q) Specificity (r) Predictive value positive
(s) Predictive value negative (t) Bayes’s theorem

2. Name and explain the three properties of probability.

3. Coughlin et al. (A-9) examined the breast and cervical screening practices of Hispanic and non-Hispanic
women in counties that approximate the U.S. southern border region. The study used data from the
Behavioral Risk Factor Surveillance System surveys of adults age 18 years or older conducted in
1999 and 2000. The table below reports the number of observations of Hispanic and non-Hispanic
women who had received a mammogram in the past 2 years cross-classified with marital status.

Marital Status Hispanic Non-Hispanic Total
Currently Married 319 738 1057
Divorced or Separated 130 329 459
Widowed 88 402 490
Never Married or Living As

an Unmarried Couple 41 95 136
Total 578 1564 2142

Source: Steven S. Coughlin, Robert J. Uhler, Thomas Richards, and Katherine
M. Wilson, “Breast and Cervical Cancer Screening Practices Among Hispanic
and Non-Hispanic Women Residing Near the United States—Mexico Border,
1999-2000,” Family and Community Health, 26 (2003), 130-139.
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(a) We select at random a subject who had a mammogram. What is the probability that she is
divorced or separated?

(b) We select at random a subject who had a mammogram and learn that she is Hispanic. With
that information, what is the probability that she is married?

(c) We select at random a subject who had a mammogram. What is the probability that she is
non-Hispanic and divorced or separated?

(d) We select at random a subject who had a mammogram. What is the probability that she is
Hispanic or she is widowed?

(e) We select at random a subject who had a mammogram. What is the probability that she is not
married?

Swor et al. (A-10) looked at the effectiveness of cardiopulmonary resuscitation (CPR) training in
people over 55 years old. They compared the skill retention rates of subjects in this age group
who completed a course in traditional CPR instruction with those who received chest-compression
only cardiopulmonary resuscitation (CC-CPR). Independent groups were tested 3 months after
training. The table below shows the skill retention numbers in regard to overall competence as
assessed by video ratings done by two video evaluators.

Rated Overall

Competent CPR CC-CPR Total
Yes 12 15 27
No 15 14 29
Total 27 29 56

Source: Robert Swor, Scott Compton, Fern Vining,
Lynn Ososky Farr, Sue Kokko, Rebecca Pascual, and
Raymond E. Jackson, “A Randomized Controlled Trial
of Chest Compression Only CPR for Older Adults—a
Pilot Study,” Resuscitation, 58 (2003), 177-185.

(a) Find the following probabilities and explain their meaning:
1. A randomly selected subject was enrolled in the CC-CPR class.
2. A randomly selected subject was rated competent.
3. A randomly selected subject was rated competent and was enrolled in the CPR course.
4. A randomly selected subject was rated competent or was enrolled in CC-CPR.
5. A randomly selected subject was rated competent given that he or she enrolled in the
CC-CPR course.
(b) We define the following events to be
A = a subject enrolled in the CPR course
B = a subject enrolled in the CC-CPR course
C = a subject was evaluated as competent
D = a subject was evaluated as not competent
Then explain why each of the following equations is or is not a true statement:

1. P(ANC) = P(CNA) 2. P(AUB) = P(BUA)

3. P(A) = P(AUC) + P(AUD) 4. P(BUC) = P(B) + P(C)
5. P(D|A) = P(D) 6. P(CNB) = P(C)P(B)

7. P(ANB) =0 8. P(CNB) = P(B) P(C | B)
9. P(AND) = P(A) P(A| D)
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5. Pillmann et al. (A-11) studied patients with acute brief episodes of psychoses. The researchers
classified subjects into four personality types: obsessoid, asthenic/low self-confident, asthenic/high
self-confident, nervous/tense, and undeterminable. The table below cross-classifies these personal-
ity types with three groups of subjects—those with acute and transient psychotic disorders (ATPD),
those with “positive” schizophrenia (PS), and those with bipolar schizo-affective disorder (BSAD):

Personality Type ATPD (1) PS 2) BSAD (3) Total
Obsessoid (O) 9 2 6 17
Asthenic/low Self-confident (A) 20 17 15 52
Asthenic/high Self-confident (S) 5 3 8 16
Nervous/tense (N) 4 7 4 15
Undeterminable (U) 4 13 9 26
Total 42 42 42 126

Source: Frank Pillmann, Raffaela Bloink, Sabine Balzuweit, Annette Haring, and Andreas
Marneros, “Personality and Social Interactions in Patients with Acute Brief Psychoses,”
Journal of Nervous and Mental Disease, 191 (2003), 503-508.

Find the following probabilities if a subject in this study is chosen at random:
(a) P(O) (b) P(AU2) () P(1) d) P(A)
(e) P(A]3) ® P(3) (@ P(2N3) (h) P(2]4)

6. A certain county health department has received 25 applications for an opening that exists for a
public health nurse. Of these applicants 10 are over 30 and 15 are under 30. Seventeen hold bach-
elor’s degrees only, and eight have master’s degrees. Of those under 30, six have master’s degrees.
If a selection from among these 25 applicants is made at random, what is the probability that a
person over 30 or a person with a master’s degree will be selected?

7. The following table shows 1000 nursing school applicants classified according to scores made on
a college entrance examination and the quality of the high school from which they graduated, as
rated by a group of educators:

Quality of High Schools

Poor Average Superior
Score P) A) S) Total
Low (L) 105 60 55 220
Medium (M) 70 175 145 390
High (H) 25 65 300 390
Total 200 300 500 1000

(a) Calculate the probability that an applicant picked at random from this group:
1. Made a low score on the examination.
2. Graduated from a superior high school.
3. Made a low score on the examination and graduated from a superior high school.
4. Made a low score on the examination given that he or she graduated from a superior high
school.
5. Made a high score or graduated from a superior high school.
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(b) Calculate the following probabilities:
1. P(A) 2. P(H) 3. P(M)
4. P(A|H) 5. P(MMNP) 6. (HI|S)

If the probability that a public health nurse will find a client at home is .7, what is the probabil-
ity (assuming independence) that on two home visits made in a day both clients will be home?

For a variety of reasons, self-reported disease outcomes are frequently used without verification in epi-
demiologic research. In a study by Parikh-Patel et al. (A-12), researchers looked at the relationship
between self-reported cancer cases and actual cases. They used the self-reported cancer data from a
California Teachers Study and validated the cancer cases by using the California Cancer Registry data.
The following table reports their findings for breast cancer:

Cancer Reported (A) Cancer in Registry (B) Cancer Not in Registry Total
Yes 2991 2244 5235
No 112 115849 115961
Total 3103 118093 121196

Source: Arti Parikh-Patel, Mark Allen, William E. Wright, and the California Teachers Study Steering
Committee, “Validation of Self-Reported Cancers in the California Teachers Study,” American Journal
of Epidemiology, 157 (2003), 539-545.

(a) Let A be the event of reporting breast cancer in the California Teachers Study. Find the prob-
ability of A in this study.

(b) Let B be the event of having breast cancer confirmed in the California Cancer Registry. Find
the probability of B in this study.

(¢) Find P(ANB)

(d) Find P(A | B)

(e) Find P(B|A)

(f) Find the sensitivity of using self-reported breast cancer as a predictor of actual breast cancer
in the California registry.

(g) Find the specificity of using self-reported breast cancer as a predictor of actual breast cancer
in the California registry.

In a certain population the probability that a randomly selected subject will have been exposed
to a certain allergen and experience a reaction to the allergen is .60. The probability is .8 that a
subject exposed to the allergen will experience an allergic reaction. If a subject is selected at ran-
dom from this population, what is the probability that he or she will have been exposed to the
allergen?

Suppose that 3 percent of the people in a population of adults have attempted suicide. It is also
known that 20 percent of the population are living below the poverty level. If these two events
are independent, what is the probability that a person selected at random from the population
will have attempted suicide and be living below the poverty level?

In a certain population of women 4 percent have had breast cancer, 20 percent are smokers, and
3 percent are smokers and have had breast cancer. A woman is selected at random from the popu-
lation. What is the probability that she has had breast cancer or smokes or both?

The probability that a person selected at random from a population will exhibit the classic symp-
tom of a certain disease is .2, and the probability that a person selected at random has the disease
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14.

15.
16.
17.
18.

19.

20.

21.

22,

is .23. The probability that a person who has the symptom also has the disease is .18. A person
selected at random from the population does not have the symptom. What is the probability that
the person has the disease?

For a certain population we define the following events for mother’s age at time of giving birth:
A = under 20 years; B = 20-24 years; C = 25-29 years; D = 30-44 years. Are the events A, B,
C, and D pairwise mutually exclusive?

Refer to Exercise 14. State in words the event E = (AU B).
Refer to Exercise 14. State in words the event F = (BU C).
Refer to Exercise 14. Comment on the event G = (A N B).

For a certain population we define the following events with respect to plasma lipoprotein levels
(mg/dl): A = (10-15); B = (=30);C = (=20). Are the events A and B mutually exclusive? A
and C? B and C? Explain your answer to each question.

Refer to Exercise 18. State in words the meaning of the following events:
(@ AUB (b)) ANB (¢ ANC (@) AUC

Refer to Exercise 18. State in words the meaning of the following events:
@A MmB (©C

Rothenberg et al. (A-13) investigated the effectiveness of using the Hologic Sahara Sonometer, a
portable device that measures bone mineral density (BMD) in the ankle, in predicting a fracture.
They used a Hologic estimated bone mineral density value of .57 as a cutoff. The results of the
investigation yielded the following data:

Confirmed Fracture

Present (D) Not Present (D) Total

BMD = .57 (T) 214 670 884
BMD > .57 (7) 73 330 403
Total 287 1000 1287

Source: Ralph J. Rothenberg, M.D., Joan L. Boyd, Ph.D., and John P.

Holcomb, Ph.D. Used with permission.

(a) Calculate the sensitivity of using a BMD value of .57 as a cutoff value for predicting fracture
and interpret your results.

(b) Calculate the specificity of using a BMD value of .57 as a cutoff value for predicting fracture
and interpret your results.

Verma et al. (A-14) examined the use of heparin-PF4 ELISA screening for heparin-induced throm-
bocytopenia (HIT) in critically ill patients. Using C-serotonin release assay (SRA) as the way of
validating HIT, the authors found that in 31 patients tested negative by SRA, 22 also tested neg-
ative by heparin-PF4 ELISA.

(a) Calculate the specificity of the heparin-PF4 ELISA testing for HIT.

(b) Using a “literature-derived sensitivity” of 95 percent and a prior probability of HIT occur-
rence as 3.1 percent, find the positive predictive value.

(c) Using the same information as part (b), find the negative predictive value.
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The sensitivity of a screening test is .95, and its specificity is .85. The rate of the disease for which
the test is used is .002. What is the predictive value positive of the test?

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to the random sample of 800 subjects from the North Carolina birth registry we investigated
in the Chapter 2 review exercises.

1. Create a table that cross-tabulates the counts of mothers in the classifications of whether the baby
was premature or not (PREMIE) and whether the mother admitted to smoking during pregnancy
(SMOKE) or not.

(a) Find the probability that a mother in this sample admitted to smoking.

(b) Find the probability that a mother in this sample had a premature baby.

(c) Find the probability that a mother in the sample had a premature baby given that the mother
admitted to smoking.

(d) Find the probability that a mother in the sample had a premature baby given that the mother
did not admit to smoking.

(e) Find the probability that a mother in the sample had a premature baby or that the mother did
not admit to smoking.

2. Create a table that cross-tabulates the counts of each mother’s marital status (MARITAL) and
whether she had a low birth weight baby (LOW).

(a) Find the probability a mother selected at random in this sample had a low birth weight baby.
(b) Find the probability a mother selected at random in this sample was married.
(c) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was married.
(d) Find the probability a mother selected at random in this sample had a low birth weight child
given that she was not married.
(e) Find the probability a mother selected at random in this sample had a low birth weight child
and the mother was married.
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CHAPTER 1

PROBABILITY DISTRIBUTIONS

CHAPTER OVERVIEW

Probability distributions of random variables assume powerful roles in statis-
tical analyses. Since they show all possible values of a random variable and
the probabilities associated with these values, probability distributions may
be summarized in ways that enable researchers to easily make objective de-
cisions based on samples drawn from the populations that the distributions
represent. This chapter introduces frequently used discrete and continuous
probability distributions that are used in later chapters to make statistical
inferences.
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LEARNING OUTCOMES

After studying this chapter, the student will

1.

understand selected discrete distributions and how to use them to calculate
probabilities in real-world problems.

understand selected continuous distributions and how to use them to calculate
probabilities in real-world problems.

be able to explain the similarities and differences between distributions of the
discrete type and the continuous type and when the use of each is appropriate.
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4.1

CHAPTER 4 PROBABILITY DISTRIBUTIONS

INTRODUCTION

In the preceding chapter we introduced the basic concepts of probability as well as meth-
ods for calculating the probability of an event. We build on these concepts in the present
chapter and explore ways of calculating the probability of an event under somewhat more
complex conditions. In this chapter we shall see that the relationship between the values
of a random variable and the probabilities of their occurrence may be summarized by means
of a device called a probability distribution. A probability distribution may be expressed
in the form of a table, graph, or formula. Knowledge of the probability distribution of a
random variable provides the clinician and researcher with a powerful tool for summariz-
ing and describing a set of data and for reaching conclusions about a population of data
on the basis of a sample of data drawn from the population.

4.2 PROBABILITY DISTRIBUTIONS
OF DISCRETE VARIABLES

Let us begin our discussion of probability distributions by considering the probability
distribution of a discrete variable, which we shall define as follows:

DEFINITION
The probability distribution of a discrete random variable is a table,
graph, formula, or other device used to specify all possible values of a
discrete random variable along with their respective probabilities.

If we let the discrete probability distribution be represented by p(x), then p(x) = P(X = x)
is the probability of the discrete random variable X to assume a value x.

EXAMPLE 4.2.1

In an article appearing in the Journal of the American Dietetic Association, Holben et al.
(A-1) looked at food security status in families in the Appalachian region of southern Ohio.
The purpose of the study was to examine hunger rates of families with children in a local
Head Start program in Athens, Ohio. The survey instrument included the 18-question U.S.
Household Food Security Survey Module for measuring hunger and food security. In addi-
tion, participants were asked how many food assistance programs they had used in the last
12 months. Table 4.2.1 shows the number of food assistance programs used by subjects in
this sample.

We wish to construct the probability distribution of the discrete variable X, where
X = number of food assistance programs used by the study subjects.

Solution: The values of X are x; = 1,x, = 2,...,x7 = 7, and xg = 8. We compute
the probabilities for these values by dividing their respective frequencies by
the total, 297. Thus, for example, p(x;) = P(X = x;) = 62/297 = .2088.
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TABLE 4.2.1 Number of Assistance
Programs Utilized by Families with
Children in Head Start Programs in
Southern Ohio

Number of Programs Frequency

62
47
39
39
58
37

4
1"

0 N O G A WN =

Total 297

Source: David H. Holben, Ph.D. and John P. Holcomb,
Ph.D. Used with permission.

TABLE 4.2.2 Probability Distribution of
Programs Utilized by Families Among
the Subjects Described in Example 4.2.1

Number of Programs (x) P(X = x)

.2088
.1582
1313
1313
1953
1246
.0135
.0370

W NO G B WN =

Total 1.0000

We display the results in Table 4.2.2, which is the desired probability
distribution. [ |

Alternatively, we can present this probability distribution in the form of a graph, as
in Figure 4.2.1. In Figure 4.2.1 the length of each vertical bar indicates the probability
for the corresponding value of x.

It will be observed in Table 4.2.2 that the values of p(x) = P(X = x) are all
positive, they are all less than 1, and their sum is equal to 1. These are not phenomena
peculiar to this particular example, but are characteristics of all probability distributions
of discrete variables. If xy, x5, x3, . . ., x; are all possible values of the discrete random
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0.20 —

0.15 —

Probability

0.05 —

0.00 | | | | | \ | |
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x (number of assistance programs)

FIGURE 4.2.1 Graphical representation of the probability
distribution shown in Table 4.2.1.

variable X, then we may then give the following two essential properties of a probability
distribution of a discrete variable:
() 0=PX=x)=1
2 DP(X=x)=1, foralx
The reader will also note that each of the probabilities in Table 4.2.2 is the
relative frequency of occurrence of the corresponding value of X.

With its probability distribution available to us, we can make probability statements
regarding the random variable X. We illustrate with some examples.

EXAMPLE 4.2.2
What is the probability that a randomly selected family used three assistance

programs?

Solution: We may write the desired probability as p(3) = P(X = 3). We see in
Table 4.2.2 that the answer is .1313. |

EXAMPLE 4.2.3
What is the probability that a randomly selected family used either one or two programs?
Solution: To answer this question, we use the addition rule for mutually exclusive

events. Using probability notation and the results in Table 4.2.2, we write the
answer as P(1U2) = P(1) + P(2) = .2088 + .1582 = .3670. ]
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TABLE 4.2.3 Cumulative Probability Distribution of Number
of Programs Utilized by Families Among the Subjects
Described in Example 4.2.1

Number of Programs (x) Cumulative Frequency P(X = x)

.2088
.3670
.4983
.6296
.8249
.9495
.9630
1.0000

00 NO O WN =

Cumulative Distributions Sometimes it will be more convenient to work
with the cumulative probability distribution of a random variable. The cumulative prob-
ability distribution for the discrete variable whose probability distribution is given in
Table 4.2.2 may be obtained by successively adding the probabilities, P(X = x;), given
in the last column. The cumulative probability for x; is written as F(x;) = P(X = x;).
It gives the probability that X is less than or equal to a specified value, x;.

The resulting cumulative probability distribution is shown in Table 4.2.3. The graph
of the cumulative probability distribution is shown in Figure 4.2.2. The graph of a cumu-
lative probability distribution is called an ogive. In Figure 4.2.2 the graph of F(x) con-
sists solely of the horizontal lines. The vertical lines only give the graph a connected
appearance. The length of each vertical line represents the same probability as that of the
corresponding line in Figure 4.2.1. For example, the length of the vertical line at X = 3

1.0~ I
0.9

0.8

0.7

0.6 -

0.5

f)

0.4~

0.3

0.2 -
0.1 —

0.0 I Sy A B
1 2 3 4 5 6 7 8

x (number of programs)
FIGURE 4.2.2 Cumulative probability distribu-
tion of number of assistance programs among the
subjects described in Example 4.2.1.
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in Figure 4.2.2 represents the same probability as the length of the line erected at X = 3
in Figure 4.2.1, or .1313 on the vertical scale.

By consulting the cumulative probability distribution we may answer quickly ques-
tions like those in the following examples.

EXAMPLE 4.2.4

What is the probability that a family picked at random used two or fewer assistance
programs?

Solution: The probability we seek may be found directly in Table 4.2.3 by reading
the cumulative probability opposite x = 2, and we see that it is .3670. That
is, P(X = 2) = .3670. We also may find the answer by inspecting Figure
4.2.2 and determining the height of the graph (as measured on the vertical
axis) above the value X = 2. |

EXAMPLE 4.2.5

What is the probability that a randomly selected family used fewer than four programs?

Solution: Since a family that used fewer than four programs used either one, two, or
three programs, the answer is the cumulative probability for 3. That is,
P(X < 4) = P(X = 3) = .4983. [ |

EXAMPLE 4.2.6

What is the probability that a randomly selected family used five or more programs?

Solution: To find the answer we make use of the concept of complementary probabilities.
The set of families that used five or more programs is the complement of the
set of families that used fewer than five (that is, four or fewer) programs. The
sum of the two probabilities associated with these sets is equal to 1. We write
this relationship in probability notation as P(X = 5) + P(X = 4) = 1.
Therefore, P(X = 5) =1 — P(X = 4) = 1 — .6296 = .3704. [

EXAMPLE 4.2.7

What is the probability that a randomly selected family used between three and five
programs, inclusive?

Solution: P(X = 5) = .8249 is the probability that a family used between one and
five programs, inclusive. To get the probability of between three and
five programs, we subtract, from .8249, the probability of two or fewer.
Using probability notation we write the answer as P(3 =X = 5) =
P(X =5) — P(X =2) = .8249 — 3670 = .4579. [ |

The probability distribution given in Table 4.2.1 was developed out of actual experience, so
to find another variable following this distribution would be coincidental. The probability
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distributions of many variables of interest, however, can be determined or assumed on
the basis of theoretical considerations. In later sections, we study in detail three of these
theoretical probability distributions: the binomial, the Poisson, and the normal.

Mean and Variance of Discrete Probability Distributions The
mean and variance of a discrete probability distribution can easily be found using the
formulae below.

n= Exp(x) 4.2.1)
o? = D (x = u)p(x) = Dx*p(x) — p? (4.2.2)

where p(x) is the relative frequency of a given random variable X. The standard deviation
is simply the positive square root of the variance.

EXAMPLE 4.2.8

What are the mean, variance, and standard deviation of the distribution from Example 4.2.1?

Solution:

w = (1)(.2088) + (2)(.1582) + (3)(.1313) + --- + (8)(.0370) = 3.5589
o = (1 — 3.5589)%(.2088) + (2 — 3.5589)%(.1582) + (3 — 3.5589)%(.1313)
+ -+ + (8 — 3.5589)%(.0370) = 3.8559

We therefore can conclude that the mean number of programs utilized was 3.5589 with a
variance of 3.8559. The standard deviation is therefore V 3.5589 = 1.9637 programs. M

EXERCISES

4.2.1

4.2.2

4.2.3

In a study by Cross et al. (A-2), patients who were involved in problem gambling treatment were
asked about co-occurring drug and alcohol addictions. Let the discrete random variable X represent
the number of co-occurring addictive substances used by the subjects. Table 4.2.4 summarizes the
frequency distribution for this random variable.

(a) Construct a table of the relative frequency and the cumulative frequency for this discrete
distribution.

(b) Construct a graph of the probability distribution and a graph representing the cumulative
probability distribution for these data.

Refer to Exercise 4.2.1.
(a) What is probability that an individual selected at random used five addictive substances?

(b) What is the probability that an individual selected at random used fewer than three addictive
substances?

(c) What is the probability that an individual selected at random used more than six addictive
substances?

(d) What is the probability that an individual selected at random used between two and five
addictive substances, inclusive?

Refer to Exercise 4.2.1. Find the mean, variance, and standard deviation of this frequency distribution.
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Table 4.2.4 Number of Co-occurring Addictive Substances
Used by Patients in Selected Gambling Treatment Programs

Number of Substances Used Frequency

144

342
142
72

© 0o N ol h WN - O
N
o

Total 777

4.3 THE BINOMIAL DISTRIBUTION

The binomial distribution is one of the most widely encountered probability distributions
in applied statistics. The distribution is derived from a process known as a Bernoulli trial,
named in honor of the Swiss mathematician James Bernoulli (1654—-1705), who made
significant contributions in the field of probability, including, in particular, the binomial
distribution. When a random process or experiment, called a trial, can result in only one
of two mutually exclusive outcomes, such as dead or alive, sick or well, full-term or
premature, the trial is called a Bernoulli trial.

The Bernoulli Process A sequence of Bernoulli trials forms a Bernoulli
process under the following conditions.

1. Each trial results in one of two possible, mutually exclusive, outcomes. One of the pos-
sible outcomes is denoted (arbitrarily) as a success, and the other is denoted a failure.

2. The probability of a success, denoted by p, remains constant from trial to trial. The
probability of a failure, 1 — p, is denoted by gq.

3. The trials are independent; that is, the outcome of any particular trial is not affected
by the outcome of any other trial.

EXAMPLE 4.3.1

We are interested in being able to compute the probability of x successes in n Bernoulli
trials. For example, if we examine all birth records from the North Carolina State Center
for Health Statistics (A-3) for the calendar year 2001, we find that 85.8 percent of the
pregnancies had delivery in week 37 or later. We will refer to this as a full-term birth.
With that percentage, we can interpret the probability of a recorded birth in week 37 or
later as .858. If we randomly select five birth records from this population, what is the
probability that exactly three of the records will be for full-term births?




Solution:

4.3 THE BINOMIAL DISTRIBUTION 101

Let us designate the occurrence of a record for a full-term birth (F) as a
“success,” and hasten to add that a premature birth (P) is not a failure, but
medical research indicates that children born in week 36 or sooner are at
risk for medical complications. If we are looking for birth records of pre-
mature deliveries, these would be designated successes, and birth records
of full-term would be designated failures.

It will also be convenient to assign the number 1 to a success (record for
a full-term birth) and the number O to a failure (record of a premature birth).

The process that eventually results in a birth record we consider to be
a Bernoulli process.

Suppose the five birth records selected resulted in this sequence of
full-term births:

FPFFP
In coded form we would write this as
10110

Since the probability of a success is denoted by p and the probabil-
ity of a failure is denoted by g, the probability of the above sequence of
outcomes is found by means of the multiplication rule to be

P(1,0,1,1,0) = pgppq = ¢*p°

The multiplication rule is appropriate for computing this probability since
we are seeking the probability of a full-term, and a premature, and a full-
term, and a full-term, and a premature, in that order or, in other words, the
joint probability of the five events. For simplicity, commas, rather than inter-
section notation, have been used to separate the outcomes of the events in
the probability statement.

The resulting probability is that of obtaining the specific sequence of out-
comes in the order shown. We are not, however, interested in the order of occur-
rence of records for full-term and premature births but, instead, as has been
stated already, the probability of the occurrence of exactly three records of full-
term births out of five randomly selected records. Instead of occurring in the
sequence shown above (call it sequence number 1), three successes and two
failures could occur in any one of the following additional sequences as well:

Number Sequence
2 11100
3 10011
4 11010
5 11001
6 10101
7 01110
8 00111
9 01011

10 01101
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Each of these sequences has the same probability of occurring, and
this probability is equal to ¢?p>, the probability computed for the first
sequence mentioned.

When we draw a single sample of size five from the population spec-
ified, we obtain only one sequence of successes and failures. The question
now becomes, What is the probability of getting sequence number 1 or
sequence number 2 . . . or sequence number 10? From the addition rule we
know that this probability is equal to the sum of the individual probabili-
ties. In the present example we need to sum the 10g%p>’s or, equivalently,
multiply ¢2p® by 10. We may now answer our original question: What is
the probability, in a random sample of size 5, drawn from the specified
population, of observing three successes (record of a full-term birth) and
two failures (record of a premature birth)? Since in the population,
p = .858,g = (1 — p) = (1 — .858) = .142 the answer to the question is

10(.142)2(.858)% = 10(.0202)(.6316) = .1276 [

Large Sample Procedure: Use of Combinations We can easily
anticipate that, as the size of the sample increases, listing the number of sequences becomes
more and more difficult and tedious. What is needed is an easy method of counting the
number of sequences. Such a method is provided by means of a counting formula that
allows us to determine quickly how many subsets of objects can be formed when we use
in the subsets different numbers of the objects that make up the set from which the objects
are selected. When the order of the objects in a subset is immaterial, the subset is called
a combination of objects. When the order of objects in a subset does matter, we refer to
the subset as a permutation of objects. Though permutations of objects are often used in
probability theory, they will not be used in our current discussion. If a set consists of n
objects, and we wish to form a subset of x objects from these n objects, without regard to
the order of the objects in the subset, the result is called a combination. For examples, we
define a combination as follows when the combination is formed by taking x objects from
a set of n objects.

DEFINITION

A combination of n objects taken x at a time is an unordered subset of
x of the n objects.

The number of combinations of n objects that can be formed by taking x of them
at a time is given by
n!

nCx = FITEN 4.3.1)

where x!, read x factorial, is the product of all the whole numbers from x down to 1.
That is, x! = x(x — 1)(x — 2)...(1). We note that, by definition, 0! = 1.

Let us return to our example in which we have a sample of n = 5 birth records and
we are interested in finding the probability that three of them will be for full-term births.
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TABLE 4.3.1 The Binomial Distribution

Number of Successes, x Probability, f(x)
0 nCoq" °p°
1 nC1g"'p’
2 nC2q" ?p?
x nCxq"p*
n aCn@™"p"
Total 1

The number of sequences in our example is found by Equation 4.3.1 to be

5:4:3:2-1 120 _

= - =1
sC3 3:2:1-2-1 12 0

In our example we let x = 3, the number of successes, so that n — x = 2, the
number of failures. We then may write the probability of obtaining exactly x successes
in n trials as

f(x) =,C.q"p* = ,C.p*q"™ forx=0,1,2,...,n
=0, elsewhere “4.3.2)

This expression is called the binomial distribution. In Equation 4.3.2 f(x) =
P(X = x), where X is the random variable, the number of successes in n trials. We use f(x)
rather than P(X = x) because of its compactness and because of its almost universal use.

We may present the binomial distribution in tabular form as in Table 4.3.1.

We establish the fact that Equation 4.3.2 is a probability distribution by showing
the following:

1. f(x) = O for all real values of x. This follows from the fact that n and p are both
nonnegative and, hence, ,C,, p*, and (1 — p)" ™ are all nonnegative and, therefore,
their product is greater than or equal to zero.

2. 3f(x) = 1. This is seen to be true if we recognize that =,C.q" "p” is equal to
[(1 =p)+p]"=1"=1, the familiar binomial expansion. If the binomial
(¢ + p)" is expanded, we have

n(n — 1)
2

n—2_2

(q+p)ﬂ:qn+nq;1—1p1 + q 1 + . +nq1pn*1 +pn

If we compare the terms in the expansion, term for term, with the f(x) in
Table 4.3.1 we see that they are, term for term, equivalent, since

f(0) = ,Coq" P’ = ¢"
f(1) = ,Cig"'p" = ng" 'p
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n(n—1) o

f(2) = ,Crq" p* = 5 a"p

f(n) = ,Cyq""p" = p"

EXAMPLE 4.3.2

As another example of the use of the binomial distribution, the data from the North
Carolina State Center for Health Statistics (A-3) show that 14 percent of mothers admit-
ted to smoking one or more cigarettes per day during pregnancy. If a random sample
of size 10 is selected from this population, what is the probability that it will contain
exactly four mothers who admitted to smoking during pregnancy?

Solution: We take the probability of a mother admitting to smoking to be .14. Using
Equation 4.3.2 we find

f(4) = 19C4(.86)°(.14)*
10!
= gy (4045672)(0003842)
= .0326 [

Binomial Table The calculation of a probability using Equation 4.3.2 can be a
tedious undertaking if the sample size is large. Fortunately, probabilities for different val-
ues of n, p, and x have been tabulated, so that we need only to consult an appropriate
table to obtain the desired probability. Table B of the Appendix is one of many such
tables available. It gives the probability that X is less than or equal to some specified
value. That is, the table gives the cumulative probabilities from x = 0 up through some
specified positive number of successes.

Let us illustrate the use of the table by using Example 4.3.2, where it was desired
to find the probability that x = 4 when n = 10 and p = .14. Drawing on our knowledge
of cumulative probability distributions from the previous section, we know that P(x = 4)
may be found by subtracting P(X =< 3) from P(X < 4). If in Table B we locate p = .14
for n = 10, we find that P(X =< 4) = 9927 and P(X = 3) = .9600. Subtracting the
latter from the former gives .9927 — .9600 = .0327, which nearly agrees with our hand
calculation (discrepancy due to rounding).

Frequently we are interested in determining probabilities, not for specific values
of X, but for intervals such as the probability that X is between, say, 5 and 10. Let us
illustrate with an example.

EXAMPLE 4.3.3

Suppose it is known that 10 percent of a certain population is color blind. If a random
sample of 25 people is drawn from this population, use Table B in the Appendix to find
the probability that:

(a) Five or fewer will be color blind.
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Solution: This probability is an entry in the table. No addition or subtraction is nec-
essary. P(X = 5) = .9666.

(b) Six or more will be color blind.

Solution: We cannot find this probability directly in the table. To find the answer, we
use the concept of complementary probabilities. The probability that six or
more are color blind is the complement of the probability that five or fewer
are color blind. That is, this set is the complement of the set specified in
part a; therefore,

PX=6)=1—-PX=5)=1-.9666 = .0334
(¢) Between six and nine inclusive will be color blind.

Solution: We find this by subtracting the probability that X is less than or equal to 5
from the probability that X is less than or equal to 9. That is,

P6=X=9)=PX=9)—-P(X=5)=.9999 — .9666 = .0333
(d) Two, three, or four will be color blind.

Solution: This is the probability that X is between 2 and 4 inclusive.

PR=X=4)=P(X=4) - P(X=1)=.9020 — 2712 = 6308 n

Using Table B When p > .5 Table B does not give probabilities for values of
p greater than .5. We may obtain probabilities from Table B, however, by restating the
problem in terms of the probability of a failure, 1 — p, rather than in terms of the prob-
ability of a success, p. As part of the restatement, we must also think in terms of the num-
ber of failures, n — x, rather than the number of successes, x. We may summarize this
idea as follows:

PX=x|np>.350)=PX=n—x|n1-p) (4.3.3)

In words, Equation 4.3.3 says, “The probability that X is equal to some specified value given
the sample size and a probability of success greater than .5 is equal to the probability that
X is equal to n — x given the sample size and the probability of a failure of 1 — p.” For
purposes of using the binomial table we treat the probability of a failure as though it were
the probability of a success. When p is greater than .5, we may obtain cumulative proba-
bilities from Table B by using the following relationship:

PX=x|np>50)=PX=n—-x|nl-p) (4.3.4)

Finally, to use Table B to find the probability that X is greater than or equal to some x
when P > .5, we use the following relationship:

PX=xlnp>.50)=PX=n—xlnl-p) (4.3.5)
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EXAMPLE 4.3.4

According to a June 2003 poll conducted by the Massachusetts Health Benchmarks
project (A-4), approximately 55 percent of residents answered “serious problem” to the
question, “Some people think that childhood obesity is a national health problem. What
do you think? Is it a very serious problem, somewhat of a problem, not much of a prob-
lem, or not a problem at all?” Assuming that the probability of giving this answer to the
question is .55 for any Massachusetts resident, use Table B to find the probability that if
12 residents are chosen at random:

(a) Exactly seven will answer “serious problem.”

Solution: We restate the problem as follows: What is the probability that a randomly
selected resident gives an answer other than “serious problem” from exactly
five residents out of 12, if 45 percent of residents give an answer other than
“serious problem.” We find the answer as follows:

PX=5|n=12,p=.45)=P(X=5) - P(X = 4)
= .5269 — .3044 = 2225

(b) Five or fewer households will answer “‘serious problem.”

Solution: The probability we want is
PX=5|n=12,p=55)=P(X=12—5|n=12,p = 45)
=P(X=7|n=12,p = 45)
=1—-P(X=6|n=12p = 45)
=1 —.7393 = 2607

(c) Eight or more households will answer “serious problem.”

Solution: The probability we want is

PX=8|n=12,p= 55 =P(X=4|n=12,p = 45) = 3044 [ ]

Figure 4.3.1 provides a visual representation of the solution to the three parts of
Example 4.3.4.

The Binomial Parameters The binomial distribution has two parameters,
n and p. They are parameters in the sense that they are sufficient to specify a bino-
mial distribution. The binomial distribution is really a family of distributions with
each possible value of n and p designating a different member of the family. The
mean and variance of the binomial distribution are w = np and o> = np(1 — p),
respectively.

Strictly speaking, the binomial distribution is applicable in situations where sam-
pling is from an infinite population or from a finite population with replacement. Since
in actual practice samples are usually drawn without replacement from finite populations,
the question arises as to the appropriateness of the binomial distribution under these
circumstances. Whether or not the binomial is appropriate depends on how drastic the
effect of these conditions is on the constancy of p from trial to trial. It is generally agreed
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Possible number Possible number
of successes of failures
(serious) = x Probability (not serious) =n —x Probability
P(SUCCESS) = .55 statement P(FAILURE) = .45 statement
12
11
Part b P(X = 5|12, .55) :9“) P(X = 7|12, .45)
8
7
[ 6
Parta @ P(X = 7|12, .55) ® P(X = 5|12, .45)
8
9
Part ¢ 10 P(X = 8|12, .55) P(X = 4|12, .45)
11
12

FIGURE 4.3.1 Schematic representation of solutions to Example 4.3.4 (the relevant
numbers of successes and failures in each case are circled).

that when n is small relative to N, the binomial model is appropriate. Some writers say
that n is small relative to N if N is at least 10 times as large as n.

Most statistical software programs allow for the calculation of binomial probabilities
with a personal computer. EXCEL, for example, can be used to calculate individual or cumu-
lative probabilities for specified values of x, n, and p. Suppose we wish to find the individ-
ual probabilities for x = 0 through x = 6 when n = 6 and p = .3. We enter the numbers
0 through 6 in Column 1 and proceed as shown in Figure 4.3.2. We may follow a similar
procedure to find the cumulative probabilities. For this illustration, we use MINITAB and
place the numbers 1 through 6 in Column 1. We proceed as shown in Figure 4.3.3.

Using the following cell command:
BINOMDIST(A*, 6, .3, false), where A* is the appropriate cell reference
We obtain the following output:

0 0.117649
0.302526
0.324135
0.185220
0.059535
0.010206
0.000729

||| WIN|-=

FIGURE 4.3.2 Excel calculation of individual binomial probabilities for x = 0 through
x=6when n=6and p= 3.
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Data:

Cl: 01 2 3 4 5 6

Dialog box: Session command:
Calc » Probability Distributions » MTB > CDF C1;
Binomial SUBC> BINOMIAL 6 0.3.

Choose Cumulative probability. Type 6 in Number of
trials. Type 0.3 in Probability of success. Choose
Input column and type C/. Click OK.

Output:

Cumulative Distribution Function

Binomial with n = 6 and p = 0.300000
x P( X <= x)
0.00 0.1176
1.00 0.4202
2.00 0.7443
3.00 0.9295
4.00 0.9891
5.00 0.9993
6.00 1.0000

FIGURE 4.3.3 MINITAB calculation of cumulative binomial probabilities for x = 0 through
x =6 when n=6 and p = 3.

EXERCISES

In each of the following exercises, assume that N is sufficiently large relative to n that the bino-
mial distribution may be used to find the desired probabilities.

4.3.1 Based on data collected by the National Center for Health Statistics and made available to the
public in the Sample Adult database (A-5), an estimate of the percentage of adults who have at
some point in their life been told they have hypertension is 23.53 percent. If we select a simple
random sample of 20 U.S. adults and assume that the probability that each has been told that he
or she has hypertension is .24, find the probability that the number of people in the sample who
have been told that they have hypertension will be:

(a) Exactly three (b) Three or more
(¢) Fewer than three (d) Between three and seven, inclusive
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Refer to Exercise 4.3.1. How many adults who have been told that they have hypertension would
you expect to find in a sample of 20?

Refer to Exercise 4.3.1. Suppose we select a simple random sample of five adults. Use Equation
4.3.2 to find the probability that, in the sample, the number of people who have been told that
they have hypertension will be:

(a) Zero (b) More than one
(¢) Between one and three, inclusive (d) Two or fewer
(e) Five

The same survey database cited in exercise 4.3.1 (A-5) shows that 32 percent of U.S. adults indi-
cated that they have been tested for HIV at some point in their life. Consider a simple random
sample of 15 adults selected at that time. Find the probability that the number of adults who have
been tested for HIV in the sample would be:

(a) Three (b) Less than five
(¢) Between five and nine, inclusive (d) More than five, but less than 10
(e) Six or more

Refer to Exercise 4.3.4. Find the mean and variance of the number of people tested for HIV in
samples of size 15.

Refer to Exercise 4.3.4. Suppose we were to take a simple random sample of 25 adults today and
find that two have been tested for HIV at some point in their life. Would these results be surpris-
ing? Why or why not?

Coughlin et al. (A-6) estimated the percentage of women living in border counties along the south-
ern United States with Mexico (designated counties in California, Arizona, New Mexico, and
Texas) who have less than a high school education to be 18.7. Assume the corresponding proba-
bility is .19. Suppose we select three women at random. Find the probability that the number with
less than a high-school education is:

(a) Exactly zero (b) Exactly one

(¢) More than one (d) Two or fewer

(e) Two or three (f) Exactly three

In a survey of nursing students pursuing a master’s degree, 75 percent stated that they expect
to be promoted to a higher position within one month after receiving the degree. If this per-
centage holds for the entire population, find, for a sample of 15, the probability that the num-
ber expecting a promotion within a month after receiving their degree is:

(a) Six (b) At least seven

(¢) No more than five (d) Between six and nine, inclusive

Given the binomial parameters p = .8 and n = 3, show by means of the binomial expansion given
in Table 4.3.1 that X f(x) = 1.

4.4 THE POISSON DISTRIBUTION

The next discrete distribution that we consider is the Poisson distribution, named for
the French mathematician Simeon Denis Poisson (1781-1840), who is generally cred-
ited for publishing its derivation in 1837. This distribution has been used extensively as
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a probability model in biology and medicine. Haight (1) presents a fairly extensive cat-
alog of such applications in Chapter 7 of his book.

If x is the number of occurrences of some random event in an interval of time or
space (or some volume of matter), the probability that x will occur is given by

M
fe)==—7— x=012... 4.4.1)
X

The Greek letter A (lambda) is called the parameter of the distribution and is the aver-
age number of occurrences of the random event in the interval (or volume). The symbol
e is the constant (to four decimals) 2.7183.

It can be shown that f(x) = 0 for every x and that X, f(x) = 1 so that the distri-
bution satisfies the requirements for a probability distribution.

The Poisson Process We have seen that the binomial distribution results from
a set of assumptions about an underlying process yielding a set of numerical observa-
tions. Such, also, is the case with the Poisson distribution. The following statements
describe what is known as the Poisson process.

1. The occurrences of the events are independent. The occurrence of an event in an
interval’ of space or time has no effect on the probability of a second occurrence
of the event in the same, or any other, interval.

2. Theoretically, an infinite number of occurrences of the event must be possible in
the interval.

3. The probability of the single occurrence of the event in a given interval is propor-
tional to the length of the interval.

4. In any infinitesimally small portion of the interval, the probability of more than
one occurrence of the event is negligible.

An interesting feature of the Poisson distribution is the fact that the mean and vari-
ance are equal.

When to Use the Poisson Model The Poisson distribution is employed
as a model when counts are made of events or entities that are distributed at random
in space or time. One may suspect that a certain process obeys the Poisson law, and
under this assumption probabilities of the occurrence of events or entities within some
unit of space or time may be calculated. For example, under the assumptions that the
distribution of some parasite among individual host members follows the Poisson law,
one may, with knowledge of the parameter A, calculate the probability that a randomly
selected individual host will yield x number of parasites. In a later chapter we will
learn how to decide whether the assumption that a specified process obeys the Pois-
son law is plausible. An additional use of the Poisson distribution in practice occurs

! For simplicity, the Poisson distribution is discussed in terms of intervals, but other units, such as a volume
of matter, are implied.
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when n is large and p is small. In this case, the Poisson distribution can be used to
approximate the binomial distribution. In other words,

e\

x!

SCopq" = , x=0,1,2,...
where A = np.

To illustrate the use of the Poisson distribution for computing probabilities, let us
consider the following examples.

EXAMPLE 4.4.1

In a study of drug-induced anaphylaxis among patients taking rocuronium bromide as
part of their anesthesia, Laake and Rgttingen (A-7) found that the occurrence of anaphy-
laxis followed a Poisson model with A = 12 incidents per year in Norway. Find the prob-
ability that in the next year, among patients receiving rocuronium, exactly three will
experience anaphylaxis.

Solution: By Equation 4.4.1, we find the answer to be

= .00177

EXAMPLE 4.4.2

Refer to Example 4.4.1. What is the probability that at least three patients in the next
year will experience anaphylaxis if rocuronium is administered with anesthesia?

Solution: We can use the concept of complementary events in this case. Since
P(X = 2) is the complement of P(X = 3), we have

PX=3)=1-PX=2)=1-[P(X=0)+PX=1)+PX=2)]

6712120 6712121 6712122

=1- +
0! 1! 2!
=1 — [.00000614 + .00007373 + .00044238]
=1 — .00052225
= 99947775 |

In the foregoing examples the probabilities were evaluated directly from the equation.
We may, however, use Appendix Table C, which gives cumulative probabilities for
various values of A and X.

EXAMPLE 4.4.3

In the study of a certain aquatic organism, a large number of samples were taken from a
pond, and the number of organisms in each sample was counted. The average number
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of organisms per sample was found to be two. Assuming that the number of organisms
follows a Poisson distribution, find the probability that the next sample taken will contain
one or fewer organisms.

Solution: In Table C we see that when A = 2, the probability that X =< 1 is .406.
That is, P(X = 1] 2) = .406. [

EXAMPLE 4.4.4

Refer to Example 4.4.3. Find the probability that the next sample taken will contain
exactly three organisms.

Solution:

P(X=3]2)=P(X=3)—-P(X=2)=.857 — .677 = .180 [

Data:
Cl: 0123456
Dialog box: Session command:
Calc » Probability Distributions » Poisson MTB > PDF C1;
SUBC> Poisson .70.
Choose Probability. Type .70 in Mean. Choose Input column and
type CI. Click OK.
Output:

Probability Density Function

Poisson with mu = 0.700000
x P( X = x)

0.00 0.4966

1.00 0.3476

2.00 0.1217

3.00 0.0284

4.00 0.0050

5.00 0.0007

6.00 0.0001

FIGURE 4.4.1 MINITAB calculation of individual Poisson probabilities for x = 0 through
x=6and A =.7.
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Using commands found in:
Analysis » Other » Probability Calculator

We obtain the following output:

0<=X Prob(x <= X)
0 0.4966
1 0.8442
2 0.9659
3 0.9942
4 0.9992
5 0.9999
6 1.0000

FIGURE 4.4.2 MINITAB calculation of cumulative Poisson probabilities
for x = 0 through x = 6 and A = .7.

EXAMPLE 4.4.5

Refer to Example 4.4.3. Find the probability that the next sample taken will contain more
than five organisms.

Solution: Since the set of more than five organisms does not include five, we are ask-
ing for the probability that six or more organisms will be observed. This is
obtained by subtracting the probability of observing five or fewer from one.
That is,

PX>5|2)=1—-PX=5)=1-.983 =.017 ]

Poisson probabilities are obtainable from most statistical software packages. To illustrate
the use of MINITAB for this purpose, suppose we wish to find the individual probabil-
ities for x = 0 through x = 6 when A = .7. We enter the values of x in Column 1 and
proceed as shown in Figure 4.4.1. We obtain the cumulative probabilities for the same
values of x and A as shown in Figure 4.4.2.

EXERCISES

4.4.1 Singh et al. (A-8) looked at the occurrence of retinal capillary hemangioma (RCH) in patients with
von Hippel-Lindau (VHL) disease. RCH is a benign vascular tumor of the retina. Using a retro-
spective consecutive case series review, the researchers found that the number of RCH tumor
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incidents followed a Poisson distribution with A = 4 tumors per eye for patients with VHL. Using
this model, find the probability that in a randomly selected patient with VHL:

(a) There are exactly five occurrences of tumors per eye.
(b) There are more than five occurrences of tumors per eye.
(¢) There are fewer than five occurrences of tumors per eye.
(d) There are between five and seven occurrences of tumors per eye, inclusive.
4.4.2 Tubert-Bitter et al. (A-9) found that the number of serious gastrointestinal reactions reported to the
British Committee on Safety of Medicine was 538 for 9,160,000 prescriptions of the anti-inflammatory

drug piroxicam. This corresponds to a rate of .058 gastrointestinal reactions per 1000 prescriptions
written. Using a Poisson model for probability, with A = .06, find the probability of

(a) Exactly one gastrointestinal reaction in 1000 prescriptions
(b) Exactly two gastrointestinal reactions in 1000 prescriptions
(c) No gastrointestinal reactions in 1000 prescriptions
(d) At least one gastrointestinal reaction in 1000 prescriptions
4.4.3 If the mean number of serious accidents per year in a large factory (where the number of employ-
ees remains constant) is five, find the probability that in the current year there will be:
(a) Exactly seven accidents (b) Ten or more accidents

(¢) No accidents (d) Fewer than five accidents

4.4.4 In a study of the effectiveness of an insecticide against a certain insect, a large area of land was
sprayed. Later the area was examined for live insects by randomly selecting squares and count-
ing the number of live insects per square. Past experience has shown the average number of live
insects per square after spraying to be .5. If the number of live insects per square follows a Pois-
son distribution, find the probability that a selected square will contain:

(a) Exactly one live insect (b) No live insects
(c) Exactly four live insects (d) One or more live insects
4.4.5 In a certain population an average of 13 new cases of esophageal cancer are diagnosed each year.

If the annual incidence of esophageal cancer follows a Poisson distribution, find the probability
that in a given year the number of newly diagnosed cases of esophageal cancer will be:

(a) Exactly 10 (b) At least eight
(¢) No more than 12 (d) Between nine and 15, inclusive

(e) Fewer than seven

4.5 CONTINUOUS PROBABILITY
DISTRIBUTIONS

The probability distributions considered thus far, the binomial and the Poisson, are dis-
tributions of discrete variables. Let us now consider distributions of continuous random
variables. In Chapter 1 we stated that a continuous variable is one that can assume any
value within a specified interval of values assumed by the variable. Consequently,
between any two values assumed by a continuous variable, there exist an infinite num-
ber of values.
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To help us understand the nature of the distribution of a continuous random vari-
able, let us consider the data presented in Table 1.4.1 and Figure 2.3.2. In the table we
have 189 values of the random variable, age. The histogram of Figure 2.3.2 was con-
structed by locating specified points on a line representing the measurement of interest
and erecting a series of rectangles, whose widths were the distances between two spec-
ified points on the line, and whose heights represented the number of values of the vari-
able falling between the two specified points. The intervals defined by any two consec-
utive specified points we called class intervals. As was noted in Chapter 2, subareas of
the histogram correspond to the frequencies of occurrence of values of the variable
between the horizontal scale boundaries of these subareas. This provides a way whereby
the relative frequency of occurrence of values between any two specified points can be
calculated: merely determine the proportion of the histogram’s total area falling between
the specified points. This can be done more conveniently by consulting the relative fre-
quency or cumulative relative frequency columns of Table 2.3.2.

Imagine now the situation where the number of values of our random variable is
very large and the width of our class intervals is made very small. The resulting his-
togram could look like that shown in Figure 4.5.1.

If we were to connect the midpoints of the cells of the histogram in Figure 4.5.1
to form a frequency polygon, clearly we would have a much smoother figure than the
frequency polygon of Figure 2.3.4.

In general, as the number of observations, n, approaches infinity, and the width
of the class intervals approaches zero, the frequency polygon approaches a smooth curve
such as is shown in Figure 4.5.2. Such smooth curves are used to represent graphically
the distributions of continuous random variables. This has some important consequences
when we deal with probability distributions. First, the total area under the curve is equal
to one, as was true with the histogram, and the relative frequency of occurrence of val-
ues between any two points on the x-axis is equal to the total area bounded by the
curve, the x-axis, and perpendicular lines erected at the two points on the x-axis. See

f @)

X

FIGURE 4.5.1 A histogram resulting from a large number of values
and small class intervals.
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fx)

X
FIGURE 4.5.2 Graphical representation of a continuous
distribution.

Figure 4.5.3. The probability of any specific value of the random variable is zero. This
seems logical, since a specific value is represented by a point on the x-axis and the area
above a point is zero.

Finding Area Under a Smooth Curve With a histogram, as we have seen,
subareas of interest can be found by adding areas represented by the cells. We have no cells
in the case of a smooth curve, so we must seek an alternate method of finding subareas. Such
a method is provided by the integral calculus. To find the area under a smooth curve between
any two points a and b, the density function is integrated from a to b. A density function is a
formula used to represent the distribution of a continuous random variable. Integration is the
limiting case of summation, but we will not perform any integrations, since the level of math-
ematics involved is beyond the scope of this book. As we will see later, for all the continu-
ous distributions we will consider, there will be an easier way to find areas under their curves.

Although the definition of a probability distribution for a continuous random vari-
able has been implied in the foregoing discussion, by way of summary, we present it in
a more compact form as follows.

DEFINITION

A nonnegative function f(x) is called a probability distribution (some-
times called a probability density function) of the continuous random
variable X if the total area bounded by its curve and the x-axis is
equal to 1 and if the subarea under the curve bounded by the curve,
the x-axis, and perpendiculars erected at any two points a and b give
the probability that X is between the points a and b.

f)

a b X
FIGURE 4.5.3 Graph of a continuous distribution
showing area between a and b.
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Thus, the probability of a continuous random variable to assume values between
a and b is denoted by P(a < X < b)

4.6 THE NORMAL DISTRIBUTION

We come now to the most important distribution in all of statistics—the normal dis-
tribution. The formula for this distribution was first published by Abraham De Moivre
(1667-1754) on November 12, 1733. Many other mathematicians figure prominently
in the history of the normal distribution, including Carl Friedrich Gauss (1777-1855).
The distribution is frequently called the Gaussian distribution in recognition of his
contributions.

The normal density is given by

1

W oo < x < 00 (4.6.1)

flx) =
2o

In Equation 4.6.1, 7 and e are the familiar constants, 3.14159 . . . and 2.71828 ...,
respectively, which are frequently encountered in mathematics. The two parameters of the
distribution are w, the mean, and o, the standard deviation. For our purposes we may think
of w and o of a normal distribution, respectively, as measures of central tendency and dis-
persion as discussed in Chapter 2. Since, however, a normally distributed random variable
is continuous and takes on values between —00 and + 00, its mean and standard deviation
may be more rigorously defined; but such definitions cannot be given without using calcu-

lus. The graph of the normal distribution produces the familiar bell-shaped curve shown in
Figure 4.6.1.

Characteristics of the Normal Distribution The following are some
important characteristics of the normal distribution.

1. It is symmetrical about its mean, u. As is shown in Figure 4.6.1, the curve on
either side of w is a mirror image of the other side.

2. The mean, the median, and the mode are all equal.

3. The total area under the curve above the x-axis is one square unit. This character-
istic follows from the fact that the normal distribution is a probability distribution.
Because of the symmetry already mentioned, 50 percent of the area is to the right
of a perpendicular erected at the mean, and 50 percent is to the left.

u X
FIGURE 4.6.1 Graph of a normal distribution.



118

CHAPTER 4 PROBABILITY DISTRIBUTIONS

.68

.16 10 1o .16

u-1o u u+1lo X
(a)
.025 .025
u-20 u u+20 X
(b)
.997
.0015 3¢ 3¢ 0015
u-3o u u+30 X

(c)

FIGURE 4.6.2 Subdivision of the area under the normal
curve (areas are approximate).

4.

If we erect perpendiculars a distance of 1 standard deviation from the mean in both
directions, the area enclosed by these perpendiculars, the x-axis, and the curve will
be approximately 68 percent of the total area. If we extend these lateral bound-
aries a distance of two standard deviations on either side of the mean, approxi-
mately 95 percent of the area will be enclosed, and extending them a distance of
three standard deviations will cause approximately 99.7 percent of the total area to
be enclosed. These approximate areas are illustrated in Figure 4.6.2.

The normal distribution is completely determined by the parameters w and o. In
other words, a different normal distribution is specified for each different value of
n and o. Different values of w shift the graph of the distribution along the x-axis
as is shown in Figure 4.6.3. Different values of o determine the degree of flatness
or peakedness of the graph of the distribution as is shown in Figure 4.6.4. Because
of the characteristics of these two parameters, u is often referred to as a location
parameter and o is often referred to as a shape parameter.
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| :
Hq Hy H3 X

Hq < Hp < U3
FIGURE 4.6.3 Three normal distributions with different means but the same amount of
variability.

61 < (72 < 63 X
FIGURE 4.6.4 Three normal distributions with different standard deviations but the same
mean.

The Standard Normal Distribution The last-mentioned characteristic of
the normal distribution implies that the normal distribution is really a family of distribu-
tions in which one member is distinguished from another on the basis of the values of
n and o. The most important member of this family is the standard normal distribution
or unit normal distribution, as it is sometimes called, because it has a mean of 0 and a
standard deviation of 1. It may be obtained from Equation 4.6.1 by creating a random
variable.

z=(x —u)/o (4.6.2)

The equation for the standard normal distribution is written

fz) = el —oo<z< o0 (4.6.3)

The graph of the standard normal distribution is shown in Figure 4.6.5.

The z-transformation will prove to be useful in the examples and applications that
follow. This value of z denotes, for a value of a random variable, the number of stan-
dard deviations that value falls above (+z) or below (—z) the mean, which in this case
is 0. For example, a z-transformation that yields a value of z = 1 indicates that the value
of x used in the transformation is 1 standard deviation above 0. A value of z = —1
indicates that the value of x used in the transformation is 1 standard deviation below 0.
This property is illustrated in the examples of Section 4.7.
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u=0 z
FIGURE 4.6.5 The standard normal distribution.

0 % z
FIGURE 4.6.6 Area given by Appendix Table D.

To find the probability that z takes on a value between any two points on the z-axis,
say, z¢ and z;, we must find the area bounded by perpendiculars erected at these points,
the curve, and the horizontal axis. As we mentioned previously, areas under the curve of
a continuous distribution are found by integrating the function between two values of the
variable. In the case of the standard normal, then, to find the area between z, and z;
directly, we would need to evaluate the following integral:

21

1
20 V 27T

e dz

Although a closed-form solution for the integral does not exist, we can use numeri-
cal methods of calculus to approximate the desired areas beneath the curve to a
desired accuracy. Fortunately, we do not have to concern ourselves with such matters,
since there are tables available that provide the results of any integration in which we
might be interested. Table D in the Appendix is an example of these tables. In the
body of Table D are found the areas under the curve between —o0 and the values of
z shown in the leftmost column of the table. The shaded area of Figure 4.6.6 repre-
sents the area listed in the table as being between —0© and z,, where z; is the spec-
ified value of z.
We now illustrate the use of Table D by several examples.

EXAMPLE 4.6.1

Given the standard normal distribution, find the area under the curve, above the z-axis
between z = —00 and z = 2.
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0 2 z

FIGURE 4.6.7 The standard normal distribution showing
area between z= —00 and z= 2.

Solution:

It will be helpful to draw a picture of the standard normal distribution and
shade the desired area, as in Figure 4.6.7. If we locate z = 2 in Table D
and read the corresponding entry in the body of the table, we find the
desired area to be .9772. We may interpret this area in several ways. We
may interpret it as the probability that a z picked at random from the pop-
ulation of z’s will have a value between —00 and 2. We may also interpret
it as the relative frequency of occurrence (or proportion) of values of z
between —00 and 2, or we may say that 97.72 percent of the z’s have a
value between —00 and 2. |

EXAMPLE 4.6.2

What is the probability that a z picked at random from the population of z’s will have a
value between —2.55 and +2.55?

Solution:

Figure 4.6.8 shows the area desired. Table D gives us the area between
—00 and 2.55, which is found by locating 2.5 in the leftmost column of
the table and then moving across until we come to the entry in the column
headed by 0.05. We find this area to be .9946. If we look at the picture
we draw, we see that this is more area than is desired. We need to sub-
tract from .9946 the area to the left of —2.55. Reference to Table D shows
that the area to the left of —2.55 is .0054. Thus the desired probability is

P(—2.55 < 7 < 255) = .9946 — .0054 = .9892

—-2.55 0 2.55 X

FIGURE 4.6.8 Standard normal curve showing
P(—2.55 < z < 2.55). |



122

CHAPTER 4 PROBABILITY DISTRIBUTIONS

-2.74 0 1.63 z
FIGURE 4.6.9 Standard normal curve showing proportion
of z values between z = —2.74 and z = 1.53.

Suppose we had been asked to find the probability that z is between —2.55 and 2.55 inclu-
sive. The desired probability is expressed as P(—2.55 =< z = 2.55). Since, as we noted in
Section 4.5, P(z = zy) = 0,P(—2.55 < 7z = 2.55) = P(—2.55 < z < 2.55) = .9892.

EXAMPLE 4.6.3
What proportion of z values are between —2.74 and 1.53?
Solution: Figure 4.6.9 shows the area desired. We find in Table D that the area between

—0o0 and 1.53 is .9370, and the area between —o© and —2.74 is .0031. To
obtain the desired probability we subtract .0031 from .9370. That is,

P(—2.74 = z = 1.53) = .9370 — .0031 = .9339 [ |

EXAMPLE 4.6.4

Given the standard normal distribution, find P(z = 2.71).

Solution: The area desired is shown in Figure 4.6.10. We obtain the area to the right
of z = 2.71 by subtracting the area between —00 and 2.71 from 1. Thus,

P(z = 2.71) =1 - P(z = 2.71)
=1 — .9966
= .0034

|
0 2.71 z

FIGURE 4.6.10 Standard normal distribution showing
P(z=271). |
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EXAMPLE 4.6.5
Given the standard normal distribution, find P(.84 =< z =< 2.45).
Solution: The area we are looking for is shown in Figure 4.6.11. We first obtain the

area between —00 and 2.45 and from that subtract the area between —00
and .84. In other words,

P(.84 = z = 2.45)

P(z = 245) — P(z < .84)

= .9929 — 7995
= .1934
|
0 .84 2.45 z
FIGURE 4.6.11 Standard normal curve showing
P(.84 = z = 2.45). |

EXERCISES

4.6.1

4.6.2
4.6.3
4.6.5
4.6.7
4.6.9

4.6.11
4.6.13
4.6.15

Given the standard normal distribution find:
The area under the curve between z = 0 and z = 1.43

The probability that a z picked at random will have a value between z = —2.87 and z = 2.64

P(z = .55) 4.64 P(z = —.55)

P(z < —2.33) 4.6.6 P(z < 2.33)

P(—1.96 = z = 1.96) 4.6.8 P(—2.58 = z = 2.58)
P(—1.65 = z = 1.65) 4.6.10 P(z = .74)

Given the following probabilities, find z;:

P(z = z;) = .0055 4.6.12 P(—2.67 =z =7z;) = 9718
P(z > z;) = .0384 4.6.14 P(z; =z =298) = .1117

P(_Zl =z = Zl) = .8132

4.7 NORMAL DISTRIBUTION APPLICATIONS

Although its importance in the field of statistics is indisputable, one should realize that
the normal distribution is not a law that is adhered to by all measurable characteris-
tics occurring in nature. It is true, however, that many of these characteristics are
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approximately normally distributed. Consequently, even though no variable encoun-
tered in practice is precisely normally distributed, the normal distribution can be used
to model the distribution of many variables that are of interest. Using the normal dis-
tribution as a model allows us to make useful probability statements about some vari-
ables much more conveniently than would be the case if some more complicated model
had to be used.

Human stature and human intelligence are frequently cited as examples of vari-
ables that are approximately normally distributed. On the other hand, many distributions
relevant to the health field cannot be described adequately by a normal distribution.
Whenever it is known that a random variable is approximately normally distributed, or
when, in the absence of complete knowledge, it is considered reasonable to make this
assumption, the statistician is aided tremendously in his or her efforts to solve practical
problems relative to this variable. Bear in mind, however, that “normal” in this context
refers to the statistical properties of a set of data and in no way connotes normality in
the sense of health or medical condition.

There are several other reasons why the normal distribution is so important in sta-
tistics, and these will be considered in due time. For now, let us see how we may answer
simple probability questions about random variables when we know, or are willing to
assume, that they are, at least, approximately normally distributed.

EXAMPLE 4.7.1

The Uptimer is a custom-made lightweight battery-operated activity monitor that records
the amount of time an individual spends in the upright position. In a study of children
ages 8 to 15 years, Eldridge et al. (A-10) studied 529 normally developing children who
each wore the Uptimer continuously for a 24-hour period that included a typical school
day. The researchers found that the amount of time children spent in the upright position
followed a normal distribution with a mean of 5.4 hours and standard deviation of 1.3
hours. Assume that this finding applies to all children 8 to 15 years of age. Find the prob-
ability that a child selected at random spends less than 3 hours in the upright position in
a 24-hour period.

Solution: First let us draw a picture of the distribution and shade the area correspon-
ding to the probability of interest. This has been done in Figure 4.7.1.

|
3.0 u=54

FIGURE 4.7.1 Normal distribution to approximate
distribution of amount of time children spent in upright
position (mean and standard deviation estimated).

X
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|
-1.85 0

FIGURE 4.7.2 Normal distribution of time spent
upright (x) and the standard normal distribution (2).

~

If our distribution were the standard normal distribution with a mean
of 0 and a standard deviation of 1, we could make use of Table D and find
the probability with little effort. Fortunately, it is possible for any normal
distribution to be transformed easily to the standard normal. What we do
is transform all values of X to corresponding values of z. This means that
the mean of X must become 0, the mean of z. In Figure 4.7.2 both distri-
butions are shown. We must determine what value of z, say, z, corresponds
to an x of 3.0. This is done using formula 4.6.2, z = (x — w)/o, which
transforms any value of x in any normal distribution to the corresponding
value of z in the standard normal distribution. For the present example we
have

3.0 — 54
7= " =-185
1.3

The value of z, we seek, then, is —1.85. [ |

Let us examine these relationships more closely. It is seen that the distance from the
mean, 5.4, to the x-value of interest, 3.0, is 3.0 — 5.4 = —2.4, which is a distance of
1.85 standard deviations. When we transform x values to z values, the distance of the z
value of interest from its mean, 0, is equal to the distance of the corresponding x value
from its mean, 5.4, in standard deviation units. We have seen that this latter distance is
1.85 standard deviations. In the z distribution a standard deviation is equal to 1, and con-
sequently the point on the z scale located a distance of 1.85 standard deviations below
0 is z = —1.85, the result obtained by employing the formula. By consulting Table D,
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we find that the area to the left of z = —1.85 is .0322. We may summarize this discus-
sion as follows:

P(x < 3.0) = P(z < ) = P(z < —1.85) = .0322

To answer the original question, we say that the probability is .0322 that a randomly
selected child will have uptime of less than 3.0 hours.

EXAMPLE 4.7.2

Diskin et al. (A-11) studied common breath metabolites such as ammonia, acetone, iSo-
prene, ethanol, and acetaldehyde in five subjects over a period of 30 days. Each day,
breath samples were taken and analyzed in the early morning on arrival at the labora-
tory. For subject A, a 27-year-old female, the ammonia concentration in parts per billion
(ppb) followed a normal distribution over 30 days with mean 491 and standard devia-
tion 119. What is the probability that on a random day, the subject’s ammonia concen-
tration is between 292 and 649 ppb?

Solution: In Figure 4.7.3 are shown the distribution of ammonia concentrations and
the z distribution to which we transform the original values to determine
the desired probabilities. We find the z value corresponding to an x of

292 by
292 — 491
=25 = 167
< 119
o=119
292 491 649 x

o=1

-1.67 0 1.33 z

FIGURE 4.7.3 Distribution of ammonia concentration (x)
and the corresponding standard normal distribution (z).
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Similarly, for x = 649 we have

649 — 491
= - = 1
z 119 33

From Table D we find the area between —o0 and —1.67 to be .0475 and the
area between —00 and 1.33 to be .9082. The area desired is the difference
between these, .9082 — .0475 = .8607. To summarize,

292 — 491 649 — 491

P92 = x=649) = p( 22— - 2P L

(292 = x %) ( 119 . 119 )
= P(—1.67 = z = 1.33)

=P(—00 =7=133) — P(—0 =z = —1.67)

= .9082 — .0475
= .8607
The probability asked for in our original question, then, is .8607. [ |

EXAMPLE 4.7.3

In a population of 10,000 of the children described in Example 4.7.1, how many would
you expect to be upright more than 8.5 hours?

Solution: We first find the probability that one child selected at random from the pop-
ulation would be upright more than 8.5 hours. That is,

8.5 — 5.4
P(x = 85) = (z = ) = P(z = 238) = 1 — 9913 = .0087

Out of 10,000 people we would expect 10,000(.0087) = 87 to spend more
than 8.5 hours upright. ]

We may use MINITAB to calculate cumulative standard normal probabilities. Suppose
we wish to find the cumulative probabilities for the following values of z: —3, —2, —1,
0, 1,2, and 3. We enter the values of z into Column 1 and proceed as shown in Fig-
ure 4.7.4.

The preceding two sections focused extensively on the normal distribution, the
most important and most frequently used continuous probability distribution. Though
much of what will be covered in the next several chapters uses this distribution, it is not
the only important continuous probability distribution. We will be introducing several
other continuous distributions later in the text, namely the r-distribution, the chi-square
distribution, and the F-distribution. The details of these distributions will be discussed
in the chapters in which we need them for inferential tests.
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Data:
Ccl: -3 -2 -10123
Dialog box: Session command:

Calc » Probability Distributions » Normal MTB > CDF C1l;

SUBC> Normal 0 1.
Choose Cumulative probability. Choose Input column
and type CI. Click OK.

Output:

Cumulative Distribution Function

Normal with mean = 0 and standard
deviation = 1.00000
X P( X <= x)

—3.0000 0.0013

—2.0000 0.0228

—1.0000 0.1587

0.0000 0.5000

1.0000 0.8413

2.0000 0.9772

3.0000 0.9987

FIGURE 4.7.4 MINITAB calculation of cumulative standard normal probabilities.

EXERCISES

4.7.1 For another subject (a 29-year-old male) in the study by Diskin et al. (A-11), acetone levels were
normally distributed with a mean of 870 and a standard deviation of 211 ppb. Find the probability
that on a given day the subject’s acetone level is:

(a) Between 600 and 1000 ppb
(b) Over 900 ppb

(¢) Under 500 ppb

(d) Between 900 and 1100 ppb

4.7.2 In the study of fingerprints, an important quantitative characteristic is the total ridge count for the
10 fingers of an individual. Suppose that the total ridge counts of individuals in a certain popula-
tion are approximately normally distributed with a mean of 140 and a standard deviation of 50.
Find the probability that an individual picked at random from this population will have a ridge
count of:
(a) 200 or more

(b) Less than 100
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(¢) Between 100 and 200
(d) Between 200 and 250

(e) In a population of 10,000 people how many would you expect to have a ridge count of 200
or more?

4.7.3 One of the variables collected in the North Carolina Birth Registry data (A-3) is pounds gained
during pregnancy. According to data from the entire registry for 2001, the number of pounds gained
during pregnancy was approximately normally distributed with a mean of 30.23 pounds and a stan-
dard deviation of 13.84 pounds. Calculate the probability that a randomly selected mother in North
Carolina in 2001 gained:

(a) Less than 15 pounds during pregnancy (b) More than 40 pounds
(c) Between 14 and 40 pounds (d) Less than 10 pounds
(e) Between 10 and 20 pounds

4.7.4 Suppose the average length of stay in a chronic disease hospital of a certain type of patient is
60 days with a standard deviation of 15. If it is reasonable to assume an approximately normal
distribution of lengths of stay, find the probability that a randomly selected patient from this group
will have a length of stay:

(a) Greater than 50 days (b) Less than 30 days
(c) Between 30 and 60 days (d) Greater than 90 days

4.7.5 If the total cholesterol values for a certain population are approximately normally distributed with a
mean of 200 mg/100 ml and a standard deviation of 20 mg/100 ml, find the probability that an indi-
vidual picked at random from this population will have a cholesterol value:

(a) Between 180 and 200 mg/100 ml (b) Greater than 225 mg/100 ml
(c) Less than 150 mg/100 ml (d) Between 190 and 210 mg/100 ml

4.7.6 Given a normally distributed population with a mean of 75 and a variance of 625, find:
(a) P(50 = x = 100) (b) P(x > 90)
(¢) P(x < 60) (d) P(x = 85)
(e) P(30 = x = 110)
4.7.77 The weights of a certain population of young adult females are approximately normally distrib-

uted with a mean of 132 pounds and a standard deviation of 15. Find the probability that a sub-
ject selected at random from this population will weigh:

(a) More than 155 pounds (b) 100 pounds or less
(c) Between 105 and 145 pounds

4.8 SUNMMARY

In this chapter the concepts of probability described in the preceding chapter are further
developed. The concepts of discrete and continuous random variables and their proba-
bility distributions are discussed. In particular, two discrete probability distributions, the
binomial and the Poisson, and one continuous probability distribution, the normal, are
examined in considerable detail. We have seen how these theoretical distributions allow
us to make probability statements about certain random variables that are of interest to
the health professional.
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SUMMARY OF FORMULAS FOR CHAPTER 4

Formula
Number Name Formula
421 Mean of a frequency _
= D> ap(x
distribution K E P()
422 Variance of a o? = > (x — p)’p(x)
frequency
distribution or
o’ = D x’p(x) — w
43.1 Combination of C = n!
objects X (n = 1)
432 Binomial fx) =,Cpq" F,x=0,1,2,...
distribution function
433435 Tabled binomial PX=x|np>50)=PX=n—-x|n1-p)
probability PX=x|np>50)=PX=n—x|n1-p)
equalities PX=x|np>50)=PX=n—x|nl1-p)
44.1 Poisson distribution B e _
function flx) = x! x=0,1,2,...
4.6.1 Norrgal distribution Fx) = 1 e_(x_u)z/zo_z’ —00 < x< 00
function o —00 < u< 0o
ag>0
4.6.2 z-transformation 7 X—pn
o
4.6.3 Standard normal 7(2) L _op 0 < » <00
S . z) = e*s, - z
distribution function 2
Symbol Key » ,C. = a combination of n events taken x at a time
e ¢ = Euler’s constant = 2.71828...
* f(x) = function of x
* A = the parameter of the Poisson distribution
* n = sample size or the total number of time a process occurs
* p = binomial “success” probability
* p(x) = discrete probability of random variable X
e g =1 — p = binomial “failure” probability
* 7 = pi = constant = 3.14159...
* ¢ = population standard deviation
+ o2 = population variance
* u = population mean
« x? = a quantity of individual value of X
* X = random variable
e 7z = standard normal transformation
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REVIEW QUESTIONS AND EXERCISES

16.

17.

What is a discrete random variable? Give three examples that are of interest to the health professional.
What is a continuous random variable? Give three examples of interest to the health professional.
Define the probability distribution of a discrete random variable.

Define the probability distribution of a continuous random variable.

What is a cumulative probability distribution?

What is a Bernoulli trial?

Describe the binomial distribution.

Give an example of a random variable that you think follows a binomial distribution.

Describe the Poisson distribution.

Give an example of a random variable that you think is distributed according to the Poisson law.
Describe the normal distribution.

Describe the standard normal distribution and tell how it is used in statistics.

Give an example of a random variable that you think is, at least approximately, normally distributed.

Using the data of your answer to Question 13, demonstrate the use of the standard normal distri-
bution in answering probability questions related to the variable selected.

Kanjanarat et al. (A-12) estimate the rate of preventable adverse drug events (ADEs) in hospitals
to be 35.2 percent. Preventable ADEs typically result from inappropriate care or medication errors,
which include errors of commission and errors of omission. Suppose that 10 hospital patients expe-
riencing an ADE are chosen at random. Let p = .35, and calculate the probability that:

(a) Exactly seven of those drug events were preventable
(b) More than half of those drug events were preventable
(c) None of those drug events were preventable

(d) Between three and six inclusive were preventable

In a poll conducted by the Pew Research Center in 2003 (A-13), a national sample of adults answered
the following question, “All in all, do you strongly favor, favor, oppose, or strongly oppose . . . mak-
ing it legal for doctors to give terminally ill patients the means to end their lives?”” The results showed
that 43 percent of the sample subjects answered “strongly favor” or “favor” to this question. If 12
subjects represented by this sample are chosen at random, calculate the probability that:

(a) Exactly two of the respondents answer “strongly favor” or “favor”

(b) No more than two of the respondents answer “strongly favor” or “favor”

(c) Between five and nine inclusive answer “strongly favor” or “favor”

In a study by Thomas et al. (A-14) the Poisson distribution was used to model the number of
patients per month referred to an oncologist. The researchers use a rate of 15.8 patients per month
that are referred to the oncologist. Use Table C in the Appendix and a rate of 16 patients per month
to calculate the probability that in a month:

(a) Exactly 10 patients are referred to an oncologist

(b) Between five and 15 inclusive are referred to an oncologist
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18.

19.

20.

21.

22.

23.

(¢) More than 10 are referred to an oncologist
(d) Less than eight are referred to an oncologist

(e) Less than 12, but more than eight are referred to an oncologist

On the average, two students per hour report for treatment to the first-aid room of a large elementary
school.

(a) What is the probability that during a given hour three students come to the first-aid room for
treatment?

(b) What is the probability that during a given hour two or fewer students will report to the first-
aid room?

(c¢) What is the probability that during a given hour between three and five students, inclusive,
will report to the first-aid room?

A Harris Interactive poll conducted in Fall, 2002 (A-15) via a national telephone survey of adults
asked, “Do you think adults should be allowed to legally use marijuana for medical purposes if
their doctor prescribes it, or do you think that marijuana should remain illegal even for medical
purposes.” The results showed that 80 percent of respondents answered “Yes” to the above ques-
tion. Assuming 80 percent of Americans would say “Yes” to the above question, find the proba-
bility when eight Americans are chosen at random that:

(a) Six or fewer said “Yes” (b) Seven or more said “Yes”

(c) All eight said “Yes” (d) Fewer than four said “Yes”

(e) Between four and seven inclusive said ““Yes”

In a study of the relationship between measles vaccination and Guillain-Barré syndrome (GBS), Sil-
veira et al. (A-16) used a Poisson model in the examination of the occurrence of GBS during latent
periods after vaccinations. They conducted their study in Argentina, Brazil, Chile, and Colombia.
They found that during the latent period, the rate of GBS was 1.28 cases per day. Using this esti-
mate rounded to 1.3, find the probability on a given day of:

(a) No cases of GBS (b) At least one case of GBS
(¢) Fewer than five cases of GBS

The 1Qs of individuals admitted to a state school for the mentally retarded are approximately nor-
mally distributed with a mean of 60 and a standard deviation of 10.

(a) Find the proportion of individuals with IQs greater than 75.

(b) What is the probability that an individual picked at random will have an IQ between 55 and 75?
(¢) Find P(50 = X = 70).

A nurse supervisor has found that staff nurses, on the average, complete a certain task in 10 minutes.

If the times required to complete the task are approximately normally distributed with a standard
deviation of 3 minutes, find:

(a) The proportion of nurses completing the task in less than 4 minutes
(b) The proportion of nurses requiring more than 5 minutes to complete the task

(c) The probability that a nurse who has just been assigned the task will complete it within 3
minutes

Scores made on a certain aptitude test by nursing students are approximately normally distributed
with a mean of 500 and a variance of 10,000.

(a) What proportion of those taking the test score below 200?

(b) A person is about to take the test. What is the probability that he or she will make a score of
650 or more?

(¢) What proportion of scores fall between 350 and 675?
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Given a binomial variable with a mean of 20 and a variance of 16, find n and p.

Suppose a variable X is normally distributed with a standard deviation of 10. Given that .0985 of
the values of X are greater than 70, what is the mean value of X?

Given the normally distributed random variable X, find the numerical value of k such that
Plp — ko =X =p+ ko) =754

Given the normally distributed random variable X with mean 100 and standard deviation 15, find
the numerical value of k such that:

(@) P(X = k) = .0094

(b) P(X = k) = .1093

(¢) P(100 = X =< k) = 4778

(d) P(k' =X = k) = .9660, where k' and k are equidistant from

Given the normally distributed random variable X with o = 10 and P(X =< 40) = .0080, find w.
Given the normally distributed random variable X with o = 15 and P(X =< 50) = .9904, find w.
Given the normally distributed random variable X with o = 5 and P(X = 25) = .0526, find pu.
Given the normally distributed random variable X with u = 25 and P(X =< 10) = .0778, find o.
Given the normally distributed random variable X with u = 30 and P(X = 50) = .9772, find o.
Explain why each of the following measurements is or is not the result of a Bernoulli trial:

(a) The gender of a newborn child

(b) The classification of a hospital patient’s condition as stable, critical, fair, good, or poor

(c) The weight in grams of a newborn child

Explain why each of the following measurements is or is not the result of a Bernoulli trial:

(a) The number of surgical procedures performed in a hospital in a week

(b) A hospital patient’s temperature in degrees Celsius
(¢) A hospital patient’s vital signs recorded as normal or not normal

Explain why each of the following distributions is or is not a probability distribution:

(a) (b)
x P(X =x) x PX =x)
0 0.15 0 0.15
1 0.25 1 0.20
2 0.10 2 0.30
3 0.25 3 0.10
4 0.30
(© (GY)
X PX =x) X PX =x)
0 0.15 -1 0.15
1 -0.20 0 0.30
2 0.30 1 0.20
3 0.20 2 0.15
4 0.15 3 0.10
4 0.10
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CHAPTER 5

SOME IMPORTANT
SAMPLING DISTRIBUTIONS

CHAPTER OVERVIEW

This chapter ties together the foundations of applied statistics: descriptive
measures, basic probability, and inferential procedures. This chapter also in-
cludes a discussion of one of the most important theorems in statistics, the
central limit theorem. Students may find it helpful to revisit this chapter from
time to time as they study the remaining chapters of the book.

TOPICS

5.1
5.2
5.3
5.4
55
5.6
5.7

INTRODUCTION

SAMPLING DISTRIBUTIONS

DISTRIBUTION OF THE SAMPLE MEAN

DISTRIBUTION OF THE DIFFERENCE BETWEENTWO SAMPLE MEANS
DISTRIBUTION OFTHE SAMPLE PROPORTION

DISTRIBUTION OF THE DIFFERENCE BETWEENTWO SAMPLE PROPORTIONS
SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1.

2.
3.
4

be able to construct a sampling distribution of a statistic.
understand how to use a sampling distribution to calculate basic probabilities.
understand the central limit theorem and when to apply it.

understand the basic concepts of sampling with replacement and without
replacement.
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CHAPTER 5 SOME IMPORTANT SAMPLING DISTRIBUTIONS

INTRODUCTION

Before we examine the subject matter of this chapter, let us review the high points of what
we have covered thus far. Chapter 1 introduces some basic and useful statistical vocabulary
and discusses the basic concepts of data collection. In Chapter 2, the organization and sum-
marization of data are emphasized. It is here that we encounter the concepts of central ten-
dency and dispersion and learn how to compute their descriptive measures. In Chapter 3,
we are introduced to the fundamental ideas of probability, and in Chapter 4 we consider the
concept of a probability distribution. These concepts are fundamental to an understanding
of statistical inference, the topic that comprises the major portion of this book.

This chapter serves as a bridge between the preceding material, which is essen-
tially descriptive in nature, and most of the remaining topics, which have been selected
from the area of statistical inference.

5.2 SAMPLING DISTRIBUTIONS

The topic of this chapter is sampling distributions. The importance of a clear understand-
ing of sampling distributions cannot be overemphasized, as this concept is the very key
to the understanding of statistical inference. Sampling distributions serve two purposes:
(1) they allow us to answer probability questions about sample statistics, and (2) they pro-
vide the necessary theory for making statistical inference procedures valid. In this chap-
ter we use sampling distributions to answer probability questions about sample statistics.
We recall from Chapter 2 that a sample statistic is a descriptive measure, such as the
mean, median, variance, or standard deviation, that is computed from the data of a sam-
ple. In the chapters that follow, we will see how sampling distributions make statistical
inferences valid.
We begin with the following definition.

DEFINITION

The distribution of all possible values that can be assumed by some
statistic, computed from samples of the same size randomly drawn
from the same population, is called the sampling distribution of that
statistic.

Sampling Distributions: Construction Sampling distributions may be
constructed empirically when sampling from a discrete, finite population. To construct a
sampling distribution we proceed as follows:

1. From a finite population of size N, randomly draw all possible samples of size n.

2. Compute the statistic of interest for each sample.

3. List in one column the different distinct observed values of the statistic, and in
another column list the corresponding frequency of occurrence of each distinct
observed value of the statistic.
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The actual construction of a sampling distribution is a formidable undertaking if the
population is of any appreciable size and is an impossible task if the population is infinite.
In such cases, sampling distributions may be approximated by taking a large number of
samples of a given size.

Sampling Distributions: Important Characteristics We usually
are interested in knowing three things about a given sampling distribution: its mean, its
variance, and its functional form (how it looks when graphed).

We can recognize the difficulty of constructing a sampling distribution according
to the steps given above when the population is large. We also run into a problem when
considering the construction of a sampling distribution when the population is infinite.
The best we can do experimentally in this case is to approximate the sampling distribu-
tion of a statistic.

Both these problems may be obviated by means of mathematics. Although the pro-
cedures involved are not compatible with the mathematical level of this text, sampling
distributions can be derived mathematically. The interested reader can consult one of
many mathematical statistics textbooks, for example, Larsen and Marx (1) or Rice (2).

In the sections that follow, some of the more frequently encountered sampling
distributions are discussed.

5.3 DISTRIBUTION OF THE SAMPLE MEAN

An important sampling distribution is the distribution of the sample mean. Let us see
how we might construct the sampling distribution by following the steps outlined in the
previous section.

EXAMPLE 5.3.1

Suppose we have a population of size N = 5, consisting of the ages of five children
who are outpatients in a community mental health center. The ages are as follows:
x; =6,x, =8,x3 =10,x4, = 12, and x5 = 14. The mean, u, of this population is
equal to Xx;/N = 10 and the variance is

, (=)’ 40
g2 = 2o 40

=8

N 5
Let us compute another measure of dispersion and designate it by capital S as
follows:
2

i 40

PTGl D
N-—1 4

We will refer to this quantity again in the next chapter. We wish to construct the sam-
pling distribution of the sample mean, x, based on samples of size n = 2 drawn from
this population.

Solution: Let us draw all possible samples of size n = 2 from this population. These
samples, along with their means, are shown in Table 5.3.1.
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TABLE 5.3.1 All Possible Samples of Size n = 2 from a Population of Size N = 5.
Samples Above or Below the Principal Diagonal Result When Sampling Is Without
Replacement. Sample Means Are in Parentheses

Second Draw

6 8 10 12 14

6 6,6 6,8 6, 10 6,12 6,14

(6) (7) (8) (9) (10)

8 8,6 8,8 8,10 8,12 8,14

. (7) (8) (9) (10) (11)

First

Draw 10 10,6 10,8 10, 10 10,12 10,14
(8) (9) (10) (11) (12)
12 12,6 12,8 12,10 12,12 12,14

(9) (10) (11) (12) (13)
14 14,6 14, 8 14,10 14,12 14,14

(10) (11) (12) (13) (14)

TABLE 5.3.2 Sampling
Distribution of x Computed
from Samples in Table 5.3.1

Relative

x Frequency Frequency

6 1 1/25

7 2 2/25

8 3 3/25

9 4 4/25
10 5 5/25
1 4 4/25
12 3 3/25
13 2 2/25
14 1 1/25
Total 25 25/25

We see in this example that, when sampling is with replacement, there
are 25 possible samples. In general, when sampling is with replacement, the
number of possible samples is equal to N".

We may construct the sampling distribution of x by listing the differ-
ent values of X in one column and their frequency of occurrence in another,
as in Table 5.3.2.

We see that the data of Table 5.3.2 satisfy the requirements for a probability
distribution. The individual probabilities are all greater than 0, and their sum is equal

to 1.
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FIGURE 5.3.1 Distribution of population and sampling distribution of X.

It was stated earlier that we are usually interested in the functional form of a sam-
pling distribution, its mean, and its variance. We now consider these characteristics for
the sampling distribution of the sample mean, Xx.

Sampling Distribution of x: Functional Form Let us look at the dis-
tribution of x plotted as a histogram, along with the distribution of the population, both
of which are shown in Figure 5.3.1. We note the radical difference in appearance between
the histogram of the population and the histogram of the sampling distribution of x.
Whereas the former is uniformly distributed, the latter gradually rises to a peak and then
drops off with perfect symmetry.

Sampling Distribution of x: Mean Now let us compute the mean, which
we will call w;, of our sampling distribution. To do this we add the 25 sample means
and divide by 25. Thus,

22X, _6+7+74+8+4 - +14 250

_ =210
Bx =y 25 25

We note with interest that the mean of the sampling distribution of X has the same
value as the mean of the original population.
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Sampling Distribution of x: Variance Finally, we may compute the vari-
ance of x, which we call 0'% as follows:

s 2 m)’
0')? —T
(6 — 10)* + (7 — 10)*> + (7 — 10)*> + -+ + (14 — 10)?
B 25
100
= — = 4
25

We note that the variance of the sampling distribution is not equal to the population vari-
ance. It is of interest to observe, however, that the variance of the sampling distribution
is equal to the population variance divided by the size of the sample used to obtain the
sampling distribution. That is,

The square root of the variance of the sampling distribution, \/oz = o/Vn is called
the standard error of the mean or, simply, the standard error.

These results are not coincidences but are examples of the characteristics of sam-
pling distributions in general, when sampling is with replacement or when sampling is
from an infinite population. To generalize, we distinguish between two situations: sam-
pling from a normally distributed population and sampling from a nonnormally distrib-
uted population.

Sampling Distribution of x: Sampling from Normally Distrib-
uted Populations When sampling is from a normally distributed population, the
distribution of the sample mean will possess the following properties:

1. The distribution of x will be normal.

2. The mean, u;, of the distribution of x will be equal to the mean of the population
from which the samples were drawn.

3. The variance, o2 of the distribution of x will be equal to the variance of the pop-
ulation divided by the sample size.

Sampling from Nonnormally Distributed Populations For the case
where sampling is from a nonnormally distributed population, we refer to an important
mathematical theorem known as the central limit theorem. The importance of this theorem
in statistical inference may be summarized in the following statement.

The Central Limit Theorem

Given a population of any nonnormal functional form with a mean w and finite
variance o?, the sampling distribution of X, computed from samples of size n from
this population, will have mean w and variance o*/n and will be approximately
normally distributed when the sample size is large.
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A mathematical formulation of the central limit theorem is that the distribution of

X—p

o/
approaches a normal distribution with mean O and variance 1 as n — 00. Note that the
central limit theorem allows us to sample from nonnormally distributed populations with
a guarantee of approximately the same results as would be obtained if the populations
were normally distributed provided that we take a large sample.

The importance of this will become evident later when we learn that a normally
distributed sampling distribution is a powerful tool in statistical inference. In the case of
the sample mean, we are assured of at least an approximately normally distributed sam-
pling distribution under three conditions: (1) when sampling is from a normally distrib-
uted population; (2) when sampling is from a nonnormally distributed population and
our sample is large; and (3) when sampling is from a population whose functional form
is unknown to us as long as our sample size is large.

The logical question that arises at this point is, How large does the sample have
to be in order for the central limit theorem to apply? There is no one answer, since the
size of the sample needed depends on the extent of nonnormality present in the popula-
tion. One rule of thumb states that, in most practical situations, a sample of size 30 is
satisfactory. In general, the approximation to normality of the sampling distribution of X
becomes better and better as the sample size increases.

Sampling Without Replacement The foregoing results have been given on
the assumption that sampling is either with replacement or that the samples are drawn
from infinite populations. In general, we do not sample with replacement, and in most
practical situations it is necessary to sample from a finite population; hence, we need to
become familiar with the behavior of the sampling distribution of the sample mean under
these conditions. Before making any general statements, let us again look at the data in
Table 5.3.1. The sample means that result when sampling is without replacement are
those above the principal diagonal, which are the same as those below the principal diag-
onal, if we ignore the order in which the observations were drawn. We see that there are
10 possible samples. In general, when drawing samples of size n from a finite popula-
tion of size N without replacement, and ignoring the order in which the sample values
are drawn, the number of possible samples is given by the combination of N things taken
n at a time. In our present example we have

N! 5! 5-4-3! .
NC, = = = = 10 possible samples.
n!(N —n)! 213! 2131

The mean of the 10 sample means is

SH 74849+ - +13 100

M = = =10
T NG, 10 10

We see that once again the mean of the sampling distribution is equal to the population
mean.
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The variance of this sampling distribution is found to be

0—% = M — @ =3

~Ch 10
and we note that this time the variance of the sampling distribution is not equal to the
population variance divided by the sample size, since o2 = 3 # 8/2 = 4. There
is, however, an interesting relationship that we discover by multiplying o?/n by
(N —n)/(N — 1). That is,

‘LZ.N_n_§.5_2—3
n N-—1 2 4

This result tells us that if we multiply the variance of the sampling distribution that would
be obtained if sampling were with replacement, by the factor (N — n)/(N — 1), we
obtain the value of the variance of the sampling distribution that results when sampling
is without replacement. We may generalize these results with the following statement.

When sampling is without replacement from a finite population, the sampling distribu-
tion of X will have mean pu and variance

2_0'2 N—n

Ix n N-—1

If the sample size is large, the central limit theorem applies and the sampling
distribution of X will be approximately normally distributed.

The Finite Population Correction The factor (N — n)/(N — 1) is called
the finite population correction and can be ignored when the sample size is small in com-
parison with the population size. When the population is much larger than the sample,
the difference between o?/n and (o?/n)[(N — n)/(N — 1)] will be negligible. Imagine
a population of size 10,000 and a sample from this population of size 25; the finite pop-
ulation correction would be equal to (10,000 — 25)/(9999) = .9976. To multiply o*/n
by .9976 is almost equivalent to multiplying it by 1. Most practicing statisticians do not
use the finite population correction unless the sample is more than 5 percent of the size
of the population. That is, the finite population correction is usually ignored when
n/N = .05.

The Sampling Distribution of x: A Summary Let us summarize the
characteristics of the sampling distribution of X under two conditions.

1. Sampling is from a normally distributed population with a known population

variance:
(@ puz=pn
(b) o= = ag/Vn

(¢) The sampling distribution of X is normal.
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2. Sampling is from a nonnormally distributed population with a known population

variance:
@ pr=p
(b) oz = 0/ Vn, when n/N =< .05
N —
oz = (a/Vn) = T, otherwise

(¢) The sampling distribution of x is approximately normal.

Applications As we will see in succeeding chapters, knowledge and understand-
ing of sampling distributions will be necessary for understanding the concepts of statis-
tical inference. The simplest application of our knowledge of the sampling distribution
of the sample mean is in computing the probability of obtaining a sample with a mean
of some specified magnitude. Let us illustrate with some examples.

EXAMPLE 5.3.2

Suppose it is known that in a certain large human population cranial length is approx-
imately normally distributed with a mean of 185.6 mm and a standard deviation of
12.7 mm. What is the probability that a random sample of size 10 from this popula-
tion will have a mean greater than 190?

Solution:

We know that the single sample under consideration is one of all possible
samples of size 10 that can be drawn from the population, so that the mean
that it yields is one of the x’s constituting the sampling distribution of x
that, theoretically, could be derived from this population.

When we say that the population is approximately normally distrib-
uted, we assume that the sampling distribution of x will be, for all prac-
tical purposes, normally distributed. We also know that the mean and
standard deviation of the sampling distribution are equal to 185.6 and
V (12.7)*/10 = 12.7/\/B = 4.0161, respectively. We assume that the
population is large relative to the sample so that the finite population cor-
rection can be ignored.

We learn in Chapter 4 that whenever we have a random variable that is
normally distributed, we may very easily transform it to the standard normal
distribution. Our random variable now is x, the mean of its distribution is g,
and its standard deviation is oz = o/ Vn. By appropriately modifying the
formula given previously, we arrive at the following formula for transform-
ing the normal distribution of x to the standard normal distribution:

X~ Mx
Z:
a/Vn

(5.3.1)

The probability that answers our question is represented by the area to the right of x = 190
under the curve of the sampling distribution. This area is equal to the area to the right of

190 - 1856 4.4
40161 40161

Z = 1.10
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o=12.7mm

= 185.6mm x

{a)

=

.1357

0 1.10
(e}

FIGURE 5.3.2 Population distribution, sampling distribution,

and standard normal distribution, Example 5.3.2: (a) population

distribution; (b) sampling distribution of X for samples of size

10; (c) standard normal distribution.

e

By consulting the standard normal table, we find that the area to the right of 1.10 is
.1357; hence, we say that the probability is .1357 that a sample of size 10 will have a
mean greater than 190.

Figure 5.3.2 shows the relationship between the original population, the sampling dis-
tribution of x and the standard normal distribution.

EXAMPLE 5.3.3

If the mean and standard deviation of serum iron values for healthy men are 120 and
15 micrograms per 100 ml, respectively, what is the probability that a random sample
of 50 normal men will yield a mean between 115 and 125 micrograms per 100 ml?

Solution: The functional form of the population of serum iron values is not speci-
fied, but since we have a sample size greater than 30, we make use of the
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central limit theorem and transform the resulting approximately normal
sampling distribution of x (which has a mean of 120 and a standard devi-
ation of 15/V50 = 2.1213) to the standard normal. The probability we

seek is
115 — 120 125 — 120
P(115 =x = 125) = —_— ===
(115 =x = 125) ( 2.12 ¢ 2.12 )
= P(—2.36 = z = 2.36)
= .9909 — .0091
= 9818 ]

EXERCISES

5.3.1

5.3.2

5.3.3

5.34

5.3.5

The National Health and Nutrition Examination Survey of 1988-1994 (NHANES III, A-1) esti-
mated the mean serum cholesterol level for U.S. females aged 20-74 years to be 204 mg/dl. The
estimate of the standard deviation was approximately 44. Using these estimates as the mean w and
standard deviation o for the U.S. population, consider the sampling distribution of the sample mean
based on samples of size 50 drawn from women in this age group. What is the mean of the sam-
pling distribution? The standard error?

The study cited in Exercise 5.3.1 reported an estimated mean serum cholesterol level of 183 for
women aged 20-29 years. The estimated standard deviation was approximately 37. Use these esti-
mates as the mean u and standard deviation o for the U.S. population. If a simple random sample
of size 60 is drawn from this population, find the probability that the sample mean serum choles-
terol level will be:

(a) Between 170 and 195 (b) Below 175

(¢) Greater than 190

If the uric acid values in normal adult males are approximately normally distributed with a mean
and standard deviation of 5.7 and 1 mg percent, respectively, find the probability that a sample of
size 9 will yield a mean:

(a) Greater than 6 (b) Between 5 and 6

(¢) Less than 5.2

Wright et al. (A-2) used the 1999-2000 National Health and Nutrition Examination Survey (NHANES)
to estimate dietary intake of 10 key nutrients. One of those nutrients was calcium (mg). They found
in all adults 60 years or older a mean daily calcium intake of 721 mg with a standard deviation of
454. Using these values for the mean and standard deviation for the U.S. population, find the proba-
bility that a random sample of size 50 will have a mean:

(a) Greater than 800 mg (b) Less than 700 mg

(¢) Between 700 and 850 mg

In the study cited in Exercise 5.3.4, researchers found the mean sodium intake in men and women
60 years or older to be 2940 mg with a standard deviation of 1476 mg. Use these values for the
mean and standard deviation of the U.S. population and find the probability that a random sam-
ple of 75 people from the population will have a mean:

(a) Less than 2450 mg (b) Over 3100 mg

(¢) Between 2500 and 3300 mg (d) Between 2500 and 2900 mg
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5.3.6 Given a normally distributed population with a mean of 100 and a standard deviation of 20, find
the following probabilities based on a sample of size 16:

(@) P(x = 100) (b) P(x = 110)
(¢) P(96 = x = 108)

5.3.7 Given u = 50,0 = 16, and n = 64, find:
(a) P(45 =x = 55) (b) P(x > 53)
(c) P(x < 47) (d) P(49 =X = 56)

5.3.8 Suppose a population consists of the following values: 1, 3, 5, 7, 9. Construct the sampling dis-
tribution of x based on samples of size 2 selected without replacement. Find the mean and vari-
ance of the sampling distribution.

5.3.9 Use the data of Example 5.3.1 to construct the sampling distribution of x based on samples of size 3
selected without replacement. Find the mean and variance of the sampling distribution.

5.3.10 Use the data cited in Exercise 5.3.1. Imagine we take samples of size 5, 25, 50, 100, and 500 from
the women in this age group.

(a) Calculate the standard error for each of these sampling scenarios.

(b) Discuss how sample size affects the standard error estimates calculated in part (a) and the
potential implications this may have in statistical practice.

5.4 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE MEANS

Frequently the interest in an investigation is focused on two populations. Specifically, an
investigator may wish to know something about the difference between two population
means. In one investigation, for example, a researcher may wish to know if it is reason-
able to conclude that two population means are different. In another situation, the
researcher may desire knowledge about the magnitude of the difference between two
population means. A medical research team, for example, may want to know whether or
not the mean serum cholesterol level is higher in a population of sedentary office work-
ers than in a population of laborers. If the researchers are able to conclude that the pop-
ulation means are different, they may wish to know by how much they differ. A knowl-
edge of the sampling distribution of the difference between two means is useful in
investigations of this type.

Sampling from Normally Distributed Populations The following
example illustrates the construction of and the characteristics of the sampling distribu-
tion of the difference between sample means when sampling is from two normally dis-
tributed populations.

EXAMPLE 5.4.1

Suppose we have two populations of individuals—one population (population 1) has
experienced some condition thought to be associated with mental retardation, and the
other population (population 2) has not experienced the condition. The distribution of
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intelligence scores in each of the two populations is believed to be approximately nor-
mally distributed with a standard deviation of 20.

Suppose, further, that we take a sample of 15 individuals from each population and
compute for each sample the mean intelligence score with the following results: x; = 92
and x, = 105. If there is no difference between the two populations, with respect to their
true mean intelligence scores, what is the probability of observing a difference this large
or larger (Xx; — X,) between sample means?

Solution: To answer this question we need to know the nature of the sampling distri-
bution of the relevant statistic, the difference between two sample means,
X1 — X,. Notice that we seek a probability associated with the difference
between two sample means rather than a single mean. [ |

Sampling Distribution of x; — X,: Construction Although, in prac-
tice, we would not attempt to construct the desired sampling distribution, we can concep-
tualize the manner in which it could be done when sampling is from finite populations.
We would begin by selecting from population 1 all possible samples of size 15 and com-
puting the mean for each sample. We know that there would be yC,, such samples where
N, is the population size and n; = 15. Similarly, we would select all possible samples of
size 15 from population 2 and compute the mean for each of these samples. We would
then take all possible pairs of sample means, one from population 1 and one from popu-
lation 2, and take the difference. Table 5.4.1 shows the results of following this procedure.
Note that the 1’s and 2’s in the last line of this table are not exponents, but indicators of
population 1 and 2, respectively.

Sampling Distribution of x; — X,: Characteristics It is the distri-
bution of the differences between sample means that we seek. If we plotted the sample
differences against their frequency of occurrence, we would obtain a normal distribution
with a mean equal to w; — u,, the difference between the two population means, and a
variance equal to (03/n,) + (03/n,). That is, the standard error of the difference between

TABLE 5.4.1 Working Table for Constructing the Distribution of the Difference
Between Two Sample Means

Samples Samples Sample Sample All Possible
from from Means Means Differences
Population 1 Population 2 Population 1 Population 2 Between Means
N M2 X11 X12 X171 = X12

Ny Ny X21 X22 X171 = X2

N3 N3 X31 X32 X171 — X32

np,cp,1 np,Cp, 2 Xp,Cn, 1 Xp,Cn,2 Xn,Cn1 — Xp,Cn,2
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FIGURE 5.4.1 Graph of the sampling distribution of x; — x, when
there is no difference between population means, Example 5.4.1.

sample means would be equal to \/(0’%/1’1]) + (03/n,). It should be noted that these
properties convey two important points. First, the means of two distributions can be
subtracted from one another, or summed together, using standard arithmetic operations.
Second, since the overall variance of the sampling distribution will be affected by both
contributing distributions, the variances will always be summed even if we are interested
in the difference of the means. This last fact assumes that the two distributions are inde-
pendent of one another.

For our present example we would have a normal distribution with a mean of 0
(if there is no difference between the two population means) and a variance of
[(20)2/15] + [(20)?/15] = 53.3333. The graph of the sampling distribution is shown
in Figure 5.4.1.

Converting to z We know that the normal distribution described in Example
5.4.1 can be transformed to the standard normal distribution by means of a modification
of a previously learned formula. The new formula is as follows:

(X1 —%2) = (w1 — m2)

= (5.4.1)
2 2
o
g1, 03
n np

The area under the curve of x; — X, corresponding to the probability we seek is
the area to the left of x; — x, = 92 — 105 = —13. The z value corresponding to —13,
assuming that there is no difference between population means, is

—13 -0 . —13 —13

2 a V533 73

= —1.78

By consulting Table D, we find that the area under the standard normal curve to the left
of —1.78 is equal to .0375. In answer to our original question, we say that if there is no
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difference between population means, the probability of obtaining a difference between
sample means as large as or larger than 13 is .0375.

Sampling from Normal Populations The procedure we have just
followed is valid even when the sample sizes, n; and n,, are different and when the
population variances, o7 and o3 have different values. The theoretical results on which
this procedure is based may be summarized as follows.

Given two normally distributed populations with means w; and p, and variances
o? and o3, respectively, the sampling distribution of the difference, x| — X,
between the means of independent samples of size ny and n, drawn from these
populations is normally distributed with mean , — w, and variance

V(atjn) + (a3/n).

Sampling from Nonnormal Populations Many times a researcher is
faced with one or the other of the following problems: the necessity of (1) sampling from
nonnormally distributed populations, or (2) sampling from populations whose functional
forms are not known. A solution to these problems is to take large samples, since when
the sample sizes are large the central limit theorem applies and the distribution of the
difference between two sample means is at least approximately normally distributed with
a mean equal to u; — u, and a variance of (o}/n;) + (03/n,). To find probabilities
associated with specific values of the statistic, then, our procedure would be the same as
that given when sampling is from normally distributed populations.

EXAMPLE 5.4.2

Suppose it has been established that for a certain type of client the average length of a
home visit by a public health nurse is 45 minutes with a standard deviation of 15 min-
utes, and that for a second type of client the average home visit is 30 minutes long with
a standard deviation of 20 minutes. If a nurse randomly visits 35 clients from the first
and 40 from the second population, what is the probability that the average length of
home visit will differ between the two groups by 20 or more minutes?

Solution: No mention is made of the functional form of the two populations, so let
us assume that this characteristic is unknown, or that the populations are
not normally distributed. Since the sample sizes are large (greater than 30)
in both cases, we draw on the results of the central limit theorem to answer
the question posed. We know that the difference between sample means is
at least approximately normally distributed with the following mean and
variance:

M —x, = M1 — pp =45 — 30 =15
. A A _ (19 (@0

o = =+ = 164286
ny ny 35 40

X=X
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FIGURE 5.4.2 Sampling distribution of x; — x, and the
corresponding standard normal distribution, home visit example.

The area under the curve of x; — X, that we seek is that area to the right
of 20. The corresponding value of z in the standard normal is

Z_(fl—fz)—(m—uz)_zo—ls_ 5 _im
o, 5 V164286 40532
n nj

In Table D we find that the area to the right of z = 1.23 is
1 — .8907 = .1093. We say, then, that the probability of the nurse’s ran-
dom visits resulting in a difference between the two means as great as or
greater than 20 minutes is .1093. The curve of X; — X, and the correspon-
ding standard normal curve are shown in Figure 5.4.2. [ |

5.4.1 The study cited in Exercises 5.3.1 and 5.3.2 gives the following data on serum cholesterol levels
in U.S. females:

Population

Age Mean Standard Deviation

A
B

20-29 183 37.2
30-39 189 34.7
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Use these estimates as the mean u and standard deviation o for the respective U.S. populations.
Suppose we select a simple random sample of size 50 independently from each population. What
is the probability that the difference between sample means xz — x4 will be more than 8?

5.4.2 In the study cited in Exercises 5.3.4 and 5.3.5, the calcium levels in men and women ages 60 years
or older are summarized in the following table:

Mean Standard Deviation

Men 797 482
Women 660 414

Use these estimates as the mean u and standard deviation o for the U.S. populations for these age
groups. If we take a random sample of 40 men and 35 women, what is the probability of obtain-
ing a difference between sample means of 100 mg or more?

5.4.3 Given two normally distributed populations with equal means and variances of o3 = 100 and
o3 = 80, what is the probability that samples of size n; = 25 and n, = 16 will yield a value of
X, — X, greater than or equal to 8?

5.4.4 Given two normally distributed populations with equal means and variances of o = 240 and
o3 = 350, what is the probability that samples of size n; = 40 and n, = 35 will yield a value of
X1 — X, as large as or larger than 12?

5.4.5 For a population of 17-year-old boys and 17-year-old girls, the means and standard deviations,
respectively, of their subscapular skinfold thickness values are as follows: boys, 9.7 and 6.0; girls,
15.6 and 9.5. Simple random samples of 40 boys and 35 girls are selected from the populations.
What is the probability that the difference between sample means X gys — Xpoys Will be greater
than 10?

5.5 DISTRIBUTION OF THE
SAMPLE PROPORTION

In the previous sections we have dealt with the sampling distributions of statistics com-
puted from measured variables. We are frequently interested, however, in the sampling
distribution of a statistic, such as a sample proportion, that results from counts or fre-
quency data.

EXAMPLE 5.5.1

Results (A-3) from the 1999-2000 National Health and Nutrition Examination Survey
(NHANES), show that 31 percent of U.S. adults ages 20-74 are obese (obese as defined
with body mass index greater than or equal to 30.0). We designate this population pro-
portion as p = .31. If we randomly select 150 individuals from this population, what is
the probability that the proportion in the sample who are obese will be as great as .40?

Solution: To answer this question, we need to know the properties of the sampling dis-
tribution of the sample proportion. We will designate the sample proportion
by the symbol p.
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You will recognize the similarity between this example and those
presented in Section 4.3, which dealt with the binomial distribution. The
variable obesity is a dichotomous variable, since an individual can be clas-
sified into one or the other of two mutually exclusive categories obese or
not obese. In Section 4.3, we were given similar information and were asked
to find the number with the characteristic of interest, whereas here we are
seeking the proportion in the sample possessing the characteristic of inter-
est. We could with a sufficiently large table of binomial probabilities, such
as Table B, determine the probability associated with the number correspon-
ding to the proportion of interest. As we will see, this will not be neces-
sary, since there is available an alternative procedure, when sample sizes
are large, that is generally more convenient. ]

Sampling Distribution of p: Construction The sampling distribution
of a sample proportion would be constructed experimentally in exactly the same man-
ner as was suggested in the case of the arithmetic mean and the difference between two
means. From the population, which we assume to be finite, we would take all possible
samples of a given size and for each sample compute the sample proportion, p. We would
then prepare a frequency distribution of p by listing the different distinct values of p
along with their frequencies of occurrence. This frequency distribution (as well as the
corresponding relative frequency distribution) would constitute the sampling distribution
of p.

Sampling Distribution of p: Characteristics When the sample size
is large, the distribution of sample proportions is approximately normally distributed by
virtue of the central limit theorem. The mean of the distribution, w;, that is, the aver-
age of all the possible sample proportions, will be equal to the true population propor-
tion, p, and the variance of the distribution, o3, will be equal to p(1 — p)/n or pq/n,
where ¢ = 1 — p. To answer probability questions about p, then, we use the following
formula:

p—p
=P F (5.5.1)
: p(l —p)

n

The question that now arises is, How large does the sample size have to be for the
use of the normal approximation to be valid? A widely used criterion is that both np and
n(1 — p) must be greater than 5, and we will abide by that rule in this text.

We are now in a position to answer the question regarding obesity in the sample of
150 individuals from a population in which 31 percent are obese. Since both np and
n(1 — p) are greater than 5(150 X .31 = 46.5 and 150 X .69 = 103.5), we can say
that, in this case, p is approximately normally distributed with a mean u;, = p = .31 and
o= p(1 — p)/n = (31)(.69)/150 = .001426. The probability we seek is the area
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under the curve of p that is to the right of .40. This area is equal to the area under the
standard normal curve to the right of

A

p—p 40 — 31 238
Z = = = .
p(1 —p)  V.001426
n

The transformation to the standard normal distribution has been accomplished in the
usual manner: z is found by dividing the difference between a value of a statistic and its
mean by the standard error of the statistic. Using Table D we find that the area to the
right of z = 2.38 is 1 — .9913 = .0087. We may say, then, that the probability of observ-
ing p = .40 in a random sample of size n = 150 from a population in which p = .31
is .0087. If we should, in fact, draw such a sample, most people would consider it a rare
event.

Correction for Continuity The normal approximation may be improved by
the correction for continuity, a device that makes an adjustment for the fact that a
discrete distribution is being approximated by a continuous distribution. Suppose we
let x = np, the number in the sample with the characteristic of interest when the pro-
portion is p. To apply the correction for continuity, we compute

.= ——F— for x < np (5.5.2)

or

x—.5
n

7, = ——F—,
V pg/n

- P
for x > np (5.5.3)

where ¢ = 1 — p. The correction for continuity will not make a great deal of difference
when n is large. In the above example np = 150(.4) = 60, and

60 — .5

— .31
150
7. = =230

V/(31)(.69)/150

and P(p = .40) = 1 — .9893 = .0107, a result not greatly different from that obtained
without the correction for continuity. This adjustment is not often done by hand, since
most statistical computer programs automatically apply the appropriate continuity cor-
rection when necessary.
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EXAMPLE 5.5.2

Blanche Mikhail (A-4) studied the use of prenatal care among low-income African-
American women. She found that only 51 percent of these women had adequate prena-
tal care. Let us assume that for a population of similar low-income African-American
women, 51 percent had adequate prenatal care. If 200 women from this population are
drawn at random, what is the probability that less than 45 percent will have received
adequate prenatal care?

Solution: We can assume that the sampling distribution of p is approximately normally
distributed with p; = .51 and 0',2, = (.51)(.49)/200 = .00125. We compute

_45-51 —06

~ Voolzs 0353

The area to the left of —1.70 under the standard normal curve is .0446.
Therefore, P(p =< .45) = P(z = —1.70) = .0446. ]

—1.70

EXERCISES

5.5.1

5.5.2

553

554

5.5.5

Smith et al. (A-5) performed a retrospective analysis of data on 782 eligible patients admitted with
myocardial infarction to a 46-bed cardiac service facility. Of these patients, 248 (32 percent)
reported a past myocardial infarction. Use .32 as the population proportion. Suppose 50 subjects
are chosen at random from the population. What is the probability that over 40 percent would
report previous myocardial infarctions?

In the study cited in Exercise 5.5.1, 13 percent of the patients in the study reported previous
episodes of stroke or transient ischemic attack. Use 13 percent as the estimate of the prevalence
of stroke or transient ischemic attack within the population. If 70 subjects are chosen at random
from the population, what is the probability that 10 percent or less would report an incidence of
stroke or transient ischemic attack?

In the same 1999-2000 NHANES (A-3) report cited in Example 5.5.1, researchers estimated that
64 percent of U.S. adults ages 20-74 were overweight or obese (overweight: BMI 25-29, obese:
BMI 30 or greater). Use this estimate as the population proportion for U.S. adults ages 20-74. If
125 subjects are selected at random from the population, what is the probability that 70 percent
or more would be found to be overweight or obese?

Gallagher et al. (A-6) reported on a study to identify factors that influence women’s attendance at
cardiac rehabilitation programs. They found that by 12 weeks post-discharge, only 64 percent of
eligible women attended such programs. Using 64 percent as an estimate of the attendance per-
centage of all eligible women, find the probability that in a sample of 45 women selected at ran-
dom from the population of eligible women less than 50 percent would attend programs.

Given a population in which p = .6 and a random sample from this population of size 100, find:
(@) P(p = 65) () P(p = .58)
(c) P(.56 = p = .63)
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5.5.6 It is known that 35 percent of the members of a certain population suffer from one or more chronic
diseases. What is the probability that in a sample of 200 subjects drawn at random from this pop-
ulation 80 or more will have at least one chronic disease?

5.6 DISTRIBUTION OF THE DIFFERENCE
BETWEEN TWO SAMPLE PROPORTIONS

Often there are two population proportions in which we are interested and we desire to
assess the probability associated with a difference in proportions computed from sam-
ples drawn from each of these populations. The relevant sampling distribution is the
distribution of the difference between the two sample proportions.

Sampling Distribution of p, — p,: Characteristics The character-
istics of this sampling distribution may be summarized as follows:

If independent random samples of size n; and n, are drawn from two populations

of dichotomous variables where the proportions of observations with the characteristic
of interest in the two populations are p| and p,, respectively, the distribution of the
difference between sample proportions, p; — p,, is approximately normal with mean

Mp-p, = P1 — P2

and variance

pi(1 — p1) N p2(1 = py)
ng nyp

when n| and n, are large.

We consider n; and n, sufficiently large when n;p, n,pyni(l — p;), and
n,(1 — p,) are all greater than 5.

Sampling Distribution of p, — p,: Construction To physically con-
struct the sampling distribution of the difference between two sample proportions, we
would proceed in the manner described in Section 5.4 for constructing the sampling dis-
tribution of the difference between two means.

Given two sufficiently small populations, one would draw, from population 1, all
possible simple random samples of size n; and compute, from each set of sample data,
the sample proportion p,. From population 2, one would draw independently all possi-
ble simple random samples of size n, and compute, for each set of sample data, the
sample proportion p,. One would compute the differences between all possible pairs of
sample proportions, where one number of each pair was a value of p; and the other a
value of p,. The sampling distribution of the difference between sample proportions,
then, would consist of all such distinct differences, accompanied by their frequencies (or
relative frequencies) of occurrence. For large finite or infinite populations, one could
approximate the sampling distribution of the difference between sample proportions by
drawing a large number of independent simple random samples and proceeding in the
manner just described.
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To answer probability questions about the difference between two sample propor-
tions, then, we use the following formula:
pr—p2) —(p—p
i h) — (=) s
\/pl(l —pn) ol = p2)

n ny

EXAMPLE 5.6.1

The 1999 National Health Interview Survey, released in 2003 (A-7), reported that 28 per-
cent of the subjects self-identifying as white said they had experienced lower back pain
during the three months prior to the survey. Among subjects of Hispanic origin, 21 per-
cent reported lower back pain. Let us assume that .28 and .21 are the proportions for the
respective races reporting lower back pain in the United States. What is the probability
that independent random samples of size 100 drawn from each of the populations will
yield a value of p; — p, as large as .10?

Solution: We assume that the sampling distribution of p;, — p, is approximately nor-
mal with mean

'U’ﬁl—f’z = 28 - 21 = 07
and variance

o2 _ (28)(72) . (21)(.79)
P17 P2 100 100
= .003675

The area corresponding to the probability we seek is the area under the curve
of p; — p, to the right of .10. Transforming to the standard normal distribu-

tion gives
(P1 — P2) — (p1 — p2) .10 — .07 49
z= = =,
\/Pl(l - p1) R Pl = p2)  \V.003675
ny np

Consulting Table D, we find that the area under the standard normal curve that
lies to the right of z = 49 is 1 — .6879 = .3121. The probability of observ-
ing a difference as large as .10 is, then, .3121. [ |

EXAMPLE 5.6.2

In the 1999 National Health Interview Survey (A-7), researchers found that among U.S.
adults ages 75 or older, 34 percent had lost all their natural teeth and for U.S. adults
ages 65-74, 26 percent had lost all their natural teeth. Assume that these proportions are
the parameters for the United States in those age groups. If a random sample of 250
adults ages 65-74 and an independent random sample of 200 adults ages 45-64 years
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old are drawn from these populations, find the probability that the difference in percent
of total natural teeth loss is less than 5 percent between the two populations.

Solution: We assume that the sampling distribution p; — p, is approximately normal.
The mean difference in proportions of those losing all their teeth is

Wp, 5 = 34 — 26 = .08

and the variance is

2 pi(l = pi) " pa(1 — pa) _ (.34)(.66) n (:26)(.74)

o5 = = = .00186
prp n 1, 250 200

The area of interest under the curve of p; — p, is that to the left of .05. The
corresponding z value is

.05 — (.08)
z=—F7—=-.70
V.00186
Consulting Table D, we find that the area to the left of z = —.70 is
.2420. |

EXERCISES

5.6.1

5.6.2

5.6.3

According to the 2000 U.S. Census Bureau (A-8), in 2000, 9.5 percent of children in the state of
Ohio were not covered by private or government health insurance. In the neighboring state of
Pennsylvania, 4.9 percent of children were not covered by health insurance. Assume that these
proportions are parameters for the child populations of the respective states. If a random sample
of size 100 children is drawn from the Ohio population, and an independent random sample of
size 120 is drawn from the Pennsylvania population, what is the probability that the samples would
yield a difference, p; — p, of .09 or more?

In the report cited in Exercise 5.6.1 (A-8), the Census Bureau stated that for Americans in the age
group 18-24 years, 64.8 percent had private health insurance. In the age group 25-34 years, the per-
centage was 72.1. Assume that these percentages are the population parameters in those age groups
for the United States. Suppose we select a random sample of 250 Americans from the 18-24 age
group and an independent random sample of 200 Americans from the age group 25-34; find the prob-
ability that p, — p is less than 6 percent.

From the results of a survey conducted by the U.S. Bureau of Labor Statistics (A-9), it was esti-
mated that 21 percent of workers employed in the Northeast participated in health care benefits
programs that included vision care. The percentage in the South was 13 percent. Assume these
percentages are population parameters for the respective U.S. regions. Suppose we select a sim-
ple random sample of size 120 northeastern workers and an independent simple random sample
of 130 southern workers. What is the probability that the difference between sample proportions,
D1 — Do, will be between .04 and .20?
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5.7 SUMMARY

This chapter is concerned with sampling distributions. The concept of a sampling distri-
bution is introduced, and the following important sampling distributions are covered:

1. The distribution of a single sample mean.

2. The distribution of the difference between two sample means.
3. The distribution of a sample proportion.
4

. The distribution of the difference between two sample proportions.

We emphasize the importance of this material and urge readers to make sure that
they understand it before proceeding to the next chapter.

SUMMARY OF FORMULAS FOR CHAPTER 5

Formula Number Name Formula
5.3.1 z-transformation X — ux
Z= =
for sample mean o/Nn
54.1 z-transformation for X —X) — (1 — )
difference between Z= = =
two means g1, 92
ny na
5.5.1 z-transformation for p—0p
sample proportion zZ= (1 —p)
n
5.5.2 Continuity correction x+.5
when x < np 7 n b
c = —
Vpq/n
553 Continuity correction X+ 5 4
when x > np n P
Z,=—F——
Vpa/n
5.6.1 z-transformation for (p1 = P2) — (1 — P2)
difference b.etween n(d=p)  p(1 = p2)
two proportions +
ny ny
Symbol Key * u; = mean of population i
* uz = mean of sampling distribution if x
* n; = sample size for sample i from population i
e p; = proportion for population i
* p; = proportion for sample i from population i
. g,z = variance for population i
* X; = mean of sample i from population i
* z = standard normal random variable
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REVIEW QUESTIONS AND EXERCISES

10.

11.

12.

13.

14.

15.

What is a sampling distribution?
Explain how a sampling distribution may be constructed from a finite population.

Describe the sampling distribution of the sample mean when sampling is with replacement from
a normally distributed population.

Explain the central limit theorem.

How does the sampling distribution of the sample mean, when sampling is without replacement,
differ from the sampling distribution obtained when sampling is with replacement?

Describe the sampling distribution of the difference between two sample means.
Describe the sampling distribution of the sample proportion when large samples are drawn.

Describe the sampling distribution of the difference between two sample means when large sam-
ples are drawn.

Explain the procedure you would follow in constructing the sampling distribution of the difference
between sample proportions based on large samples from finite populations.

Suppose it is known that the response time of healthy subjects to a particular stimulus is a nor-
mally distributed random variable with a mean of 15 seconds and a variance of 16. What is the
probability that a random sample of 16 subjects will have a mean response time of 12 seconds
or more?

Janssen et al. (A-10) studied Americans ages 60 and over. They estimated the mean body mass index
of women over age 60 with normal skeletal muscle to be 23.1 with a standard deviation of 3.7. Using
these values as the population mean and standard deviation for women over age 60 with normal skele-
tal muscle index, find the probability that 45 randomly selected women in this age range with normal
skeletal muscle index will have a mean BMI greater than 25.

In the study cited in Review Exercise 11, the researchers reported the mean BMI for men ages
60 and older with normal skeletal muscle index to be 24.7 with a standard deviation of 3.3.
Using these values as the population mean and standard deviation, find the probability that 50
randomly selected men in this age range with normal skeletal muscle index will have a mean
BMI less than 24.

Using the information in Review Exercises 11 and 12, find the probability that the difference in
mean BMI for 45 women and 50 men selected independently and at random from the respective
populations will exceed 3.

In the results published by Wright et al. (A-2) based on data from the 1999-2000 NHANES study
referred to in Exercises 5.4.1 and 5.4.2, investigators reported on their examination of iron levels. The
mean iron level for women ages 20-39 years was 13.7 mg with an estimated standard deviation of
8.9 mg. Using these as population values for women ages 20-39, find the probability that a random
sample of 100 women will have a mean iron level less than 12 mg.

Refer to Review Exercise 14. The mean iron level for men between the ages of 20 and 39 years
is 17.9 mg with an estimated standard deviation of 10.9 mg. Using 17.9 and 10.9 as population
parameters, find the probability that a random sample of 120 men will have a mean iron level
higher than 19 mg.
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16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

28.

Using the information in Review Exercises 14 and 15, and assuming independent random samples
of size 100 and 120 for women and men, respectively, find the probability that the difference in
sample mean iron levels is greater than 5 mg.

The results of the 1999 National Health Interview Survey released in 2003 (A-7) showed that
among U.S. adults ages 60 and older, 19 percent had been told by a doctor or other health care
provider that they had some form of cancer. If we use this as the percentage for all adults 65 years
old and older living in the United States, what is the probability that among 65 adults chosen at
random more than 25 percent will have been told by their doctor or some other health care provider
that they have cancer?

Refer to Review Exercise 17. The reported cancer rate for women subjects ages 65 and older is 17
percent. Using this estimate as the true percentage of all females ages 65 and over who have been
told by a health care provider that they have cancer, find the probability that if 220 women are selected
at random from the population, more than 20 percent will have been told they have cancer.

Refer to Review Exercise 17. The cancer rate for men ages 65 and older is 23 percent. Use this
estimate as the percentage of all men ages 65 and older who have been told by a health care
provider that they have cancer. Find the probability that among 250 men selected at random that
fewer than 20 percent will have been told they have cancer.

Use the information in Review Exercises 18 and 19 to find the probability that the difference in
the cancer percentages between men and women will be less than 5 percent when 220 women and
250 men aged 65 and older are selected at random.

How many simple random samples (without replacement) of size 5 can be selected from a popu-
lation of size 10?

It is estimated by the 1999-2000 NHANES (A-7) that among adults 18 years old or older 53 percent
have never smoked. Assume the proportion of U.S. adults who have never smoked to be .53.
Consider the sampling distribution of the sample proportion based on simple random samples of
size 110 drawn from this population. What is the functional form of the sampling distribution?

Refer to Exercise 22. Compute the mean and variance of the sampling distribution.

Refer to Exercise 22. What is the probability that a single simple random sample of size 110 drawn
from this population will yield a sample proportion smaller than .50?

In a population of subjects who died from lung cancer following exposure to asbestos, it was found
that the mean number of years elapsing between exposure and death was 25. The standard devia-
tion was 7 years. Consider the sampling distribution of sample means based on samples of size
35 drawn from this population. What will be the shape of the sampling distribution?

Refer to Exercise 25. What will be the mean and variance of the sampling distribution?

Refer to Exercise 25. What is the probability that a single simple random sample of size 35 drawn
from this population will yield a mean between 22 and 29?

For each of the following populations of measurements, state whether the sampling distribution of
the sample mean is normally distributed, approximately normally distributed, or not approximately
normally distributed when computed from samples of size (A) 10, (B) 50, and (C) 200.

(a) The logarithm of metabolic ratios. The population is normally distributed.
(b) Resting vagal tone in healthy adults. The population is normally distributed.

(c) Insulin action in obese subjects. The population is not normally distributed.
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For each of the following sampling situations indicate whether the sampling distribution of the
sample proportion can be approximated by a normal distribution and explain why or why not.

(@ p=.50n=8  (b)p=.40,n=30
(©p=.10,n=30 () p=.0l,n= 1000
(€ p=.90,n=100 (f)p=.05n=150
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CHAPTER 6

ESTIMATION

CHAPTER OVERVIEW

TOPICS

This chapter covers estimation, one of the two types of statistical inference.
As discussed in earlier chapters, statistics, such as means and variances, can
be calculated from samples drawn from populations.These statistics serve as
estimates of the corresponding population parameters. We expect these esti-
mates to differ by some amount from the parameters they estimate. This
chapter introduces estimation procedures that take these differences into ac-
count, thereby providing a foundation for statistical inference procedures
discussed in the remaining chapters of the book.
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LEARNING OUTCOMES

6.1

After studying this chapter, the student will

1. understand the importance and basic principles of estimation.

2. be able to calculate interval estimates for a variety of parameters.

3. be able to interpret a confidence interval from both a practical and a probabilistic
viewpoint.

4. understand the basic properties and uses of the t distribution, chi-square distri-
bution, and F distribution.

INTRODUCTION

We come now to a consideration of estimation, the first of the two general areas of statisti-
cal inference. The second general area, hypothesis testing, is examined in the next chapter.
We learned in Chapter 1 that inferential statistics is defined as follows.

DEFINITION
Statistical inference is the procedure by which we reach a conclusion
about a population on the basis of the information contained in a
sample drawn from that population.

The process of estimation entails calculating, from the data of a sample, some sta-
tistic that is offered as an approximation of the corresponding parameter of the popula-
tion from which the sample was drawn.

The rationale behind estimation in the health sciences field rests on the assump-
tion that workers in this field have an interest in the parameters, such as means and pro-
portions, of various populations. If this is the case, there is a good reason why one must
rely on estimating procedures to obtain information regarding these parameters. Many
populations of interest, although finite, are so large that a 100 percent examination would
be prohibitive from the standpoint of cost.

Suppose the administrator of a large hospital is interested in the mean age of patients
admitted to his hospital during a given year. He may consider it too expensive to go
through the records of all patients admitted during that particular year and, consequently,
elect to examine a sample of the records from which he can compute an estimate of the
mean age of patients admitted that year.

A physician in general practice may be interested in knowing what proportion of
a certain type of individual, treated with a particular drug, suffers undesirable side effects.
No doubt, her concept of the population consists of all those persons who ever have been
or ever will be treated with this drug. Deferring a conclusion until the entire population
has been observed could have an adverse effect on her practice.

These two examples have implied an interest in estimating, respectively, a popula-
tion mean and a population proportion. Other parameters, the estimation of which we
will cover in this chapter, are the difference between two means, the difference between
two proportions, the population variance, and the ratio of two variances.
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We will find that for each of the parameters we discuss, we can compute two types
of estimate: a point estimate and an interval estimate.

DEFINITION

A point estimate is a single numerical value used to estimate the
corresponding population parameter.

DEFINITION
An interval estimate consists of two numerical values defining a range
of values that, with a specified degree of confidence, most likely
includes the parameter being estimated.

These concepts will be elaborated on in the succeeding sections.

Choosing an Appropriate Estimator Note that a single computed value
has been referred to as an estimate. The rule that tells us how to compute this value, or
estimate, is referred to as an estimator. Estimators are usually presented as formulas. For
example,

Exi

n

X =

is an estimator of the population mean, w. The single numerical value that results from
evaluating this formula is called an estimate of the parameter u.

In many cases, a parameter may be estimated by more than one estimator. For
example, we could use the sample median to estimate the population mean. How then
do we decide which estimator to use for estimating a given parameter? The decision is
based on an objective measure or set of criteria that reflect some desired property of a par-
ticular estimator. When measured against these criteria, some estimators are better than oth-
ers. One of these criteria is the property of unbiasedness.

DEFINITION

An estimator, say, T, of the parameter 0 is said to be an unbiased
estimator of 0 if E(T) = 0.

E(T) is read, “the expected value of T.” For a finite population, E(T) is obtained
by taking the average value of T computed from all possible samples of a given size that
may be drawn from the population. That is, E(T) = uy. For an infinite population, E(T)
is defined in terms of calculus.

In the previous chapter we have seen that the sample mean, the sample proportion,
the difference between two sample means, and the difference between two sample
proportions are each unbiased estimates of their corresponding parameters. This prop-
erty was implied when the parameters were said to be the means of the respective sam-
pling distributions. For example, since the mean of the sampling distribution of x is equal
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to u, we know that x is an unbiased estimator of w. The other criteria of good estima-
tors will not be discussed in this book. The interested reader will find them covered in
detail in most mathematical statistics texts.

Sampled Populations and Target Populations The health researcher
who uses statistical inference procedures must be aware of the difference between two
kinds of population—the sampled population and the target population.

DEFINITION

The sampled population is the population from which one actually
draws a sample.

DEFINITION

The target population is the population about which one wishes to
make an inference.

These two populations may or may not be the same. Statistical inference procedures
allow one to make inferences about sampled populations (provided proper sampling meth-
ods have been employed). Only when the target population and the sampled population
are the same is it possible for one to use statistical inference procedures to reach conclu-
sions about the target population. If the sampled population and the target population are
different, the researcher can reach conclusions about the target population only on the
basis of nonstatistical considerations.

Suppose, for example, that a researcher wishes to assess the effectiveness of some
method for treating rheumatoid arthritis. The target population consists of all patients
suffering from the disease. It is not practical to draw a sample from this population. The
researcher may, however, select a sample from all rheumatoid arthritis patients seen in
some specific clinic. These patients constitute the sampled population, and, if proper sam-
pling methods are used, inferences about this sampled population may be drawn on the
basis of the information in the sample. If the researcher wishes to make inferences about
all rheumatoid arthritis sufferers, he or she must rely on nonstatistical means to do so.
Perhaps the researcher knows that the sampled population is similar, with respect to all
important characteristics, to the target population. That is, the researcher may know that
the age, sex, severity of illness, duration of illness, and so on are similar in both popu-
lations. And on the strength of this knowledge, the researcher may be willing to extrap-
olate his or her findings to the target population.

In many situations the sampled population and the target population are identical;
when this is the case, inferences about the target population are straightforward. The
researcher, however, should be aware that this is not always the case and not fall into
the trap of drawing unwarranted inferences about a population that is different from the
one that is sampled.

Random and Nonrandom Samples In the examples and exercises of this
book, we assume that the data available for analysis have come from random samples.
The strict validity of the statistical procedures discussed depends on this assumption. In
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many instances in real-world applications it is impossible or impractical to use truly ran-
dom samples. In animal experiments, for example, researchers usually use whatever ani-
mals are available from suppliers or their own breeding stock. If the researchers had to
depend on randomly selected material, very little research of this type would be conducted.
Again, nonstatistical considerations must play a part in the generalization process.
Researchers may contend that the samples actually used are equivalent to simple random
samples, since there is no reason to believe that the material actually used is not represen-
tative of the population about which inferences are desired.

In many health research projects, samples of convenience, rather than random sam-
ples, are employed. Researchers may have to rely on volunteer subjects or on readily avail-
able subjects such as students in their classes. Samples obtained from such sources are exam-
ples of convenience samples. Again, generalizations must be made on the basis of
nonstatistical considerations. The consequences of such generalizations, however, may be
useful or they may range from misleading to disastrous.

In some situations it is possible to introduce randomization into an experiment even
though available subjects are not randomly selected from some well-defined population. In
comparing two treatments, for example, each subject may be randomly assigned to one or
the other of the treatments. Inferences in such cases apply to the treatments and not the sub-
jects, and hence the inferences are valid.

6.2 CONFIDENCE INTERVAL
FOR A POPULATION MEAN

Suppose researchers wish to estimate the mean of some normally distributed population.
They draw a random sample of size n from the population and compute X, which they use
as a point estimate of w. Although this estimator of w possesses all the qualities of a
good estimator, we know that because random sampling inherently involves chance, x
cannot be expected to be equal to w.

It would be much more meaningful, therefore, to estimate w by an interval that
somehow communicates information regarding the probable magnitude of .

Sampling Distributions and Estimation To obtain an interval estimate,
we must draw on our knowledge of sampling distributions. In the present case, because we
are concerned with the sample mean as an estimator of a population mean, we must recall
what we know about the sampling distribution of the sample mean.

In the previous chapter we learned that if sampling is from a normally distributed
population, the sampling distribution of the sample mean will be normally distributed with
a mean uy equal to the population mean w, and a variance a’% equal to a'z/n. We could
plot the sampling distribution if we only knew where to locate it on the x-axis. From our
knowledge of normal distributions, in general, we know even more about the distribution
of x in this case. We know, for example, that regardless of where the distribution of x is
located, approximately 95 percent of the possible values of x constituting the distribution
are within two standard deviations of the mean. The two points that are two standard devi-
ations from the mean are w — 205 and w + 2075, so that the interval u + 20 will con-
tain approximately 95 percent of the possible values of x. We know that u and, hence uz,
are unknown, but we may arbitrarily place the sampling distribution of x on the x-axis.
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FIGURE 6.2.1 The 95 percent confidence interval for u.

Since we do not know the value of w, not a great deal is accomplished by the expres-
sion u + 205 We do, however, have a point estimate of w, which is x. Would it be use-
ful to construct an interval about this point estimate of u? The answer is yes. Suppose
we constructed intervals about every possible value of x computed from all possible sam-
ples of size n from the population of interest. We would have a large number of intervals
of the form x + 20 with widths all equal to the width of the interval about the unknown
. Approximately 95 percent of these intervals would have centers falling within the +20
interval about w. Each of the intervals whose centers fall within 20 of w would contain
w. These concepts are illustrated in Figure 6.2.1, in which we see that x|, x5 and x4 all
fall within the interval about w, and, consequently, the 20 intervals about these sample
means include the value of w. The sample means x, and x5 do not fall within the 20
interval about u, and the 207 intervals about them do not include w.

EXAMPLE 6.2.1

Suppose a researcher, interested in obtaining an estimate of the average level of some
enzyme in a certain human population, takes a sample of 10 individuals, determines the
level of the enzyme in each, and computes a sample mean of x = 22. Suppose further
it is known that the variable of interest is approximately normally distributed with a vari-
ance of 45. We wish to estimate u.

Solution: An approximate 95 percent confidence interval for u is given by
X * 20'}
2 +2V5E

22 + 2(2.1213)
17.76,26.24 n
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Interval Estimate Components Let us examine the composition of the
interval estimate constructed in Example 6.2.1. It contains in its center the point esti-
mate of w. The 2 we recognize as a value from the standard normal distribution that tells
us within how many standard errors lie approximately 95 percent of the possible values
of x. This value of z is referred to as the reliability coefficient. The last component, o,
is the standard error, or standard deviation of the sampling distribution of x. In general,
then, an interval estimate may be expressed as follows:

estimator + (reliability coefficient) X (standard error) (6.2.1)

In particular, when sampling is from a normal distribution with known variance,
an interval estimate for u may be expressed as

X £ Z2(1-a2)0% (6.2.2)

where z (142 is the value of z to the left of which lies 1 — a/2 and to the right of
which lies a/2 of the area under its curve.

Interpreting Confidence Intervals How do we interpret the interval given
by Expression 6.2.2? In the present example, where the reliability coefficient is equal to
2, we say that in repeated sampling approximately 95 percent of the intervals constructed
by Expression 6.2.2 will include the population mean. This interpretation is based on the
probability of occurrence of different values of x. We may generalize this interpretation
if we designate the total area under the curve of x that is outside the interval u + 20
as « and the area within the interval as 1 — « and give the following probabilistic inter-
pretation of Expression 6.2.2.

Probabilistic Interpretation

In repeated sampling, from a normally distributed population with a known standard
deviation, 100(1 — «) percent of all intervals of the form x + Z(1-a/2)0x Will in
the long run include the population mean .

The quantity 1 — «, in this case .95, is called the confidence coefficient (or confi-
dence level), and the interval X + z (/)05 is called a confidence interval for p. When
(1 — a) = .95, the interval is called the 95 percent confidence interval for w. In the present
example we say that we are 95 percent confident that the population mean is between 17.76
and 26.24. This is called the practical interpretation of Expression 6.2.2. In general, it may
be expressed as follows.

Practical Interpretation

When sampling is from a normally distributed population with known standard
deviation, we are 100(1 — «) percent confident that the single computed interval,
X+ Z(1-o/2)0%, contains the population mean .

In the example given here we might prefer, rather than 2, the more exact value of
z, 1.96, corresponding to a confidence coefficient of .95. Researchers may use any con-
fidence coefficient they wish; the most frequently used values are .90, .95, and .99, which
have associated reliability factors, respectively, of 1.645, 1.96, and 2.58.
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Precision The quantity obtained by multiplying the reliability factor by the stan-
dard error of the mean is called the precision of the estimate. This quantity is also called
the margin of error.

EXAMPLE 6.2.2

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal
strength of a particular muscle in a certain group of individuals. He is willing to assume
that strength scores are approximately normally distributed with a variance of 144. A
sample of 15 subjects who participated in the experiment yielded a mean of 84.3.

Solution: The 7z value corresponding to a confidence coefficient of .99 is found in Appen-
dix Table D to be 2.58. This is our reliability coefficient. The standard error is
oz = 12/V15 = 3.0984. Our 99 percent confidence interval for w, then, is

84.3 + 2.58(3.0984)
84.3 + 8.0
76.3,92.3

We say we are 99 percent confident that the population mean is between
76.3 and 92.3 since, in repeated sampling, 99 percent of all intervals that
could be constructed in the manner just described would include the popu-
lation mean. [ |

Situations in which the variable of interest is approximately normally distributed with a
known variance are so rare as to be almost nonexistent. The purpose of the preceding
examples, which assumed that these ideal conditions existed, was to establish the theo-
retical background for constructing confidence intervals for population means. In most
practical situations either the variables are not approximately normally distributed or the
population variances are not known or both. Example 6.2.3 and Section 6.3 explain the
procedures that are available for use in the less than ideal, but more common, situations.

Sampling from Nonnormal Populations As noted, it will not always
be possible or prudent to assume that the population of interest is normally distributed.
Thanks to the central limit theorem, this will not deter us if we are able to select a
large enough sample. We have learned that for large samples, the sampling distribu-
tion of X is approximately normally distributed regardless of how the parent popula-
tion is distributed.

EXAMPLE 6.2.3

Punctuality of patients in keeping appointments is of interest to a research team. In a
study of patient flow through the offices of general practitioners, it was found that a sam-
ple of 35 patients were 17.2 minutes late for appointments, on the average. Previous
research had shown the standard deviation to be about 8 minutes. The population distri-
bution was felt to be nonnormal. What is the 90 percent confidence interval for u, the
true mean amount of time late for appointments?
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Solution: Since the sample size is fairly large (greater than 30), and since the popu-
lation standard deviation is known, we draw on the central limit theorem
and assume the sampling distribution of x to be approximately normally
distributed. From Appendix Table D we find the reliability coefficient cor-
responding to a confidence coefficient of .90 to be about 1.645, if we inter-
polate. The standard error is oy = 8/V/35 = 1.3522, so that our 90 percent
confidence interval for u is

17.2 + 1.645(1.3522)

172 £ 2.2
15.0,19.4 [ |

Frequently, when the sample is large enough for the application of the central limit the-
orem, the population variance is unknown. In that case we use the sample variance as a
replacement for the unknown population variance in the formula for constructing a con-
fidence interval for the population mean.

Computer Analysis When confidence intervals are desired, a great deal of time
can be saved if one uses a computer, which can be programmed to construct intervals
from raw data.

EXAMPLE 6.2.4

The following are the activity values (micromoles per minute per gram of tissue) of a cer-
tain enzyme measured in normal gastric tissue of 35 patients with gastric carcinoma.

.360 1.189 .614 788 273 2.464 571
1.827 537 374 449 262 448 971
372 .898 411 .348 1.925 .550 .622
.610 319 406 413 767 385 .674
521 .603 533 .662 1.177 .307 1.499

We wish to use the MINITAB computer software package to construct a 95 percent confi-
dence interval for the population mean. Suppose we know that the population variance is
.36. It is not necessary to assume that the sampled population of values is normally distrib-
uted since the sample size is sufficiently large for application of the central limit theorem.

Solution: We enter the data into Column 1 and proceed as shown in Figure 6.2.2. These
instructions tell the computer that the reliability factor is z, that a 95 percent
confidence interval is desired, that the population standard deviation is .6, and
that the data are in Column 1. The output tells us that the sample mean is
718, the sample standard deviation is .511, and the standard error of the

mean, o/Vn is .6/V35 = .101. -

We are 95 percent confident that the population mean is somewhere between .519
and .917. Confidence intervals may be obtained through the use of many other software
packages. Users of SAS®, for example, may wish to use the output from PROC MEANS
or PROC UNIVARIATE to construct confidence intervals.
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Dialog box: Session command:
Stat » Basic Statistics » 1-Sample z MTB > ZINTERVAL 95 .6 Cl1

Type CI in Samples in Columns.
Type .6 in Standard deviation. Click OK.

Output:

One-Sample Z: C1

The assumed standard deviaion = 0.600

Variable
MicMoles

N Mean StDev SE Mean 95.0 % C.I.
35 0.718 0.511 0.101 ( 0.519, 0.917)

FIGURE 6.2.2 MINITAB procedure for constructing 95 percent confidence interval for a
population mean, Example 6.2.4.

Alternative Estimates of Central Tendency As noted previously, the
mean is sensitive to extreme values—those values that deviate appreciably from most of
the measurements in a data set. They are sometimes referred to as outliers. We also noted
earlier that the median, because it is not so sensitive to extreme measurements, is some-
times preferred over the mean as a measure of central tendency when outliers are pres-
ent. For the same reason, we may prefer to use the sample median as an estimator of
the population median when we wish to make an inference about the central tendency
of a population. Not only may we use the sample median as a point estimate of the pop-
ulation median, we also may construct a confidence interval for the population median.
The formula is not given here but may be found in the book by Rice (1).

Trimmed Mean Estimators that are insensitive to outliers are called robust esti-
mators. Another robust measure and estimator of central tendency is the trimmed mean.
For a set of sample data containing n measurements we calculate the 100« percent
trimmed mean as follows:

1. Order the measurements.

2. Discard the smallest 100a percent and the largest 100a percent of the mea-
surements. The recommended value of « is something between .1 and .2.

3. Compute the arithmetic mean of the remaining measurements.

Note that the median may be regarded as a 50 percent trimmed mean.

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
population mean, and state the practical and probabilistic interpretations of each. Indicate which
interpretation you think would be more appropriate to use when discussing confidence intervals with
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6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

someone who has not had a course in statistics, and state the reason for your choice. Explain why
the three intervals that you construct are not of equal width. Indicate which of the three intervals
you would prefer to use as an estimate of the population mean, and state the reason for your choice.

We wish to estimate the average number of heartbeats per minute for a certain population. The
average number of heartbeats per minute for a sample of 49 subjects was found to be 90. Assume
that these 49 patients constitute a random sample, and that the population is normally distributed
with a standard deviation of 10.

We wish to estimate the mean serum indirect bilirubin level of 4-day-old infants. The mean for a
sample of 16 infants was found to be 5.98 mg/100 cc. Assume that bilirubin levels in 4-day-old
infants are approximately normally distributed with a standard deviation of 3.5 mg/100 cc.

In a length of hospitalization study conducted by several cooperating hospitals, a random sample
of 64 peptic ulcer patients was drawn from a list of all peptic ulcer patients ever admitted to the
participating hospitals and the length of hospitalization per admission was determined for each.
The mean length of hospitalization was found to be 8.25 days. The population standard deviation
is known to be 3 days.

A sample of 100 apparently normal adult males, 25 years old, had a mean systolic blood pressure
of 125. It is believed that the population standard deviation is 15.

Some studies of Alzheimer’s disease (AD) have shown an increase in '#CO, production in patients
with the disease. In one such study the following “CO, values were obtained from 16 neocorti-
cal biopsy samples from AD patients.

1009 1280 1180 1255 1547 2352 1956 1080
1776 1767 1680 2050 1452 2857 3100 1621

Assume that the population of such values is normally distributed with a standard deviation of 350.

6.3 THE t DISTRIBUTION

In Section 6.2, a procedure was outlined for constructing a confidence interval for a pop-
ulation mean. The procedure requires knowledge of the variance of the population from
which the sample is drawn. It may seem somewhat strange that one can have knowledge
of the population variance and not know the value of the population mean. Indeed, it is
the usual case, in situations such as have been presented, that the population variance,
as well as the population mean, is unknown. This condition presents a problem with
respect to constructing confidence intervals. Although, for example, the statistic

z=}_'u
a/Nn

is normally distributed when the population is normally distributed and is at least approx-
imately normally distributed when n is large, regardless of the functional form of the
population, we cannot make use of this fact because o is unknown. However, all is not
lost, and the most logical solution to the problem is the one followed. We use the sam-
ple standard deviation

s= V3 —x)Y(n— 1)
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to replace o. When the sample size is large, say, greater than 30, our faith in s as an
approximation of ¢ is usually substantial, and we may be appropriately justified in using
normal distribution theory to construct a confidence interval for the population mean. In
that event, we proceed as instructed in Section 6.2.

It is when we have small samples that it becomes mandatory for us to find an alter-
native procedure for constructing confidence intervals.

As a result of the work of Gosset (2), writing under the pseudonym of “Student,”
an alternative, known as Student’s t distribution, usually shortened to t distribution, is
available to us.

The quantity

XM
s/\n

t (6.3.1)

follows this distribution.

Properties of the t Distribution The 7 distribution has the following
properties.

1. It has a mean of 0.
2. It is symmetrical about the mean.

3. In general, it has a variance greater than 1, but the variance approaches 1 as the
sample size becomes large. For df > 2, the variance of the ¢ distribution is
df/(df — 2), where df is the degrees of freedom. Alternatively, since here
df =n —1 for n >3, we may write the variance of the ¢ distribution as
(n—1)/(n = 3).

4. The variable f ranges from —00 to +00.

5. The t distribution is really a family of distributions, since there is a different dis-
tribution for each sample value of n — 1, the divisor used in computing s2. We
recall that n — 1 is referred to as degrees of freedom. Figure 6.3.1 shows ¢ distri-
butions corresponding to several degrees-of-freedom values.

/ Degrees of freedom =30
\
\ Degrees of freedom =5

Degrees of freedom =2

FIGURE 6.3.1 The t distribution for different degrees-of-freedom values.
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—— Normal distribution
=== tdistribution

FIGURE 6.3.2 Comparison of normal distribution and t distribution.

6. Compared to the normal distribution, the ¢ distribution is less peaked in the center
and has thicker tails. Figure 6.3.2 compares the ¢ distribution with the normal.

7. The ¢ distribution approaches the normal distribution as n — 1 approaches infinity.

The ¢ distribution, like the standard normal, has been extensively tabulated. One
such table is given as Table E in the Appendix. As we will see, we must take both the
confidence coefficient and degrees of freedom into account when using the table of the
t distribution.

You may use MINITAB to graph the ¢ distribution (for specified degrees-of-freedom
values) and other distributions. After designating the horizontal axis by following direc-
tions in the Set Patterned Data box, choose menu path Calc and then Probability Distri-
butions. Finally, click on the distribution desired and follow instructions. Use the Plot
dialog box to plot the graph.

Confidence Intervals Using t The general procedure for constructing con-
fidence intervals is not affected by our having to use the ¢ distribution rather than the
standard normal distribution. We still make use of the relationship expressed by

estimator + (reliability coefficient) X (standard error of the estimator)

What is different is the source of the reliability coefficient. It is now obtained from the
table of the ¢ distribution rather than from the table of the standard normal distribution.
To be more specific, when sampling is from a normal distribution whose standard devi-
ation, o, is unknown, the 100(1 — a) percent confidence interval for the population
mean, W, is given by

_ N
X x l‘(l,a/z)% (6.3.2)

We emphasize that a requirement for the strictly valid use of the ¢ distribution is that the
sample must be drawn from a normal distribution. Experience has shown, however, that
moderate departures from this requirement can be tolerated. As a consequence, the ¢ dis-
tribution is used even when it is known that the parent population deviates somewhat
from normality. Most researchers require that an assumption of, at least, a mound-shaped
population distribution be tenable.

EXAMPLE 6.3.1

Maffulli et al. (A-1) studied the effectiveness of early weightbearing and ankle mobiliza-
tion therapies following acute repair of a ruptured Achilles tendon. One of the variables
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they measured following treatment was the isometric gastrocsoleus muscle strength. In
19 subjects, the mean isometric strength for the operated limb (in newtons) was 250.8
with a standard deviation of 130.9. We assume that these 19 patients constitute a ran-
dom sample from a population of similar subjects. We wish to use these sample data to
estimate for the population the mean isometric strength after surgery.

Solution: We may use the sample mean, 250.8, as a point estimate of the population
mean but, because the population standard deviation is unknown, we must
assume the population of values to be at least approximately normally dis-
tributed before constructing a confidence interval for w. Let us assume
that such an assumption is reasonable and that a 95 percent confidence
interval is desired. We have our estimator, x, and our standard error is
s/Vn = 130.9/V/19 = 30.0305. We need now to find the reliability coeffi-
cient, the value of ¢ associated with a confidence coefficient of .95 and
n — 1 = 18 degrees of freedom. Since a 95 percent confidence interval
leaves .05 of the area under the curve of ¢ to be equally divided between
the two tails, we need the value of ¢ to the right of which lies .025 of the
area. We locate in Appendix Table E the column headed ?g;5. This is
the value of ¢ to the left of which lies .975 of the area under the curve. The
area to the right of this value is equal to the desired .025. We now locate the
number 18 in the degrees-of-freedom column. The value at the intersection
of the row labeled 18 and the column labeled ¢ g75 is the t we seek. This
value of ¢, which is our reliability coefficient, is found to be 2.1009. We
now construct our 95 percent confidence interval as follows:

250.8 £+ 2.1009(30.0305)
250.8 + 63.1
187.7,313.9 [ |

This interval may be interpreted from both the probabilistic and practical points of view.
We are 95 percent confident that the true population mean, u, is somewhere between
187.7 and 313.9 because, in repeated sampling, 95 percent of intervals constructed in
like manner will include w.

Deciding Between z and ¢ When we construct a confidence interval for a
population mean, we must decide whether to use a value of z or a value of ¢ as the reli-
ability factor. To make an appropriate choice we must consider sample size, whether the
sampled population is normally distributed, and whether the population variance is
known. Figure 6.3.3 provides a flowchart that one can use to decide quickly whether the
reliability factor should be z or 7.

Computer Analysis If you wish to have MINITAB construct a confidence inter-
val for a population mean when the 7 statistic is the appropriate reliability factor, the
command is TINTERVAL. In Windows choose 1-Sample ¢ from the Basic Statistics
menu.
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Population
variance
known?

Population
Yes normally No
distributed?

Sample Sample
size size
large? large?

Population Population Population
variance variance variance
known? known? known?

or Central limit theorem applies

FIGURE 6.3.3 Flowchart for use in deciding between z and t when making inferences
about population means. (*Use a nonparametric procedure. See Chapter 13.)

EXERCISES

6.3.1 Use the ¢ distribution to find the reliability factor for a confidence interval based on the following

confidence coefficients and sample sizes:
a b c d

Confidence coefficient .95 .99 .90 .95
Sample size 15 24 8 30

6.3.2 In a study of the effects of early Alzheimer’s disease on nondeclarative memory, Reber et al. (A-2)
used the Category Fluency Test to establish baseline persistence and semantic memory and language
abilities. The eight subjects in the sample had Category Fluency Test scores of 11, 10, 6, 3, 11, 10,
9, 11. Assume that the eight subjects constitute a simple random sample from a normally distributed
population of similar subjects with early Alzheimer’s disease.
(a) What is the point estimate of the population mean?
(b) What is the standard deviation of the sample?
(c) What is the estimated standard error of the sample mean?
(d) Construct a 95 percent confidence interval for the population mean category fluency test score.
(e) What is the precision of the estimate?
(f) State the probabilistic interpretation of the confidence interval you constructed.
(g) State the practical interpretation of the confidence interval you constructed.

6.3.3 Pedroletti et al. (A-3) reported the maximal nitric oxide diffusion rate in a sample of 15 asthmatic

schoolchildren and 15 controls as mean + standard error of the mean. For asthmatic children, they
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reported 3.5 + 0.4nL/s (nanoliters per second) and for control subjects they reported
0.7 £ .1 nL/s. For each group, determine the following:

(a) What was the sample standard deviation?

(b) What is the 95 percent confidence interval for the mean maximal nitric oxide diffusion rate
of the population?

(c) What assumptions are necessary for the validity of the confidence interval you constructed?
(d) What are the practical and probabilistic interpretations of the interval you constructed?

(e) Which interpretation would be more appropriate to use when discussing confidence intervals
with someone who has not had a course in statistics? State the reasons for your choice.

(f) If you were to construct a 90 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

(g) If you were to construct a 99 percent confidence interval for the population mean from the
information given here, would the interval be wider or narrower than the 95 percent confidence
interval? Explain your answer without actually constructing the interval.

The concern of a study by Beynnon et al. (A-4) were nine subjects with chronic anterior cru-
ciate ligament (ACL) tears. One of the variables of interest was the laxity of the anteroposte-
rior, where higher values indicate more knee instability. The researchers found that among
subjects with ACL-deficient knees, the mean laxity value was 17.4 mm with a standard devi-
ation of 4.3 mm.

(a) What is the estimated standard error of the mean?

(b) Construct the 99 percent confidence interval for the mean of the population from which the
nine subjects may be presumed to be a random sample.

(c) What is the precision of the estimate?
(d) What assumptions are necessary for the validity of the confidence interval you constructed?

A sample of 16 ten-year-old girls had a mean weight of 71.5 and a standard deviation of 12 pounds,
respectively. Assuming normality, find the 90, 95, and 99 percent confidence intervals for w.

The subjects of a study by Dugoff et al. (A-5) were 10 obstetrics and gynecology interns at the
University of Colorado Health Sciences Center. The researchers wanted to assess competence in
performing clinical breast examinations. One of the baseline measurements was the number of
such examinations performed. The following data give the number of breast examinations per-
formed for this sample of 10 interns.

Intern Number No. of Breast Exams Performed
1 30
2 40
3 8
4 20
5 26
6 35 Source: Lorraine Dugoff, Mauritha R.
7 35 Everett, Louis Vontver, and Gwyn E.
Barley, “Evaluation of Pelvic and Breast
8 20 Examination Skills of Interns in Obstetrics
9 25 and Gynecology and Internal Medicine,”
10 20 American Journal of Obstetrics and

Gynecology, 189 (2003), 655-658.
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Construct a 95 percent confidence interval for the mean of the population from which the study
subjects may be presumed to have been drawn.

6.4 CONFIDENCE INTERVAL FOR
THE DIFFERENCE BETWEEN TWO
POPULATION MEANS

Sometimes there arise cases in which we are interested in estimating the difference
between two population means. From each of the populations an independent random
sample is drawn and, from the data of each, the sample means x; and Xx,, respectively,
are computed. We learned in the previous chapter that the estimator x; — X, yields an
unbiased estimate of w; — w,, the difference between the population means. The vari-
ance of the estimator is (o3/n,) + (03/n,). We also know from Chapter 5 that, depend-
ing on the conditions, the sampling distribution of Xx; — X, may be, at least, approxi-
mately normally distributed, so that in many cases we make use of the theory relevant
to normal distributions to compute a confidence interval for w; — w,. When the popu-
lation variances are known, the 100(1 — «) percent confidence interval for p; — u, is

given by
2 2
- gy | 02
(X1 —Xp) £ Z1—a/2 nil + niz (6.4.1)

An examination of a confidence interval for the difference between population means
provides information that is helpful in deciding whether or not it is likely that the two
population means are equal. When the constructed interval does not include zero, we say
that the interval provides evidence that the two population means are not equal. When
the interval includes zero, we say that the population means may be equal.

Let us illustrate for the case where sampling is from normal distributions.

EXAMPLE 6.4.1

A research team is interested in the difference between serum uric acid levels in patients
with and without Down’s syndrome. In a large hospital for the treatment of the men-
tally retarded, a sample of 12 individuals with Down’s syndrome yielded a mean of
X, = 4.5 mg/100 ml. In a general hospital a sample of 15 normal individuals of the same
age and sex were found to have a mean value of X, = 3.4. If it is reasonable to assume
that the two populations of values are normally distributed with variances equal to 1 and
1.5, find the 95 percent confidence interval for pw; — w,.

Solution: For a point estimate of u; — w,, we use x; — X, = 4.5 — 3.4 = 1.1. The
reliability coefficient corresponding to .95 is found in Appendix Table D to
be 1.96. The standard error is

\/0’% o3 1 1.5
Oz 5, =7\ +t— =7+ —=.4282
b n ny 12 15
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The 95 percent confidence interval, then, is

1.1 + 1.96(.4282)
1.1 + .84
26, 1.94

We say that we are 95 percent confident that the true difference,
M1 — Mo, is somewhere between .26 and 1.94 because, in repeated sampling,
95 percent of the intervals constructed in this manner would include the dif-
ference between the true means.

Since the interval does not include zero, we conclude that the two pop-
ulation means are not equal. [ |

Sampling from Nonnormal Populations The construction of a confi-
dence interval for the difference between two population means when sampling is from
nonnormal populations proceeds in the same manner as in Example 6.4.1 if the sample
sizes n, and n, are large. Again, this is a result of the central limit theorem. If the pop-
ulation variances are unknown, we use the sample variances to estimate them.

EXAMPLE 6.4.2

Despite common knowledge of the adverse effects of doing so, many women continue
to smoke while pregnant. Mayhew et al. (A-6) examined the effectiveness of a smoking
cessation program for pregnant women. The mean number of cigarettes smoked daily at
the close of the program by the 328 women who completed the program was 4.3 with
a standard deviation of 5.22. Among 64 women who did not complete the program, the
mean number of cigarettes smoked per day at the close of the program was 13 with a
standard deviation of 8.97. We wish to construct a 99 percent confidence interval for the
difference between the means of the populations from which the samples may be pre-
sumed to have been selected.

Solution: No information is given regarding the shape of the distribution of cigarettes
smoked per day. Since our sample sizes are large, however, the central limit
theorem assures us that the sampling distribution of the difference between
sample means will be approximately normally distributed even if the distri-
bution of the variable in the populations is not normally distributed. We may
use this fact as justification for using the z statistic as the reliability factor
in the construction of our confidence interval. Also, since the population
standard deviations are not given, we will use the sample standard devia-
tions to estimate them. The point estimate for the difference between pop-
ulation means is the difference between sample means, 4.3 — 13.0 = —8.7.
In Appendix Table D we find the reliability factor to be 2.58. The estimated
standard error is

522 N 8.97% L1577
MR\ 38 T e
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By Equation 6.4.1, our 99 percent confidence interval for the difference
between population means is

~8.7 + 2.58(1.1577)
~11.7,-5.7

We are 99 percent confident that the mean number of cigarettes smoked per
day for women who complete the program is between 5.7 and 11.7 lower
than the mean for women who do not complete the program. ]

The t Distribution and the Difference Between NMeans When
population variances are unknown, and we wish to estimate the difference between two
population means with a confidence interval, we can use the ¢ distribution as a source of
the reliability factor if certain assumptions are met. We must know, or be willing to
assume, that the two sampled populations are normally distributed. With regard to the
population variances, we distinguish between two situations: (1) the situation in which
the population variances are equal, and (2) the situation in which they are not equal. Let
us consider each situation separately.

Population Variances Equal If the assumption of equal population variances
is justified, the two sample variances that we compute from our two independent sam-
ples may be considered as estimates of the same quantity, the common variance. It seems
logical, then, that we should somehow capitalize on this in our analysis. We do just that
and obtain a pooled estimate of the common variance. This pooled estimate is obtained
by computing the weighted average of the two sample variances. Each sample variance
is weighted by its degrees of freedom. If the sample sizes are equal, this weighted aver-
age is the arithmetic mean of the two sample variances. If the two sample sizes are
unequal, the weighted average takes advantage of the additional information provided by
the larger sample. The pooled estimate is given by the formula

n, — 1)s? + (n, — 1)s3
ﬁzh Jsi ¥ (ma = 1)sa (6.4.2)
n1+n2—2

The standard error of the estimate, then, is given by

Stom = \|— + — (6.4.3)

(}1 - }2) :t t(l—a/Z) }’lil + — (644)

The number of degrees of freedom used in determining the value of ¢ to use in construct-
ing the interval is ny + n, — 2, the denominator of Equation 6.4.2. We interpret this
interval in the usual manner.

Methods that may be used in reaching a decision about the equality of population
variances are discussed in Sections 6.10 and 7.8.
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EXAMPLE 6.4.3

The purpose of a study by Granholm et al. (A-7) was to determine the effectiveness of
an integrated outpatient dual-diagnosis treatment program for mentally ill subjects. The
authors were addressing the problem of substance abuse issues among people with severe
mental disorders. A retrospective chart review was carried out on 50 consecutive patient
referrals to the Substance Abuse/Mental Illness program at the VA San Diego Health-
care System. One of the outcome variables examined was the number of inpatient treat-
ment days for psychiatric disorder during the year following the end of the program.
Among 18 subjects with schizophrenia, the mean number of treatment days was 4.7 with
a standard deviation of 9.3. For 10 subjects with bipolar disorder, the mean number of
psychiatric disorder treatment days was 8.8 with a standard deviation of 11.5. We wish
to construct a 95 percent confidence interval for the difference between the means of the
populations represented by these two samples.

Solution: First we use Equation 6.4.2 to compute the pooled estimate of the common
population variance.

_ 2 _ 2
oo (18 = 1)(93%) + (10 — 1)(11.5)* _ 10233
P 18 + 10 — 2

When we enter Appendix Table E with 18 + 10 — 2 = 26 degrees of free-
dom and a desired confidence level of .95, we find that the reliability factor
is 2.0555. By Expression 6.4.4 we compute the 95 percent confidence inter-
val for the difference between population means as follows:

102.33 4 102.33
10

(47 — 8.8) + 2.0555\/

—4.1 £ 8.20
—12.3,4.10

We are 95 percent confident that the difference between population means
is somewhere between —12.3 and 4.10. We can say this because we know
that if we were to repeat the study many, many times, and compute con-
fidence intervals in the same way, about 95 percent of the intervals would
include the difference between the population means.

Since the interval includes zero, we conclude that the population
means may be equal. u

Population Variances Not Equal When one is unable to conclude that the
variances of two populations of interest are equal, even though the two populations may
be assumed to be normally distributed, it is not proper to use the ¢ distribution as just
outlined in constructing confidence intervals.

A solution to the problem of unequal variances was proposed by Behrens (3) and
later was verified and generalized by Fisher (4, 5). Solutions have also been proposed by
Neyman (6), Scheffé (7, 8), and Welch (9, 10). The problem is discussed in detail by
Cochran (11).
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The problem revolves around the fact that the quantity

(X1 = %) = (w1 — m2)

does not follow a ¢ distribution with n; + n, — 2 degrees of freedom when the popu-
lation variances are not equal. Consequently, the ¢ distribution cannot be used in the usual
way to obtain the reliability factor for the confidence interval for the difference between
the means of two populations that have unequal variances. The solution proposed by
Cochran consists of computing the reliability factor, #;4/,, by the following formula:

, Wltl + Wyl
liapp = 7% T, (6.4.5)

where w, = s%/nl, Wy = s%/nz, ;= f—op for ny — 1 degrees of freedom, and 7, =
t1ap for ny — 1 degrees of freedom. An approximate 100(1 — «) percent confidence
interval for w; — u, is given by

o , st 83
(xl - X2) + t(l—a/Z) l’lil + }’172 (646)

Adjustments to the reliability coefficient may also be made by reducing the number of
degrees of freedom instead of modifying ¢ in the manner just demonstrated. Many com-
puter programs calculate an adjusted reliability coefficient in this way.

EXAMPLE 6.4.4

Let us reexamine the data presented in Example 6.4.3 from the study by Granholm et al.
(A-7). Recall that among the 18 subjects with schizophrenia, the mean number of treat-
ment days was 4.7 with a standard deviation of 9.3. In the bipolar disorder treatment group
of 10 subjects, the mean number of psychiatric disorder treatment days was 8.8 with a
standard deviation of 11.5. We assume that the two populations of number of psychiatric
disorder days are approximately normally distributed. Now let us assume, however, that
the two population variances are not equal. We wish to construct a 95 percent confidence
interval for the difference between the means of the two populations represented by the
samples.

Solution: We will use ¢ as found in Equation 6.4.5 for the reliability factor. Refer-
ence to Appendix Table E shows that with 17 degrees of freedom and
1 —.05/2 = 975,t; = 2.1098. Similarly, with 9 degrees of freedom
and 1 — .05/2 = .975,¢, = 2.2622. We now compute

o (9.32/18)(2.1098) + (11.5%/10)(2.2622) e
(9.32/18) + (11.5%/10)
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Population
Yes normally No
distributed?
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variances
known?
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known?
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Central limit theorem applies

FIGURE 6.4.1 Flowchart for use in deciding whether the reliability factor should be z t, or
t' when making inferences about the difference between two population means. (*Use a
nonparametric procedure. See Chapter 13.)

By Expression 6.4.6 we now construct the 95 percent confidence interval for
the difference between the two population means.

932  11.5?
(47 — 8.8) + 22216, [—— + ——
18 10
(4.7 — 8.8) + 2.2216(4.246175)
-13.5,5.3

Since the interval does include zero, we conclude that the two population
means may be equal. ]

When constructing a confidence interval for the difference between two population
means one may use Figure 6.4.1 to decide quickly whether the reliability factor should
be z,t, or t'.

EXERCISES

For each of the following exercises construct 90, 95, and 99 percent confidence intervals for the
difference between population means. Where appropriate, state the assumptions that make your
method valid. State the practical and probabilistic interpretations of each interval that you con-
struct. Consider the variables under consideration in each exercise, and state what use you think
researchers might make of your results.

6.4.1 Iannelo et al. (A-8) performed a study that examined free fatty acid concentrations in 18 lean sub-
jects and 11 obese subjects. The lean subjects had a mean level of 299 wEqg/L with a standard
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6.4.2

6.4.3

6.4.4

6.4.5

6.4.6

error of the mean of 30, while the obese subjects had a mean of 744 uEq/L with a standard error
of the mean of 62.

Chan et al. (A-9) developed a questionnaire to assess knowledge of prostate cancer. There was a
total of 36 questions to which respondents could answer “agree,” “disagree,” or “don’t know.”
Scores could range from O to 36. The mean scores for Caucasian study participants was 20.6 with
a standard deviation of 5.8, while the mean scores for African-American men was 17.4 with a
standard deviation of 5.8. The number of Caucasian study participants was 185, and the number
of African-Americans was 86.

The objectives of a study by van Vollenhoven et al. (A-10) were to examine the effectiveness of
etanercept alone and etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. The researchers conducted a retrospective study using data from the STURE database,
which collects efficacy and safety data for all patients starting biological treatments at the major
hospitals in Stockholm, Sweden. The researchers identified 40 subjects who were prescribed etan-
ercept only and 57 subjects who were given etanercept with methotrexate. Using a 100-mm visual
analogue scale (the higher the value, the greater the pain), researchers found that after 3 months
of treatment, the mean pain score was 36.4 with a standard error of the mean of 5.5 for subjects
taking etanercept only. In the sample receiving etanercept plus methotrexate, the mean score was
30.5 with a standard error of the mean of 4.6.

The purpose of a study by Nozawa et al. (A-11) was to determine the effectiveness of segmental
wire fixation in athletes with spondylolysis. Between 1993 and 2000, 20 athletes (6 women and
14 men) with lumbar spondylolysis were treated surgically with the technique. The following table
gives the Japanese Orthopaedic Association (JOA) evaluation score for lower back pain syndrome
for men and women prior to the surgery. The lower score indicates less pain.

Gender JOA scores

Female 14, 13, 24, 21, 20, 21

Male 21, 26, 24, 24, 22, 23, 18, 24, 13, 22, 25, 23, 21, 25
Source: Satoshi Nozawa, Katsuji Shimizu, Kei Miyamoto, and Mizuo
Tanaka, “Repair of Pars Interarticularis Defect by Segmental Wire Fixa-

tion in Young Athletes with Spondylolysis,” American Journal of Sports
Medicine, 31 (2003), 359-364.

Krantz et al. (A-12) investigated dose-related effects of methadone in subjects with torsade de
pointes, a polymorphic ventricular tachycardia. In the study of 17 subjects, nine were being
treated with methadone for opiate dependency and eight for chronic pain. The mean daily dose
of methadone in the opiate dependency group was 541 mg/day with a standard deviation of
156, while the chronic pain group received a mean dose of 269 mg/day with a standard devi-
ation of 316.

Transverse diameter measurements on the hearts of adult males and females gave the following
results:

Group Sample Size x(cm) s (cm)
Males 12 13.21 1.05
Females 9 11.00 1.01

Assume normally distributed populations with equal variances.
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6.4.7 Twenty-four experimental animals with vitamin D deficiency were divided equally into two groups.
Group 1 received treatment consisting of a diet that provided vitamin D. The second group was
not treated. At the end of the experimental period, serum calcium determinations were made with
the following results:

=I
|

Treated group: = 11.1 mg/100 ml, s = 1.5

7.8 mg/100 ml, s = 2.0

=l
[

Untreated group:
Assume normally distributed populations with equal variances.

6.4.8 Two groups of children were given visual acuity tests. Group 1 was composed of 11 children
who receive their health care from private physicians. The mean score for this group was 26
with a standard deviation of 5. Group 2 was composed of 14 children who receive their health
care from the health department, and had an average score of 21 with a standard deviation of
6. Assume normally distributed populations with equal variances.

6.4.9 The average length of stay of a sample of 20 patients discharged from a general hospital was
7 days with a standard deviation of 2 days. A sample of 24 patients discharged from a chronic
disease hospital had an average length of stay of 36 days with a standard deviation of 10 days.
Assume normally distributed populations with unequal variances.

6.4.10 In a study of factors thought to be responsible for the adverse effects of smoking on human repro-
duction, cadmium level determinations (nanograms per gram) were made on placenta tissue of a
sample of 14 mothers who were smokers and an independent random sample of 18 nonsmoking
mothers. The results were as follows:

Nonsmokers:  10.0, 8.4, 12.8, 25.0, 11.8, 9.8, 12.5, 15.4, 23.5,
94,251, 19.5, 255, 9.8, 7.5, 11.8, 12.2, 15.0
Smokers:  30.0, 30.1, 15.0, 24.1, 30.5, 17.8, 16.8, 14.8,
13.4, 285, 175, 14.4, 12.5, 20.4

Does it appear likely that the mean cadmium level is higher among smokers than nonsmokers?
Why do you reach this conclusion?

6.5 CONFIDENCE INTERVAL FOR
A POPULATION PROPORTION

Many questions of interest to the health worker relate to population proportions. What
proportion of patients who receive a particular type of treatment recover? What propor-
tion of some population has a certain disease? What proportion of a population is immune
to a certain disease?

To estimate a population proportion we proceed in the same manner as when esti-
mating a population mean. A sample is drawn from the population of interest, and the
sample proportion, p, is computed. This sample proportion is used as the point estimator
of the population proportion. A confidence interval is obtained by the general formula

estimator + (reliability coefficient) X (standard error of the estimator)

In the previous chapter we saw that when both np and n(1 — p) are greater than
5, we may consider the sampling distribution of p to be quite close to the normal
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distribution. When this condition is met, our reliability coefficient is some value of z
from the standard normal distribution. The standard error, we have seen, is equal to
o5 = Vp(1 — p)/n. Since p, the parameter we are trying to estimate, is unknown, we

must use p as an estimate. Thus, we estimate o; by Vp(1 — p)/n, and our

100(1 — a) percent confidence interval for p is given by
P £ 21apVP(1l — p)/n 6.5.1)

We give this interval both the probabilistic and practical interpretations.

EXAMPLE 6.5.1

The Pew Internet and American Life Project (A-13) reported in 2003 that 18 percent of
Internet users have used it to search for information regarding experimental treatments
or medicines. The sample consisted of 1220 adult Internet users, and information was
collected from telephone interviews. We wish to construct a 95 percent confidence inter-
val for the proportion of Internet users in the sampled population who have searched for
information on experimental treatments or medicines.

Solution: We shall assume that the 1220 subjects were sampled in random fashion.
The best point estimate of the population proportion is p = .18. The size
of the sample and our estimate of p are of sufficient magnitude to justify
use of the standard normal distribution in constructing a confidence inter-
val. The reliability coefficient corresponding to a confidence level of .95

is 1.96, and our estimate of the standard error o; is Vp(1 — p)/n=

V/(.18)(.82)/1220 = .0110. The 95 percent confidence interval for p,
based on these data, is

18 + 1.96(.0110)
18 + 022
158, 202

We are 95 percent confident that the population proportion p is between .158
and .202 because, in repeated sampling, about 95 percent of the intervals con-
structed in the manner of the present single interval would include the true p.
On the basis of these results we would expect, with 95 percent confidence, to
find somewhere between 15.8 percent and 20.2 percent of adult Internet users
to have used it for information on medicine or experimental treatments. H

EXERCISES

6.5.1

For each of the following exercises state the practical and probabilistic interpretations of the inter-
val that you construct. Identify each component of the interval: point estimate, reliability coeffi-
cient, and standard error. Explain why the reliability coefficients are not the same for all exercises.

Luna et al. (A-14) studied patients who were mechanically ventilated in the intensive care unit
of six hospitals in Buenos Aires, Argentina. The researchers found that of 472 mechanically
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ventilated patients, 63 had clinical evidence of ventilator-associated pneumonia (VAP). Construct
a 95 percent confidence interval for the proportion of all mechanically ventilated patients at these
hospitals who may be expected to develop VAP.

6.5.2 Q waves on the electrocardiogram, according to Schinkel et al. (A-15), are often considered to be
reflective of irreversibly scarred myocardium. These researchers assert, however, that there are
some indications that residual viable tissue may be present in Q-wave-infarcted regions. Their study
of 150 patients with chronic electrocardiographic Q-wave infarction found 202 dysfunctional
Q-wave regions. With dobutamine stress echocardiography (DSE), they noted that 118 of these
202 regions were viable with information from the DSE testing. Construct a 90 percent confidence
interval for the proportion of viable regions that one might expect to find a population of dysfunc-
tional Q-wave regions.

6.5.3 In a study by von zur Muhlen et al. (A-16), 136 subjects with syncope or near syncope were stud-
ied. Syncope is the temporary loss of consciousness due to a sudden decline in blood flow to the
brain. Of these subjects, 75 also reported having cardiovascular disease. Construct a 99 percent
confidence interval for the population proportion of subjects with syncope or near syncope who
also have cardiovascular disease.

6.5.4 In a simple random sample of 125 unemployed male high-school dropouts between the ages of 16
and 21, inclusive, 88 stated that they were regular consumers of alcoholic beverages. Construct a
95 percent confidence interval for the population proportion.

6.6 CONFIDENCE INTERVAL FOR
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The magnitude of the difference between two population proportions is often of inter-
est. We may want to compare, for example, men and women, two age groups, two
socioeconomic groups, or two diagnostic groups with respect to the proportion pos-
sessing some characteristic of interest. An unbiased point estimator of the difference
between two population proportions is provided by the difference between sample pro-
portions, p; — p,. As we have seen, when n; and n, are large and the population
proportions are not too close to 0 or 1, the central limit theorem applies and normal
distribution theory may be employed to obtain confidence intervals. The standard error
of the estimate usually must be estimated by

\/ﬁl(l — P +ﬁ2(1 — P)

n np

Di=P»

because, as a rule, the population proportions are unknown. A 100(1 — «) percent con-
fidence interval for p; — p, is given by

. pi(1 = p1)  pa(l = Po)
(b1 — b)) £ Zla/z\/ + (6.6.1)

n nj

We may interpret this interval from both the probabilistic and practical points of view.
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EXAMPLE 6.6.1

Connor et al. (A-17) investigated gender differences in proactive and reactive aggression
in a sample of 323 children and adolescents (68 females and 255 males). The subjects
were from unsolicited consecutive referrals to a residential treatment center and a pedi-
atric psychopharmacology clinic serving a tertiary hospital and medical school. In the
sample, 31 of the females and 53 of the males reported sexual abuse. We wish to con-
struct a 99 percent confidence interval for the difference between the proportions of sex-
ual abuse in the two sampled populations.

Solution: The sample proportions for the females and males are, respectively, pr =
31/68 = .4559 and p), = 53/255 = .2078. The difference between sample
proportions is pr — py, = 4559 — .2078 = .2481. The estimated standard
error of the difference between sample proportions is

R \/ (4559)(.5441)  (.2078)(.7922)
7 68 " 255

PF—Pm

.0655

The reliability factor from Appendix Table D is 2.58, so that our confidence
interval, by Expression 6.6.1, is
2481 + 2.58(.0655)
.0791, 4171
We are 99 percent confident that for the sampled populations, the proportion

of cases of reported sexual abuse among females exceeds the proportion of
cases of reported sexual abuse among males by somewhere between .0791

and .4171.
Since the interval does not include zero, we conclude that the two
population proportions are not equal. [ |

EXERCISES

6.6.1

6.6.2

For each of the following exercises state the practical and probabilistic interpretations of the inter-
val that you construct. Identify each component of the interval: point estimate, reliability coeffi-
cient, and standard error. Explain why the reliability coefficients are not the same for all exercises.

Horwitz et al. (A-18) studied 637 persons who were identified by court records from 1967 to 1971
as having experienced abuse or neglect. For a control group, they located 510 subjects who as chil-
dren attended the same elementary school and lived within a five-block radius of those in the
abused/neglected group. In the abusedheglected group, and control group, 114 and 57 subjects,
respectively, had developed antisocial personality disorders over their lifetimes. Construct a 95 per-
cent confidence interval for the difference between the proportions of subjects developing antiso-
cial personality disorders one might expect to find in the populations of subjects from which the
subjects of this study may be presumed to have been drawn.

The objective of a randomized controlled trial by Adab et al. (A-19) was to determine whether pro-
viding women with additional information on the pros and cons of screening for cervical cancer would
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increase the willingness to be screened. A treatment group of 138 women received a leaflet on screen-
ing that contained more information (average individual risk for cervical cancer, likelihood of positive
finding, the possibility of false positive/negative results, etc.) than the standard leaflet developed by
the British National Health Service that 136 women in a control group received. In the treatment group,
109 women indicated they wanted to have the screening test for cervical cancer while in the control
group, 120 indicated they wanted the screening test. Construct a 95 percent confidence interval for the
difference in proportions for the two populations represented by these samples.

6.6.3 Spertus et al. (A-20) performed a randomized single blind study for subjects with stable coronary
artery disease. They randomized subjects into two treatment groups. The first group had current
angina medications optimized, and the second group was tapered off existing medications and then
started on long-acting diltiazem at 180 mg/day. The researchers performed several tests to deter-
mine if there were significant differences in the two treatment groups at baseline. One of the char-
acteristics of interest was the difference in the percentages of subjects who had reported a history
of congestive heart failure. In the group where current medications were optimized, 16 of 49 sub-
jects reported a history of congestive heart failure. In the subjects placed on the diltiazem, 12 of
the 51 subjects reported a history of congestive heart failure. State the assumptions that you think
are necessary and construct a 95 percent confidence interval for the difference between the pro-
portions of those reporting congestive heart failure within the two populations from which we pre-
sume these treatment groups to have been selected.

6.6.4 To study the difference in drug therapy adherence among subjects with depression who received usual
care and those who received care in a collaborative care model was the goal of a study conducted
by Finley et al. (A-21). The collaborative care model emphasized the role of clinical pharmacists in
providing drug therapy management and treatment follow-up. Of the 50 subjects receiving usual care,
24 adhered to the prescribed drug regimen, while 50 out of 75 subjects in the collaborative care model
adhered to the drug regimen. Construct a 90 percent confidence interval for the difference in adherence
proportions for the populations of subjects represented by these two samples.

6.7 DETERMINATION OF SAMPLE SIZE
FOR ESTIMATING MEANS

The question of how large a sample to take arises early in the planning of any survey
or experiment. This is an important question that should not be treated lightly. To take
a larger sample than is needed to achieve the desired results is wasteful of resources,
whereas very small samples often lead to results that are of no practical use. Let us con-
sider, then, how one may go about determining the sample size that is needed in a given
situation. In this section, we present a method for determining the sample size required
for estimating a population mean, and in the next section we apply this method to the
case of sample size determination when the parameter to be estimated is a population
proportion. By straightforward extensions of these methods, sample sizes required for
more complicated situations can be determined.

Objectives The objectives in interval estimation are to obtain narrow intervals with
high reliability. If we look at the components of a confidence interval, we see that the
width of the interval is determined by the magnitude of the quantity

(reliability coefficient) X (standard error of the estimator)
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since the total width of the interval is twice this amount. We have learned that this quan-
tity is usually called the precision of the estimate or the margin of error. For a given
standard error, increasing reliability means a larger reliability coefficient. But a larger
reliability coefficient for a fixed standard error makes for a wider interval.

On the other hand, if we fix the reliability coefficient, the only way to reduce the
width of the interval is to reduce the standard error. Since the standard error is equal to
a/Vn, and since o is a constant, the only way to obtain a small standard error is to take
a large sample. How large a sample? That depends on the size of o, the population stan-
dard deviation, the desired degree of reliability, and the desired interval width.

Let us suppose we want an interval that extends d units on either side of the esti-
mator. We can write

d = (reliability coefficient) X (standard error of the estimator) (6.7.1)

If sampling is to be with replacement, from an infinite population, or from a pop-
ulation that is sufficiently large to warrant our ignoring the finite population correction,
Equation 6.7.1 becomes

d=z7—7+ 6.7.2
RV (©7.2)
which, when solved for n, gives
2 2
7o
n = 7 (6.7.3)

When sampling is without replacement from a small finite population, the finite popula-
tion correction is required and Equation 6.7.1 becomes

o N —n
d=z7—7+ 6.7.4
NN =1 6.7.4)
which, when solved for n, gives
Nz2o2
n= S (6.1.5)

d*(N — 1) + 7%?

If the finite population correction can be ignored, Equation 6.7.5 reduces to Equa-
tion 6.7.3.

Estimating o? The formulas for sample size require knowledge of o but, as has
been pointed out, the population variance is, as a rule, unknown. As a result, o? has to
be estimated. The most frequently used sources of estimates for o are the following:

1. A pilot or preliminary sample may be drawn from the population, and the variance
computed from this sample may be used as an estimate of o>. Observations used
in the pilot sample may be counted as part of the final sample, so that n (the com-
puted sample size) — n; (the pilot sample size) = n, (the number of observations
needed to satisfy the total sample size requirement).
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2. Estimates of o> may be available from previous or similar studies.

3. If it is thought that the population from which the sample is to be drawn is approx-
imately normally distributed, one may use the fact that the range is approxi-
mately equal to six standard deviations and compute o ~ R/6. This method
requires some knowledge of the smallest and largest value of the variable in the
population.

EXAMPLE 6.7.1

A health department nutritionist, wishing to conduct a survey among a population of
teenage girls to determine their average daily protein intake (measured in grams), is seek-
ing the advice of a biostatistician relative to the sample size that should be taken.

What procedure does the biostatistician follow in providing assistance to the nutri-
tionist? Before the statistician can be of help to the nutritionist, the latter must provide
three items of information: (1) the desired width of the confidence interval, (2) the level
of confidence desired, and (3) the magnitude of the population variance.

Solution: Let us assume that the nutritionist would like an interval about 10 grams
wide; that is, the estimate should be within about 5 grams of the popula-
tion mean in either direction. In other words, a margin of error of 5 grams
is desired. Let us also assume that a confidence coefficient of .95 is decided
on and that, from past experience, the nutritionist feels that the population
standard deviation is probably about 20 grams. The statistician now has the
necessary information to compute the sample size: z = 1.96, 0 = 20, and
d = 5. Let us assume that the population of interest is large so that the stat-
istician may ignore the finite population correction and use Equation 6.7.3.
On making proper substitutions, the value of n is found to be

(1.96)* (20)*
(5)°
= 61.47
The nutritionist is advised to take a sample of size 62. When cal-
culating a sample size by Equation 6.7.3 or Equation 6.7.5, we round up

to the next-largest whole number if the calculations yield a number that
is not itself an integer. ]

EXERCISES

6.7.1

6.7.2

A hospital administrator wishes to estimate the mean weight of babies born in her hospital. How
large a sample of birth records should be taken if she wants a 99 percent confidence interval that
is 1 pound wide? Assume that a reasonable estimate of o is 1 pound. What sample size is required
if the confidence coefficient is lowered to .95?

The director of the rabies control section in a city health department wishes to draw a sample from
the department’s records of dog bites reported during the past year in order to estimate the mean
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age of persons bitten. He wants a 95 percent confidence interval, he will be satisfied to let d = 2.5,
and from previous studies he estimates the population standard deviation to be about 15 years.
How large a sample should be drawn?

6.7.3 A physician would like to know the mean fasting blood glucose value (milligrams per 100 ml) of
patients seen in a diabetes clinic over the past 10 years. Determine the number of records the
physician should examine in order to obtain a 90 percent confidence interval for w if the desired
width of the interval is 6 units and a pilot sample yields a variance of 60.

6.7.4 For multiple sclerosis patients we wish to estimate the mean age at which the disease was first
diagnosed. We want a 95 percent confidence interval that is 10 years wide. If the population vari-
ance is 90, how large should our sample be?

6.8 DETERMINATION OF SAMPLE SIZE
FOR ESTIMATING PROPORTIONS

The method of sample size determination when a population proportion is to be esti-
mated is essentially the same as that described for estimating a population mean. We
make use of the fact that one-half the desired interval, d, may be set equal to the prod-
uct of the reliability coefficient and the standard error.

Assuming that random sampling and conditions warranting approximate nor-
mality of the distribution of p leads to the following formula for » when sampling
is with replacement, when sampling is from an infinite population, or when the sam-
pled population is large enough to make use of the finite population correction
unnecessary,

2
rq
where ¢ = 1 — p.
If the finite population correction cannot be disregarded, the proper formula for
n is
Nz’pq

n = 682
d*(N = 1) + z%pq (.82

When N is large in comparison to n (that is, n/N =< .05) the finite population cor-
rection may be ignored, and Equation 6.8.2 reduces to Equation 6.8.1.

Estimating p As we see, both formulas require knowledge of p, the proportion in
the population possessing the characteristic of interest. Since this is the parameter we
are trying to estimate, it, obviously, will be unknown. One solution to this problem is to
take a pilot sample and compute an estimate to be used in place of p in the formula for
n. Sometimes an investigator will have some notion of an upper bound for p that can be
used in the formula. For example, if it is desired to estimate the proportion of some pop-
ulation who have a certain disability, we may feel that the true proportion cannot be
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greater than, say, .30. We then substitute .30 for p in the formula for n. If it is impossi-
ble to come up with a better estimate, one may set p equal to .5 and solve for n. Since
p = .5 in the formula yields the maximum value of n, this procedure will give a large
enough sample for the desired reliability and interval width. It may, however, be larger
than needed and result in a more expensive sample than if a better estimate of p had
been available. This procedure should be used only if one is unable to arrive at a better
estimate of p.

EXAMPLE 6.8.1

A survey is being planned to determine what proportion of families in a certain area are
medically indigent. It is believed that the proportion cannot be greater than .35. A 95
percent confidence interval is desired with d = .05. What size sample of families should
be selected?

Solution: If the finite population correction can be ignored, we have

o (1.96)%(.35)(.65) 349,50
(.05)?

The necessary sample size, then, is 350. [ |

EXERCISES

6.8.1

6.8.2

6.8.3

6.8.4

An epidemiologist wishes to know what proportion of adults living in a large metropolitan area
have subtype ayr hepatitis B virus. Determine the sample size that would be required to estimate
the true proportion to within .03 with 95 percent confidence. In a similar metropolitan area the
proportion of adults with the characteristic is reported to be .20. If data from another metropoli-
tan area were not available and a pilot sample could not be drawn, what sample size would be
required?

A survey is planned to determine what proportion of the high-school students in a metropolitan
school system have regularly smoked marijuana. If no estimate of p is available from previous
studies, a pilot sample cannot be drawn, a confidence coefficient of .95 is desired, and d = .04 is
to be used, determine the appropriate sample size. What sample size would be required if 99 per-
cent confidence were desired?

A hospital administrator wishes to know what proportion of discharged patients is unhappy with
the care received during hospitalization. How large a sample should be drawn if we let d = .05,
the confidence coefficient is .95, and no other information is available? How large should the sam-
ple be if p is approximated by .25?

A health planning agency wishes to know, for a certain geographic region, what proportion of
patients admitted to hospitals for the treatment of trauma die in the hospital. A 95 percent confi-
dence interval is desired, the width of the interval must be .06, and the population proportion, from
other evidence, is estimated to be .20. How large a sample is needed?
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6.9 CONFIDENCE INTERVAL FOR
THE VARIANCE OF A NORMALLY
DISTRIBUTED POPULATION

Point Estimation of the Population Variance In previous sections
it has been suggested that when a population variance is unknown, the sample variance
may be used as an estimator. You may have wondered about the quality of this estima-
tor. We have discussed only one criterion of quality—unbiasedness—so let us see if the
sample variance is an unbiased estimator of the population variance. To be unbiased,
the average value of the sample variance over all possible samples must be equal to the
population variance. That is, the expression E(sz) = ¢ must hold. To see if this con-
dition holds for a particular situation, let us refer to the example of constructing a
sampling distribution given in Section 5.3. In Table 5.3.1 we have all possible sam-
ples of size 2 from the population consisting of the values 6, 8, 10, 12, and 14. It will
be recalled that two measures of dispersion for this population were computed as
follows:

If we compute the sample variance s> = X (x; — x)?/(n — 1) for each of the possible
samples shown in Table 5.3.1, we obtain the sample variances shown in Table 6.9.1.

Sampling with Replacement If sampling is with replacement, the expected
value of s is obtained by taking the mean of all sample variances in Table 6.9.1. When
we do this, we have

Es%_o+2+.-~+2+0_@_8
N" 25 25

E(s?) =

and we see, for example, that when sampling is with replacement E(s?) = o, where
s?=3(x; = X)¥(n — 1) and o> = 3 (x; — p)*N.

TABLE 6.9.1 Variances Computed from Samples
Shown in Table 5.3.1

Second Draw
6 8 10 12 14
6 0 2 8 18 32
8 2 0 2 8 18
First Draw 10 8 2 0 2 8
12 18 8 2 0 2
14 32 18 8 2 0
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Sampling Without Replacement If we consider the case where sampling
is without replacement, the expected value of s is obtained by taking the mean of all
variances above (or below) the principal diagonal. That is,

2s%_2+8+-~-+2_@_10
NG 10 10

E(s?) =

which, we see, is not equal to ¢, but is equal to §* = 3 (x; — w)%/(N — 1).
These results are examples of general principles, as it can be shown that, in
general,

E(s?) = o? when sampling is with replacement

E(s?) = §? when sampling is without replacement

When N is large, N — 1 and N will be approximately equal and, consequently, o~
and S2 will be approximately equal.

These results justify our use of s = 3 (x; — x)?/(n — 1) when computing the
sample variance. In passing, let us note that although s* is an unbiased estimator of
0% s is not an unbiased estimator of o. The bias, however, diminishes rapidly as n
increases.

Interval Estimation of a Population Variance With a point estimate
available, it is logical to inquire about the construction of a confidence interval for a pop-
ulation variance. Whether we are successful in constructing a confidence interval for o
will depend on our ability to find an appropriate sampling distribution.

The Chi-Square Distribution Confidence intervals for o> are usually based
on the sampling distribution of (n — 1)s2/o%. If samples of size n are drawn from a nor-
mally distributed population, this quantity has a distribution known as the chi-square ( x*)
distribution with n — 1 degrees of freedom. As we will say more about this distribution in
chapter 12, we only say here that it is the distribution that the quantity (n — 1)s%o? fol-
lows and that it is useful in finding confidence intervals for o> when the assumption that
the population is normally distributed holds true.

Figure 6.9.1 shows chi-square distributions for several values of degrees of free-
dom. Percentiles of the chi-square distribution are given in Appendix Table F. The col-
umn headings give the values of x? to the left of which lies a proportion of the total
area under the curve equal to the subscript of y2. The row labels are the degrees of
freedom.

To obtain a 100(1 — a) percent confidence interval for o, we first obtain the
100(1 — «) percent confidence interval for (n — 1)s%o?. To do this, we select the val-
ues of x° from Appendix Table F in such a way that a/2 is to the left of the smaller value
and /2 is to the right of the larger value. In other words, the two values of x? are selected
in such a way that « is divided equally between the two tails of the distribution. We may
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%2
FIGURE 6.9.1 Chi-square distributions for several values of degrees of freedom k.
(Source: Paul G. Hoel and Raymond J. Jessen, Basic Statistics for Business and
Economics, Wiley, 1971. Used with permission.)

designate these two values of x? as Xﬁ/z and X%*(a/2)’ respectively. The 100(1 — «) per-
cent confidence interval for (n — 1)s?/o, then, is given by

(n—1)s?
2 2
Xaj2 < 2 < Xi-(a/2)

We now manipulate this expression in such a way that we obtain an expression with
o alone as the middle term. First, let us divide each term by (n — 1)s> to get

Xo/2 1 Xi-(a/2)
1S 3 2
(n — D)s o (n—1)s
If we take the reciprocal of this expression, we have
(n— 1)s? (n— 1)s?
Xﬁ/z X%—(a/Z)

Note that the direction of the inequalities changed when we took the reciprocals. If we
reverse the order of the terms, we have

(n — 1)s? Y (n — 1)s?

(6.9.1)
X%—(a/z) Xﬁ/z
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which is the 100(1 — «) percent confidence interval for . If we take the square root
of each term in Expression 6.9.1, we have the following 100(1 — «) percent confidence
interval for o, the population standard deviation:

(n— 1)s2 e (n — 1)s?

(6.9.2)
X%—(a/z) Xﬁ/z

EXAMPLE 6.9.1

In a study of the effectiveness of a gluten-free diet in first-degree relatives of patients with
type I diabetics, Hummel et al. (A-22) placed seven subjects on a gluten-free diet for
12 months. Prior to the diet, they took baseline measurements of several antibodies and
autoantibodies, one of which was the diabetes related insulin autoantibody (IAA). The TAA
levels were measured by radiobinding assay. The seven subjects had IAA units of

9.7, 123, 11.2, 5.1, 24.8, 14.8, 17.7

We wish to estimate from the data in this sample the variance of the IAA units in the
population from which the sample was drawn and construct a 95 percent confidence inter-
val for this estimate.

Solution: The sample yielded a value of s> = 39.763. The degrees of freedom
are n — 1 = 6. The appropriate values of x> from Appendix Table F are
X%*(a/Z) =14.449 and Xi/z = 1.237. Our 95 percent confidence interval for
o is
6(39.763) ey < 6(39.763)
14.449 1.237

16.512 < ¢ < 192.868

The 95 percent confidence interval for o is
4.063 < o < 13.888

We are 95 percent confident that the parameters being estimated are within
the specified limits, because we know that in the long run, in repeated sam-
pling, 95 percent of intervals constructed as illustrated would include the
respective parameters. [ |

Some Precautions Although this method of constructing confidence intervals
for o? is widely used, it is not without its drawbacks. First, the assumption of the nor-
mality of the population from which the sample is drawn is crucial, and results may be
misleading if the assumption is ignored.

Another difficulty with these intervals results from the fact that the estimator is not
in the center of the confidence interval, as is the case with the confidence interval for w.
This is because the chi-square distribution, unlike the normal, is not symmetric. The prac-
tical implication of this is that the method for the construction of confidence intervals
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for o?, which has just been described, does not yield the shortest possible confidence
intervals. Tate and Klett (12) give tables that may be used to overcome this difficulty.

EXERCISES

6.9.1

6.9.2

6.9.3

6.9.4

6.9.5

6.9.6

6.9.7

A study by Aizenberg et al. (A-23) examined the efficacy of sildenafil, a potent phosphodiesterase
inhibitor, in the treatment of elderly men with erectile dysfunction induced by antidepressant treat-
ment for major depressive disorder. The ages of the 10 enrollees in the study were

74, 81, 70, 70, 74, 77, 76, 70, 71, 72

Assume that the subjects in this sample constitute a simple random sample drawn from a popula-
tion of similar subjects. Construct a 95 percent confidence interval for the variance of the ages of
subjects in the population.

Borden et al. (A-24) performed experiments on cadaveric knees to test the effectiveness of several
meniscal repair techniques. Specimens were loaded into a servohydraulic device and tension-loaded
to failure. The biomechanical testing was performed by using a slow loading rate to simulate the
stresses that the medial meniscus might be subjected to during early rehabilitation exercises and
activities of daily living. One of the measures is the amount of displacement that occurs. Of the
12 specimens receiving the vertical mattress suture and the FasT-FIX method, the displacement
values measured in millimeters are 16.9, 20.2, 20.1, 15.7, 13.9, 14.9, 18.0, 18.5, 9.2, 18.8, 22.8,
17.5. Construct a 90 percent confidence interval for the variance of the displacement in millime-
ters for a population of subjects receiving these repair techniques.

Forced vital capacity determinations were made on 20 healthy adult males. The sample variance
was 1,000,000. Construct 90 percent confidence intervals for o’ and o.

In a study of myocardial transit times, appearance transit times were obtained on a sample of
30 patients with coronary artery disease. The sample variance was found to be 1.03. Construct
99 percent confidence intervals for o and o.

A sample of 25 physically and mentally healthy males participated in a sleep experiment in which
the percentage of each participant’s total sleeping time spent in a certain stage of sleep was
recorded. The variance computed from the sample data was 2.25. Construct 95 percent confidence
intervals for ¢ and o.

Hemoglobin determinations were made on 16 animals exposed to a harmful chemical. The follow-
ing observations were recorded: 15.6, 14.8, 14.4, 16.6, 13.8, 14.0, 17.3, 17.4, 18.6, 16.2, 14.7, 15.7,
16.4, 13.9, 14.8, 17.5. Construct 95 percent confidence intervals for o? and o.

Twenty air samples taken at the same site over a period of 6 months showed the following amounts
of suspended particulate matter (micrograms per cubic meter of air):

68 22 36 32
42 24 28 38
30 44 28 27
28 43 45 50
79 74 57 21

Consider these measurements to be a random sample from a population of normally distributed
measurements, and construct a 95 percent confidence interval for the population variance.
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6.10 CONFIDENCE INTERVAL

FOR THE RATIO OF THE VARIANCES
OF TWO NORMALLY DISTRIBUTED
POPULATIONS

It is frequently of interest to compare two variances, and one way to do this is to form
their ratio, o7/03. If two variances are equal, their ratio will be equal to 1. We usually
will not know the variances of populations of interest, and, consequently, any compar-
isons we make will be based on sample variances. In other words, we may wish to esti-
mate the ratio of two population variances. We learned in Section 6.4 that the valid use
of the ¢ distribution to construct a confidence interval for the difference between two
population means requires that the population variances be equal. The use of the ratio
of two population variances for determining equality of variances has been formalized
into a statistical test. The distribution of this test provides test values for determining
if the ratio exceeds the value 1 to a large enough extent that we may conclude that the
variances are not equal. The test is referred to as the F-max Test by Hartley (13) or the
Variance Ratio Test by Zar (14). Many computer programs provide some formalized
test of the equality of variances so that the assumption of equality of variances associ-
ated with many of the tests in the following chapters can be examined. If the confi-
dence interval for the ratio of two population variances includes 1, we conclude that
the two population variances may, in fact, be equal. Again, since this is a form of infer-
ence, we must rely on some sampling distribution, and this time the distribution of
(s1/a})/(s3/03) is utilized provided certain assumptions are met. The assumptions are
that s7 and s3 are computed from independent samples of size n, and n,, respectively,
drawn from two normally distributed populations. We use s7 to designate the larger of
the two sample variances.

The F Distribution If the assumptions are met, (s7/0?)/(s3/03) follows a
distribution known as the F distribution. We defer a more complete discussion of this
distribution until chapter 8, but note that this distribution depends on two-degrees-of-
freedom values, one corresponding to the value of n; — 1 used in computing s7 and
the other corresponding to the value of n, — 1 used in computing s3. These are usu-
ally referred to as the numerator degrees of freedom and the denominator degrees of
freedom. Figure 6.10.1 shows some F distributions for several numerator and denomi-
nator degrees-of-freedom combinations. Appendix Table G contains, for specified com-
binations of degrees of freedom and values of «, F values to the right of which lies /2
of the area under the curve of F.

A Confidence Interval for 02/03 To find the 100(1 — a) percent confi-
dence interval for 0'%/ o3, we begin with the expression

si/ot

F, 2 < Fi-@p
s%/o% (e/2)

Q,

2 <
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FIGURE 6.10.1 The F distribution for various degrees of freedom.
(From Documenta Geigy, Scientific Tables, Seventh Edition, 1970.
Courtesy of Ciba-Geigy Limited, Basel, Switzerland.)

where F ), and Fy_ (o) are the values from the F table to the left and right of which,
respectively, lies /2 of the area under the curve. The middle term of this expression
may be rewritten so that the entire expression is

s1
Fap<5- >
$2

If we divide through by s7/s3, we have

FaZ 2 F*aZ
/<0'2< 1-(a/2)

272 2 272
si/sy o1 S1/53
Taking the reciprocals of the three terms gives

27,2 2 2/.2
s1/s s1/8
1/2>0'1> 1/2

Fa/Z 0'% Fl*(a/Z)

and if we reverse the order, we have the following 100(1 — «) percent confidence inter-
val for o}/o3:

si/s3 ol si/s3

(6.10.1)
Fiap) 03  Fap

EXAMPLE 6.10.1

Allen and Gross (A-25) examine toe flexors strength in subjects with plantar fasciitis (pain
from heel spurs, or general heel pain), a common condition in patients with musculoskele-
tal problems. Inflammation of the plantar fascia is often costly to treat and frustrating for
both the patient and the clinician. One of the baseline measurements was the body mass
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index (BMI). For the 16 women in the study, the standard deviation for BMI was 8.1 and
for four men in the study, the standard deviation was 5.9. We wish to construct a 95 per-
cent confidence interval for the ratio of the variances of the two populations from which
we presume these samples were drawn.

Solution: We have the following information:

n; =16 n, =4
st = (8.1)% = 65.61 53 = (5.9)* = 34.81
dfi = numerator degrees of freedom = n; — 1 = 15
df;, = denominator degrees of freedom = n, — 1 =3
a = .05
F op5 = .24096 F g5 = 14.25

We are now ready to obtain our 95 percent confidence interval for
o}/a3 by substituting appropriate values into Expression 6.10.1:

65.61/34.81 o7  65.61/34.81

14.25 o3 24096

2

a1
1323 < — < 7.8221
03

We give this interval the appropriate probabilistic and practical interpretations.
Since the interval .1323 to 7.8221 includes 1, we are able to conclude
that the two population variances may be equal. [ |

Finding F;_(,/2) and F,,, At this point we must make a cumbersome, but
unavoidable, digression and explain how the values F ;5 = 14.25 and F (o5 = .24096 were
obtained. The value of F o75 at the intersection of the column headed df; = 15 and the row
labeled df, = 3 is 14.25. If we had a more extensive table of the F distribution, finding
F 45 would be no trouble; we would simply find F o5 as we found F ;5. We would take
the value at the intersection of the column headed 15 and the row headed 3. To include
every possible percentile of F would make for a very lengthy table. Fortunately, however,
there exists a relationship that enables us to compute the lower percentile values from our
limited table. The relationship is as follows:

1
Foapap = N (6.10.2)
andfodf,

We proceed as follows.
Interchange the numerator and denominator degrees of freedom and locate the appro-
priate value of F. For the problem at hand we locate 4.15, which is at the intersection of
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the column headed 3 and the row labeled 15. We now take the reciprocal of this value,
1/4.15 = .24096. In summary, the lower confidence limit (LCL) and upper confidence
limit (UCL) o/03 are as follows:

1

LCL =" ———
F(1a2).dfidr,

e} ==}
:}m NN"—I\J

UCL = = Fi(ap2).dpdf,
§2

Alternative procedures for making inferences about the equality of two variances
when the sampled populations are not normally distributed may be found in the book by
Daniel (15).

Some Precautions Similar to the discussion in the previous section of con-
structing confidence intervals for o, the assumption of normality of the populations from
which the samples are drawn is crucial to obtaining correct intervals for the ratio of vari-
ances discussed in this section. Fortunately, most statistical computer programs provide
alternatives to the F-ratio, such as Levene’s test, when the underlying distributions can-
not be assumed to be normally distributed. Computationally, Levene’s test uses a meas-
ure of distance from a sample median instead of a sample mean, hence removing the
assumption of normality.

EXERCISES

6.10.1

6.10.2

The purpose of a study by Moneim et al. (A-26) was to examine thumb amputations from team
roping at rodeos. The researchers reviewed 16 cases of thumb amputations. Of these, 11 were com-
plete amputations while five were incomplete. The ischemia time is the length of time that insuf-
ficient oxygen is supplied to the amputated thumb. The ischemia times (hours) for 11 subjects
experiencing complete amputations were

4.67, 10.5, 2.0, 3.18, 4.00, 3.5, 3.33, 5.32, 2.0, 4.25, 6.0
For five victims of incomplete thumb amputation, the ischemia times were
3.0, 10.25, 1.5, 5.22, 5.0

Treat the two reported sets of data as sample data from the two populations as described.
Construct a 95 percent confidence interval for the ratio of the two unknown population
variances.

The objective of a study by Horesh et al. (A-27) was to explore the hypothesis that some forms
of suicidal behavior among adolescents are related to anger and impulsivity. The sample consisted
of 65 adolescents admitted to a university-affiliated adolescent psychiatric unit. The researchers
used the Impulsiveness-Control Scale (ICS, A-28) where higher numbers indicate higher degrees
of impulsiveness and scores can range from 0 to 45. The 33 subjects classified as suicidal had an
ICS score standard deviation of 8.4 while the 32 nonsuicidal subjects had a standard deviation of
6.0. Assume that these two groups constitute independent simple random samples from two
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6.10.4

6.10.5

6.10.6

6.10.7
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populations of similar subjects. Assume also that the ICS scores in these two populations are nor-
mally distributed. Find the 99 percent confidence interval for the ratio of the two population vari-
ances of scores on the ICS.

Stroke index values were statistically analyzed for two samples of patients suffering from
myocardial infarction. The sample variances were 12 and 10. There were 21 patients in
each sample. Construct the 95 percent confidence interval for the ratio of the two population
variances.

Thirty-two adult asphasics seeking speech therapy were divided equally into two groups. Group 1
received treatment 1, and group 2 received treatment 2. Statistical analysis of the treatment effec-
tiveness scores yielded the following variances: s7 =8, 53 = 15. Construct the 90 percent confi-
dence interval for o3 /o73.

Sample variances were computed for the tidal volumes (milliliters) of two groups of patients suf-
fering from atrial septal defect. The results and sample sizes were as follows:

n; = 31, K

i=3
n, =41,  s3= 20,000
Construct the 95 percent confidence interval for the ratio of the two population variances.

Glucose responses to oral glucose were recorded for 11 patients with Huntington’s disease (group 1)
and 13 control subjects (group 2). Statistical analysis of the results yielded the following sample
variances: s7 = 105, s3 = 148. Construct the 95 percent confidence interval for the ratio of the
two population variances.

Measurements of gastric secretion of hydrochloric acid (milliequivalents per hour) in 16 normal
subjects and 10 subjects with duodenal ulcer yielded the following results:

Normal subjects: 6.3,20,23,05,19,3.2,4.1,40, 6.2, 6.1,
3.5,13,1.7,45,63,62

Ulcer subjects: 13.7, 20.6, 15.9, 28.4, 29.4, 18.4, 21.1, 3.0,
26.2, 13.0

Construct a 95 percent confidence interval for the ratio of the two population variances. What
assumptions must be met for this procedure to be valid?

6.11 SUMMARY

This chapter is concerned with one of the major areas of statistical inference—estimation.
Both point estimation and interval estimation are covered. The concepts and methods
involved in the construction of confidence intervals are illustrated for the following
parameters: means, the difference between two means, proportions, the difference between
two proportions, variances, and the ratio of two variances. In addition, we learned in this
chapter how to determine the sample size needed to estimate a population mean and a
population proportion at specified levels of precision.

We learned, also, in this chapter that interval estimates of population parameters
are more desirable than point estimates because statements of confidence can be attached
to interval estimates.
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SUMMARY OF FORMULAS FOR CHAPTER 6

Formula Number

Name

Formula

6.2.1

Expression of
an interval estimate

estimator + (reliability coefficient)
X (standard error of the estimator)

6.2.2

Interval estimate
for w when o is
known

Xt Z(1-a/2)0%

6.3.1

t-transformation

_ Xk
B s/Vn

t

6.3.2

Interval estimate
for w when o is
unknown

X £ I(1—ap) =

Va

6.4.1

Interval estimate
for the difference
between two
population means
when o, and o, are
known

(51— %) & NEin
x| — X — — + —
1 2 L(1-a/2) n 1,

6.4.2

Pooled variance
estimate

6.4.3

Standard error
of estimate

6.4.4

Interval estimate
for the difference
between two
population means
when o is unknown

6.4.5

Cochran’s
correction for
reliability coefficient
when variances

are not equal

Wltl + Wzlz

t—ap) =
(1=a/2) wq + %)

6.4.6

Interval estimate
using Cochran’s
correction for ¢

si o8

(%1 = X) 2\, T 7,

6.5.1

Interval estimate
for a population
proportion

P Ez(1-ap) V(L — p)/n
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6.6.1

Interval estimate
for the difference
between two
population
proportions

pi(1 — py) +132(1 - p2)
n ny

(b1 — P2) £ Z(l—a/z)\/

6.7.1-6.7.3

Sample size
determination
when sampling
with replacement

d = (reliability coefficient) X (standard error)
d=

6.7.4-6.7.5

Sample size
determination when
sampling without
replacement

6.8.1

Sample size
determination
for proportions
when sampling
with replacement

6.8.2

Sample size
determination for
proportions when
sampling without
replacement

6.9.1

Interval estimate

for o

6.9.2

Interval estimate
for o

(n — 1)s2
— <o < -
X1—-(a/2) X(a/2)

6.10.1

Interval estimate
for the ratio of
two variances

2/.2 2 2/.2
s1/s3 o1 s1/s3
< —<

F,_ 2 F,
(a/2) a3 a/2

6.10.2

Relationship
among F ratios

1

F =—
N Y

Symbol Key

* a = Type 1 error rate
+ x*= Chi-square distribution

e d = error component of interval estimate

(Continued)
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e df = degrees of freedom

* F = F-distribution

* u = mean of population

¢ n = sample size

e p = proportion for population
cq=0-p

e p = estimated proportion for sample
+ o2 = population variance

e ¢ = population standard deviation
* 05 = standard error

* s = standard deviation of sample
* s, = pooled standard deviation

¢ ¢t = Student’s t-transformation

e ' = Cochran’s correction to ¢

* X = mean of sample

e z = standard normal distribution

REVIEW QUESTIONS AND EXERCISES

U

2 ® 2 A

10.

11.
12.

13.

What is statistical inference?

Why is estimation an important type of inference?
What is a point estimate?

Explain the meaning of unbiasedness.

Define the following:
(a) Reliability coefficient (¢) Precision (e) Estimator
(b) Confidence coefficient (d) Standard error (f) Margin of error

Give the general formula for a confidence interval.

State the probabilistic and practical interpretations of a confidence interval.
Of what use is the central limit theorem in estimation?

Describe the ¢ distribution.

What are the assumptions underlying the use of the ¢ distribution in estimating a single popula-
tion mean?

What is the finite population correction? When can it be ignored?

What are the assumptions underlying the use of the ¢ distribution in estimating the difference
between two population means?

Arterial blood gas analyses performed on a sample of 15 physically active adult males yielded the
following resting PaO, values:

75, 80, 80, 74, 84, 78, 89, 72, 83, 76, 75, 87, 78, 79, 88



14.

15.

16.

17.

18.

19.

20.

21.
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Compute the 95 percent confidence interval for the mean of the population.

What proportion of asthma patients are allergic to house dust? In a sample of 140, 35 percent
had positive skin reactions. Construct the 95 percent confidence interval for the population
proportion.

An industrial hygiene survey was conducted in a large metropolitan area. Of 70 manufacturing
plants of a certain type visited, 21 received a “poor” rating with respect to absence of safety haz-
ards. Construct a 95 percent confidence interval for the population proportion deserving a “poor”
rating.

Refer to the previous problem. How large a sample would be required to estimate the population
proportion to within .05 with 95 percent confidence (.30 is the best available estimate of p):

(a) If the finite population correction can be ignored?

(b) If the finite population correction is not ignored and N = 1500?

In a dental survey conducted by a county dental health team, 500 adults were asked to give the
reason for their last visit to a dentist. Of the 220 who had less than a high-school education, 44
said they went for preventative reasons. Of the remaining 280, who had a high-school educa-
tion or better, 150 stated that they went for preventative reasons. Construct a 95 percent confi-
dence interval for the difference between the two population proportions.

A breast cancer research team collected the following data on tumor size:

Type of Tumor n x s
A 21 3.85 cm 1.95 cm
B 16 2.80 cm 1.70 cm

Construct a 95 percent confidence interval for the difference between population means.

A certain drug was found to be effective in the treatment of pulmonary disease in 180 of 200
cases treated. Construct the 90 percent confidence interval for the population proportion.

Seventy patients with stasis ulcers of the leg were randomly divided into two equal groups. Each
group received a different treatment for edema. At the end of the experiment, treatment effective-
ness was measured in terms of reduction in leg volume as determined by water displacement. The
means and standard deviations for the two groups were as follows:

Group (Treatment) x s
A 95 cc 25
B 125 cc 30

Construct a 95 percent confidence interval for the difference in population means.

What is the average serum bilirubin level of patients admitted to a hospital for treatment of hep-
atitis? A sample of 10 patients yielded the following results:

20.5, 14.8, 21.3, 12.7, 15.2, 26.6, 23.4, 22.9, 15.7, 19.2

Construct a 95 percent confidence interval for the population mean.
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22,

23.

24,

25.

26.

27.

Determinations of saliva pH levels were made in two independent random samples of seventh-
grade schoolchildren. Sample A children were caries-free while sample B children had a high
incidence of caries. The results were as follows:

A: 7.14,7.11, 7.61, 7.98, 7.21, 7.16, 7.89 B: 7.36,7.04,7.19, 7.41, 7.10, 7.15, 7.36,
7.24, 7.86, 7.47, 7.82, 7.37, 7.66, 7.62, 7.65 7.57, 7.64, 7.00, 7.25, 7.19

Construct a 90 percent confidence interval for the difference between the population means.
Assume that the population variances are equal.

Drug A was prescribed for a random sample of 12 patients complaining of insomnia. An independ-
ent random sample of 16 patients with the same complaint received drug B. The number of hours of
sleep experienced during the second night after treatment began were as follows:

A 35,5.7,34,609,178, 3.8, 3.0, 6.4, 6.8, 3.6, 6.9, 5.7

B: 45,11.7, 108, 45, 6.3, 3.8, 6.2, 6.6, 7.1, 6.4, 4.5,
5.1,32,4.7,45,3.0

Construct a 95 percent confidence interval for the difference between the population means.
Assume that the population variances are equal.

The objective of a study by Crane et al. (A-29) was to examine the efficacy, safety, and maternal
satisfaction of (a) oral misoprostol and (b) intravenous oxytocin for labor induction in women with
premature rupture of membranes at term. Researchers randomly assigned women to the two treat-
ments. For the 52 women who received oral misoprostol, the mean time in minutes to active labor
was 358 minutes with a standard deviation of 308 minutes. For the 53 women taking oxytocin,
the mean time was 483 minutes with a standard deviation of 144 minutes. Construct a 99 percent
confidence interval for the difference in mean time to active labor for these two different medica-
tions. What assumptions must be made about the reported data? Describe the population about
which an inference can be made.

Over a 2-year period, 34 European women with previous gestational diabetes were retrospec-
tively recruited from West London antenatal databases for a study conducted by Kousta et al.
(A-30). One of the measurements for these women was the fasting nonesterified fatty acids con-
centration (NEFA) measured in pumol/L. In the sample of 34 women, the mean NEFA level was
435 with a sample standard deviation of 215.0. Construct a 95 percent confidence interval for
the mean fasting NEFA level for a population of women with gestational diabetes. State all
necessary assumptions about the reported data and subjects.

Scheid et al. (A-31) questioned 387 women receiving free bone mineral density screening. The
questions focused on past smoking history. Subjects undergoing hormone replacement therapy
(HRT), and subjects not undergoing HRT, were asked if they had ever been a regular smoker. In
the HRT group, 29.3 percent of 220 women stated that they were at some point in their life a reg-
ular smoker. In the non—-HRT group, 17.3 percent of 106 women responded positively to being at
some point in their life a regular smoker. (Sixty-one women chose not to answer the question.)
Construct a 95 percent confidence interval for the difference in smoking percentages for the two
populations of women represented by the subjects in the study. What assumptions about the data
are necessary?

The purpose of a study by Elliott et al. (A-32) was to assess the prevalence of vitamin D defi-
ciency in women living in nursing homes. The sample consisted of 39 women in a 120-bed skilled
nursing facility. Women older than 65 years of age who were long-term residents were invited
to participate if they had no diagnosis of terminal cancer or metastatic disease. In the sample,
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23 women had 25-hydroxyvitamin D levels of 20 ng/ml or less. Construct a 95 percent confidence
interval for the percent of women with vitamin D deficiency in the population presumed to be rep-
resented by this sample.

In a study of the role of dietary fats in the etiology of ischemic heart disease the subjects were
60 males between 40 and 60 years of age who had recently had a myocardial infarction and 50
apparently healthy males from the same age group and social class. One variable of interest in
the study was the proportion of linoleic acid (L.A.) in the subjects’ plasma triglyceride fatty acids.
The data on this variable were as follows:

Subjects with Myocardial Infarction

Subject L.A. Subject L.A. Subject L.A. Subject L.A.
1 18.0 2 17.6 3 9.6 4 5.5
5 16.8 6 12.9 7 14.0 8 8.0
9 8.9 10 15.0 11 9.3 12 5.8

13 8.3 14 4.8 15 6.9 16 18.3

17 24.0 18 16.8 19 12.1 20 12.9

21 16.9 22 15.1 23 6.1 24 16.6

25 8.7 26 15.6 27 12.3 28 14.9

29 16.9 30 5.7 31 14.3 32 14.1

33 14.1 34 15.1 35 10.6 36 13.6

37 16.4 38 10.7 39 18.1 40 14.3

41 6.9 42 6.5 43 17.7 44 13.4

45 15.6 46 10.9 47 13.0 48 10.6

49 7.9 50 2.8 51 15.2 52 223

53 9.7 54 15.2 55 10.1 56 11.5

57 15.4 58 17.8 59 12.6 60 7.2

Healthy Subjects

Subject L.A. Subject L.A. Subject L.A. Subject L.A.
1 17.1 2 229 3 104 4 30.9
5 32.7 6 9.1 7 20.1 8 19.2
9 18.9 10 20.3 11 35.6 12 17.2

13 5.8 14 15.2 15 222 16 21.2

17 19.3 18 25.6 19 424 20 5.9

21 29.6 22 18.2 23 21.7 24 29.7

25 12.4 26 154 27 21.7 28 19.3

29 16.4 30 23.1 31 19.0 32 12.9

33 18.5 34 27.6 35 25.0 36 20.0

37 51.7 38 20.5 39 25.9 40 24.6

41 224 42 27.1 43 11.1 44 32.7

45 13.2 46 22.1 47 13.5 48 53

49 29.0 50 20.2

Construct the 95 percent confidence interval for the difference between population means. What do
these data suggest about the levels of linoleic acid in the two sampled populations?
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29.

30.

31.

32.

33.

34.

35.

The purpose of a study by Tahmassebi and Curzon (A-33) was to compare the mean salivary flow
rate among subjects with cerebral palsy and among subjects in a control group. Each group had 10
subjects. The following table gives the mean flow rate in ml/minute as well as the standard error.

Group Sample Size Mean ml/minute Standard Error
Cerebral palsy 10 0.220 0.0582
Control 10 0.334 0.1641

Source: J. F. Tahmassebi and M. E. J. Curzon, “The Cause of Drooling in Children
with Cerebral Palsy—Hypersalivation or Swallowing Defect?” International Journal of
Paediatric Dentistry, 13 (2003), 106-111.

Construct the 90 percent confidence interval for the difference in mean salivary flow rate for the
two populations of subjects represented by the sample data. State the assumptions necessary for
this to be a valid confidence interval.

Culligan et al. (A-34) compared the long-term results of two treatments: (a) a modified Burch pro-
cedure, and (b) a sling procedure for stress incontinence with a low-pressure urethra. Thirty-six
women took part in the study with 19 in the Burch treatment group and 17 in the sling procedure
treatment group. One of the outcome measures at three months post-surgery was maximum ure-
thral closure pressure (cm H,0). In the Burch group the mean and standard deviation were 16.4
and 8.2 cm, respectively. In the sling group, the mean and standard deviation were 39.8 and 23.0,
respectively. Construct the 99 percent confidence interval for the difference in mean maximum ure-
thral closure pressure for the two populations represented by these subjects. State all necessary
assumptions.

In general, narrow confidence intervals are preferred over wide ones. We can make an interval nar-
row by using a small confidence coefficient. For a given set of other conditions, what happens to
the level of confidence when we use a small confidence coefficient? What would happen to the
interval width and the level of confidence if we were to use a confidence coefficient of zero?

In general, a high level of confidence is preferred over a low level of confidence. For a given set
of other conditions, suppose we set our level of confidence at 100 percent. What would be the
effect of such a choice on the width of the interval?

The subjects of a study by Borland et al. (A-35) were children in acute pain. Thirty-two children who
presented at an emergency room were enrolled in the study. Each child used the visual analogue scale
to rate pain on a scale from O to 100 mm. The mean pain score was 61.3 mm with a 95 percent con-
fidence interval of 53.2 mm—69.4 mm. Which would be the appropriate reliability factor for the inter-
val, z or ¢? Justify your choice. What is the precision of the estimate? The margin of error?

Does delirium increase hospital stay? That was the research question investigated by McCusker
et al. (A-36). The researchers sampled 204 patients with prevalent delirium and 118 without delir-
ium. The conclusion of the study was that patients with prevalent delirium did not have a higher
mean length of stay compared to those without delirium. What was the target population? The
sampled population?

Assessing driving self-restriction in relation to vision performance was the objective of a study
by West et al. (A-37). The researchers studied 629 current drivers ages 55 and older for 2 years.
The variables of interest were driving behavior, health, physical function, and vision function.
The subjects were part of a larger vision study at the Smith-Kettlewell Eye Research Institute.
A conclusion of the study was that older adults with early changes in spatial vision function
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and depth perception appear to recognize their limitations and restrict their driving. What was
the target population? The sampled population?

In a pilot study conducted by Ayouba et al. (A-38), researchers studied 123 children born of HIV-1-
infected mothers in Yaoundé, Cameroon. Counseled and consenting pregnant women were given a
single dose of nevirapine at the onset of labor. Babies were given a syrup containing nevirapine within
the first 72 hours of life. The researchers found that 87 percent of the children were considered not
infected at 68 weeks of age. What is the target population? What is the sampled population?

Refer to Exercise 2.3.11. Construct a 95 percent confidence interval for the population mean S/R
ratio. Should you use ¢ or z as the reliability coefficient? Why? Describe the population about
which inferences based on this study may be made.

Refer to Exercise 2.3.12. Construct a 90 percent confidence interval for the population mean height.
Should you use 7 or z as the reliability coefficient? Why? Describe the population about which
inferences based on this study may be made.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to North Carolina Birth Registry Data NCBIRTH800 with 800 observations (see Large Data
Exercise 1 in Chapter 2). Calculate 95 percent confidence intervals for the following:

(a) the percentage of male children

(b) the mean age of a mother giving birth

(c) the mean weight gained during pregnancy

(d) the percentage of mothers admitting to smoking during pregnancy

(e) the difference in the average weight gained between smoking and nonsmoking mothers

(f) the difference in the average birth weight in grams between married and nonmarried mothers

(g) the difference in the percentage of low birth weight babies between married and nonmarried
mothers

Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random sam-
ple of size 15 from this population and construct a 95 percent confidence interval for the popula-
tion mean. Compare your results with those of your classmates. What assumptions are necessary
for your estimation procedure to be valid?

Refer to the serum cholesterol levels for 1000 subjects (CHOLEST). Select a simple random sam-
ple of size 50 from the population and construct a 95 percent confidence interval for the proportion
of subjects in the population who have readings greater than 225. Compare your results with those
of your classmates.

Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a sim-
ple random sample of size 20 from this population and construct a 95 percent confidence interval
for the population mean. Compare your results with those of your classmates. What assumptions
are necessary for your estimation procedure to be valid?

Refer to the weights of 1200 babies born in a community hospital (BABY WGTS). Draw a simple ran-
dom sample of size 35 from the population and construct a 95 percent confidence interval for the pop-
ulation mean. Compare this interval with the one constructed in Exercise 4.

Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 15 from this population and construct a 99 percent confidence interval for the population
mean. What assumptions are necessary for this procedure to be valid?


www.wiley.com/college/daniel

212 CHAPTER 6 ESTIMATION

7.

Refer to the heights of 1000 twelve-year-old boys (BOY HGTS). Select a simple random sample
of size 35 from the population and construct a 99 percent confidence interval for the population
mean. Compare this interval with the one constructed in Exercise 5.
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HYPOTHESIS TESTING

CHAPTER OVERVIEW

This chapter covers hypothesis testing, the second of two general areas of
statistical inference. Hypothesis testing is a topic with which you as a student are
likely to have some familiarity. Interval estimation, discussed in the preceding

cha

pter, and hypothesis testing are based on similar concepts. In fact, confi-

dence intervals may be used to arrive at the same conclusions that are reached
through the use of hypothesis tests. This chapter provides a format, followed
throughout the remainder of this book, for conducting a hypothesis test.
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CHAPTER 7 HYPOTHESIS TESTING

INTRODUCTION

One type of statistical inference, estimation, is discussed in the preceding chapter.
The other type, hypothesis testing, is the subject of this chapter. As is true with esti-
mation, the purpose of hypothesis testing is to aid the clinician, researcher, or admin-
istrator in reaching a conclusion concerning a population by examining a sample from
that population. Estimation and hypothesis testing are not as different as they are
made to appear by the fact that most textbooks devote a separate chapter to each. As
we will explain later, one may use confidence intervals to arrive at the same conclu-
sions that are reached by using the hypothesis testing procedures discussed in this
chapter.

Basic Concepts In this section some of the basic concepts essential to an under-
standing of hypothesis testing are presented. The specific details of particular tests will
be given in succeeding sections.

DEFINITION

A hypothesis may be defined simply as a statement about one or more
populations.

The hypothesis is frequently concerned with the parameters of the populations
about which the statement is made. A hospital administrator may hypothesize that the
average length of stay of patients admitted to the hospital is 5 days; a public health nurse
may hypothesize that a particular educational program will result in improved commu-
nication between nurse and patient; a physician may hypothesize that a certain drug will
be effective in 90 percent of the cases for which it is used. By means of hypothesis test-
ing one determines whether or not such statements are compatible with the available
data.

Types of Hypotheses Researchers are concerned with two types of hypotheses—
research hypotheses and statistical hypotheses.

DEFINITION

The research hypothesis is the conjecture or supposition that motivates
the research.

It may be the result of years of observation on the part of the researcher. A public
health nurse, for example, may have noted that certain clients responded more readily to
a particular type of health education program. A physician may recall numerous instances
in which certain combinations of therapeutic measures were more effective than any one of
them alone. Research projects often result from the desire of such health practitioners to
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determine whether or not their theories or suspicions can be supported when subjected
to the rigors of scientific investigation.
Research hypotheses lead directly to statistical hypotheses.

DEFINITION

Statistical hypotheses are hypotheses that are stated in such a way that
they may be evaluated by appropriate statistical techniques.

In this book the hypotheses that we will focus on are statistical hypotheses. We
will assume that the research hypotheses for the examples and exercises have already
been considered.

Hypothesis Testing Steps For convenience, hypothesis testing will be pre-
sented as a ten-step procedure. There is nothing magical or sacred about this particu-
lar format. It merely breaks the process down into a logical sequence of actions and
decisions.

1. Data. The nature of the data that form the basis of the testing procedures must be
understood, since this determines the particular test to be employed. Whether the
data consist of counts or measurements, for example, must be determined.

2. Assumptions. As we learned in the chapter on estimation, different assump-
tions lead to modifications of confidence intervals. The same is true in hypoth-
esis testing: A general procedure is modified depending on the assumptions. In
fact, the same assumptions that are of importance in estimation are important
in hypothesis testing. We have seen that these include assumptions about the nor-
mality of the population distribution, equality of variances, and independence of
samples.

3. Hypotheses. There are two statistical hypotheses involved in hypothesis testing,
and these should be stated explicitly. The null hypothesis is the hypothesis to be
tested. It is designated by the symbol H,. The null hypothesis is sometimes
referred to as a hypothesis of no difference, since it is a statement of agreement
with (or no difference from) conditions presumed to be true in the population of
interest. In general, the null hypothesis is set up for the express purpose of being
discredited. Consequently, the complement of the conclusion that the researcher
is seeking to reach becomes the statement of the null hypothesis. In the testing
process the null hypothesis either is rejected or is not rejected. If the null hypoth-
esis is not rejected, we will say that the data on which the test is based do not
provide sufficient evidence to cause rejection. If the testing procedure leads to
rejection, we will say that the data at hand are not compatible with the null
hypothesis, but are supportive of some other hypothesis. The alternative hypoth-
esis is a statement of what we will believe is true if our sample data cause us to
reject the null hypothesis. Usually the alternative hypothesis and the research
hypothesis are the same, and in fact the two terms are used interchangeably. We
shall designate the alternative hypothesis by the symbol H,.
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Rules for Stating Statistical Hypotheses When hypotheses are of the
type considered in this chapter an indication of equality (either =, =<, or =) must appear
in the null hypothesis. Suppose, for example, that we want to answer the question: Can
we conclude that a certain population mean is not 50?7 The null hypothesis is

Ho: m = 50
and the alternative is
HA: M #* 50

Suppose we want to know if we can conclude that the population mean is greater than
50. Our hypotheses are

H():/.LSSO HA[.L>50

If we want to know if we can conclude that the population mean is less than 50, the
hypotheses are

H():/.LZSO HA[.L<50

In summary, we may state the following rules of thumb for deciding what state-
ment goes in the null hypothesis and what statement goes in the alternative hypothesis:

(a) What you hope or expect to be able to conclude as a result of the test usually
should be placed in the alternative hypothesis.

(b) The null hypothesis should contain a statement of equality, either =, =<, or =.
(c) The null hypothesis is the hypothesis that is tested.

(d) The null and alternative hypotheses are complementary. That is, the two together
exhaust all possibilities regarding the value that the hypothesized parameter can
assume.

A Precaution It should be pointed out that neither hypothesis testing nor statisti-
cal inference, in general, leads to the proof of a hypothesis; it merely indicates whether
the hypothesis is supported or is not supported by the available data. When we fail to
reject a null hypothesis, therefore, we do not say that it is true, but that it may be true.
When we speak of accepting a null hypothesis, we have this limitation in mind and do
not wish to convey the idea that accepting implies proof.

4. Test statistic. The test statistic is some statistic that may be computed from the
data of the sample. As a rule, there are many possible values that the test statistic
may assume, the particular value observed depending on the particular sample
drawn. As we will see, the test statistic serves as a decision maker, since the decision
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to reject or not to reject the null hypothesis depends on the magnitude of the test
statistic. An example of a test statistic is the quantity
_ X~ Mo

a/Vn

where g is a hypothesized value of a population mean. This test statistic is related
to the statistic

z (7.1.1)

_X—np
o/Va

with which we are already familiar.

z (7.1.2)

General Formula for Test Statistic The following is a general formula for
a test statistic that will be applicable in many of the hypothesis tests discussed in this book:

relevant statistic — hypothesized parameter

test statistic = —
standard error of the relevant statistic

In Equation 7.1.1, X is the relevant statistic, u, is the hypothesized parameter, and o/Vn
is the standard error of X, the relevant statistic.

5. Distribution of test statistic. It has been pointed out that the key to statistical
inference is the sampling distribution. We are reminded of this again when it
becomes necessary to specify the probability distribution of the test statistic. The
distribution of the test statistic

_ X Mo
a/Vn

for example, follows the standard normal distribution if the null hypothesis is true
and the assumptions are met.

Z

6. Decision rule. All possible values that the test statistic can assume are points on
the horizontal axis of the graph of the distribution of the test statistic and are divided
into two groups; one group constitutes what is known as the rejection region and the
other group makes up the nonrejection region. The values of the test statistic form-
ing the rejection region are those values that are less likely to occur if the null hypoth-
esis is true, while the values making up the acceptance region are more likely to
occur if the null hypothesis is true. The decision rule tells us to reject the null hypoth-
esis if the value of the test statistic that we compute from our sample is one of the
values in the rejection region and to not reject the null hypothesis if the computed
value of the test statistic is one of the values in the nonrejection region.

Significance Level The decision as to which values go into the rejection region
and which ones go into the nonrejection region is made on the basis of the desired level
of significance, designated by «. The term level of significance reflects the fact that
hypothesis tests are sometimes called significance tests, and a computed value of the test
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statistic that falls in the rejection region is said to be significant. The level of significance,
«, specifies the area under the curve of the distribution of the test statistic that is above
the values on the horizontal axis constituting the rejection region.

DEFINITION

The level of significance « is a probability and, in fact, is the probability
of rejecting a true null hypothesis.

Since to reject a true null hypothesis would constitute an error, it seems only rea-
sonable that we should make the probability of rejecting a true null hypothesis small and,
in fact, that is what is done. We select a small value of « in order to make the proba-
bility of rejecting a true null hypothesis small. The more frequently encountered values
of « are .01, .05, and .10.

Types of Errors The error committed when a true null hypothesis is rejected is
called the type I error. The type II error is the error committed when a false null hypoth-
esis is not rejected. The probability of committing a type II error is designated by S.

Whenever we reject a null hypothesis there is always the concomitant risk of com-
mitting a type I error, rejecting a true null hypothesis. Whenever we fail to reject a null
hypothesis the risk of failing to reject a false null hypothesis is always present. We make
o small, but we generally exercise no control over 3, although we know that in most
practical situations it is larger than c.

We never know whether we have committed one of these errors when we reject
or fail to reject a null hypothesis, since the true state of affairs is unknown. If the test-
ing procedure leads to rejection of the null hypothesis, we can take comfort from the
fact that we made « small and, therefore, the probability of committing a type I error
was small. If we fail to reject the null hypothesis, we do not know the concurrent risk
of committing a type II error, since S is usually unknown but, as has been pointed out,
we do know that, in most practical situations, it is larger than a.

Figure 7.1.1 shows for various conditions of a hypothesis test the possible actions
that an investigator may take and the conditions under which each of the two types of
error will be made. The table shown in this figure is an example of what is generally
referred to as a confusion matrix.

7. Calculation of test statistic. From the data contained in the sample we compute
a value of the test statistic and compare it with the rejection and nonrejection
regions that have already been specified.

Condition of Null Hypothesis

True False
Fail to Correct action Type 1I error
Possible reject Ho
Action Reject H, Type 1 error Correct action

FIGURE 7.1.1 Conditions under which type | and type Il errors may be committed.
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8. Statistical decision. The statistical decision consists of rejecting or of not reject-
ing the null hypothesis. It is rejected if the computed value of the test statistic falls
in the rejection region, and it is not rejected if the computed value of the test sta-
tistic falls in the nonrejection region.

9. Conclusion. If H is rejected, we conclude that Hy is true. If H, is not rejected,
we conclude that H, may be true.

10. p values. The p value is a number that tells us how unusual our sample results
are, given that the null hypothesis is true. A p value indicating that the sample
results are not likely to have occurred, if the null hypothesis is true, provides jus-
tification for doubting the truth of the null hypothesis.

DEFINITION

A p value is the probability that the computed value of a test statistic is
at least as extreme as a specified value of the test statistic when the null
hypotbhesis is true. Thus, the p value is the smallest value of « for which
we can reject a null hypothesis.

We emphasize that when the null hypothesis is not rejected one should not say that
the null hypothesis is accepted. We should say that the null hypothesis is “not rejected.”
We avoid using the word “accept” in this case because we may have committed a type 1I
error. Since, frequently, the probability of committing a type II error can be quite high, we
do not wish to commit ourselves to accepting the null hypothesis.

Figure 7.1.2 is a flowchart of the steps that we follow when we perform a hypothe-
sis test.

Purpose of Hypothesis Testing The purpose of hypothesis testing is to
assist administrators and clinicians in making decisions. The administrative or clinical
decision usually depends on the statistical decision. If the null hypothesis is rejected, the
administrative or clinical decision usually reflects this, in that the decision is compatible
with the alternative hypothesis. The reverse is usually true if the null hypothesis is not
rejected. The administrative or clinical decision, however, may take other forms, such as
a decision to gather more data.

We also emphasize that the hypothesis testing procedures highlighted in the remain-
der of this chapter generally examine the case of normally distributed data or cases where
the procedures are appropriate because the central limit theorem applies. In practice, it
is not uncommon for samples to be small relative to the size of the population, or to
have samples that are highly skewed, and hence the assumption of normality is violated.
Methods to handle this situation, that is distribution-free or nonparametric methods, are
examined in detail in Chapter 13. Most computer packages include an analytical proce-
dure (for example, the Shapiro-Wilk or Anderson-Darling test) for testing normality. It
is important that such tests are carried out prior to analysis of data. Further, when test-
ing two samples, there is an implicit assumption that the variances are equal. Tests for
this assumption are provided in Section 7.8. Finally, it should be noted that hypothesis
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Evaluate
data

Review
assumptions

State
hypotheses

Determine
distribution
of test
statistics

Do not
reject Hy

statistical Reject H,
decision

Conclude H, Conclude H,
may be true is true

FIGURE 7.1.2 Steps in the hypothesis testing procedure.

tests, just like confidence intervals, are relatively sensitive to the size of the samples being
tested, and caution should be taken when interpreting results involving very small sample
sizes.

We must emphasize at this point, however, that the outcome of the statistical test
is only one piece of evidence that influences the administrative or clinical decision. The
statistical decision should not be interpreted as definitive but should be considered along
with all the other relevant information available to the experimenter.

With these general comments as background, we now discuss specific hypoth-
esis tests.



7.2 HYPOTHESIS TESTING: A SINGLE POPULATION MEAN 223

7.2 HYPOTHESIS TESTING:
A SINGLE POPULATION MEAN

In this section we consider the testing of a hypothesis about a population mean under
three different conditions: (1) when sampling is from a normally distributed population
of values with known variance; (2) when sampling is from a normally distributed pop-
ulation with unknown variance, and (3) when sampling is from a population that is not
normally distributed. Although the theory for conditions 1 and 2 depends on normally
distributed populations, it is common practice to make use of the theory when relevant
populations are only approximately normally distributed. This is satisfactory as long as
the departure from normality is not drastic. When sampling is from a normally distrib-
uted population and the population variance is known, the test statistic for testing

Hy = pyis

¢ a/Vn

(7.2.1)

which, when H is true, is distributed as the standard normal. Examples 7.2.1 and 7.2.2
illustrate hypothesis testing under these conditions.

Sampling from Normally Distributed Populations: Population
Variances Known As we did in Chapter 6, we again emphasize that situations in
which the variable of interest is normally distributed with a known variance are rare. The
following example, however, will serve to illustrate the procedure.

EXAMPLE 7.2.1

Researchers are interested in the mean age of a certain population. Let us say that they
are asking the following question: Can we conclude that the mean age of this popula-
tion is different from 30 years?

Solution: Based on our knowledge of hypothesis testing, we reply that they can con-
clude that the mean age is different from 30 if they can reject the null
hypothesis that the mean is equal to 30. Let us use the ten-step hypothesis
testing procedure given in the previous section to help the researchers reach
a conclusion.

1. Data. The data available to the researchers are the ages of a simple ran-
dom sample of 10 individuals drawn from the population of interest.
From this sample a mean of x = 27 has been computed.

2. Assumptions. It is assumed that the sample comes from a population
whose ages are approximately normally distributed. Let us also assume
that the population has a known variance of o> = 20.

3. Hypotheses. The hypothesis to be tested, or null hypothesis, is that the
mean age of the population is equal to 30. The alternative hypothesis is
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that the mean age of the population is not equal to 30. Note that we are
identifying with the alternative hypothesis the conclusion the researchers
wish to reach, so that if the data permit rejection of the null hypothesis,
the researchers’ conclusion will carry more weight, since the accompa-
nying probability of rejecting a true null hypothesis will be small. We
will make sure of this by assigning a small value to «, the probability
of committing a type I error. We may present the relevant hypotheses in
compact form as follows:

Ho:[.L: 30
I‘IA:[«L7ﬁ 30

Test statistic. Since we are testing a hypothesis about a population
mean, since we assume that the population is normally distributed, and
since the population variance is known, our test statistic is given by
Equation 7.2.1.

. Distribution of test statistic. Based on our knowledge of sampling

distributions and the normal distribution, we know that the test statis-
tic is normally distributed with a mean of 0 and a variance of 1, if
H, is true. There are many possible values of the test statistic that
the present situation can generate; one for every possible sample of
size 10 that can be drawn from the population. Since we draw only
one sample, we have only one of these possible values on which to
base a decision.

Decision rule. The decision rule tells us to reject Hy if the computed
value of the test statistic falls in the rejection region and to fail to reject
H, if it falls in the nonrejection region. We must now specify the rejec-
tion and nonrejection regions. We can begin by asking ourselves what
magnitude of values of the test statistic will cause rejection of H,. If the
null hypothesis is false, it may be so either because the population mean
is less than 30 or because the population mean is greater than 30. There-
fore, either sufficiently small values or sufficiently large values of the
test statistic will cause rejection of the null hypothesis. We want these
extreme values to constitute the rejection region. How extreme must a
possible value of the test statistic be to qualify for the rejection region?
The answer depends on the significance level we choose, that is, the size
of the probability of committing a type I error. Let us say that we want
the probability of rejecting a true null hypothesis to be & = .05. Since
our rejection region is to consist of two parts, sufficiently small values
and sufficiently large values of the test statistic, part of « will have to
be associated with the large values and part with the small values. It
seems reasonable that we should divide « equally and let a/2 = .025
be associated with small values and a/2 = .025 be associated with large
values.
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Critical Value of Test Statistic

What value of the test statistic is so large that, when the null hypothesis is true, the
probability of obtaining a value this large or larger is .025? In other words, what is the
value of z to the right of which lies .025 of the area under the standard normal distri-
bution? The value of z to the right of which lies .025 of the area is the same value that
has .975 of the area between it and —00. We look in the body of Appendix Table D
until we find .975 or its closest value and read the corresponding marginal entries to
obtain our z value. In the present example the value of z is 1.96. Similar reasoning will
lead us to find —1.96 as the value of the test statistic so small that when the null hypoth-
esis is true, the probability of obtaining a value this small or smaller is .025. Our rejec-
tion region, then, consists of all values of the test statistic equal to or greater than 1.96
and less than or equal to —1.96. The nonrejection region consists of all values in
between. We may state the decision rule for this test as follows: reject Hy if the com-
puted value of the test statistic is either = 1.96 or = —1.96. Otherwise, do not reject
H,. The rejection and nonrejection regions are shown in Figure 7.2.1. The values of the
test statistic that separate the rejection and nonrejection regions are called critical val-
ues of the test statistic, and the rejection region is sometimes referred to as the critical
region.

The decision rule tells us to compute a value of the test statistic from the data of
our sample and to reject Hy if we get a value that is either equal to or greater than 1.96
or equal to or less than —1.96 and to fail to reject H, if we get any other value. The
value of o and, hence, the decision rule should be decided on before gathering the data.
This prevents our being accused of allowing the sample results to influence our choice
of a. This condition of objectivity is highly desirable and should be preserved in all
tests.

7. Calculation of test statistic. From our sample we compute

_v-30_ 3 .
T NV20/10 14142 '

8. Statistical decision. Abiding by the decision rule, we are able to
reject the null hypothesis since —2.12 is in the rejection region. We

oe

-1.96 1.96 z
A A

Rejection region Nonrejection Rejection region
region

FIGURE 7.2.1 Rejection and nonrejection regions for Example 7.2.1.
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can say that the computed value of the test statistic is significant at
the .05 level.

9. Conclusion. We conclude that u is not equal to 30 and let our
administrative or clinical actions be in accordance with this conclu-
sion.

10. p values. Instead of saying that an observed value of the test statis-
tic is significant or is not significant, most writers in the research lit-
erature prefer to report the exact probability of getting a value as
extreme as or more extreme than that observed if the null hypothe-
sis is true. In the present instance these writers would give the com-
puted value of the test statistic along with the statement p = .0340.
The statement p = .0340 means that the probability of getting a value
as extreme as 2.12 in either direction, when the null hypothesis is
true, is .0340. The value .0340 is obtained from Appendix Table D
and is the probability of observing a z = 2.12 or a z = —2.12 when
the null hypothesis is true. That is, when H, is true, the probabil-
ity of obtaining a value of z as large as or larger than 2.12 is .0170,
and the probability of observing a value of z as small as or smaller
than —2.12 is .0170. The probability of one or the other of these events
occurring, when Hj is true, is equal to the sum of the two individ-
ual probabilities, and hence, in the present example, we say that
p = .0170 + .0170 = .0340.

Recall that the p value for a test may be defined also as the small-
est value of a for which the null hypothesis can be rejected. Since, in
Example 7.2.1, our p value is .0340, we know that we could have chosen
an «a value as small as .0340 and still have rejected the null hypothesis.
If we had chosen an « smaller than .0340, we would not have been
able to reject the null hypothesis. A general rule worth remembering,
then, is this: if the p value is less than or equal to o, we reject the null
hypothesis; if the p value is greater than «, we do not reject the null
hypothesis.

The reporting of p values as part of the results of an investigation is
more informative to the reader than such statements as “the null hypothesis
is rejected at the .05 level of significance” or “the results were not signifi-
cant at the .05 level.” Reporting the p value associated with a test lets the
reader know just how common or how rare is the computed value of the test
statistic given that H, is true. ]

Testing H, by Means of a Confidence Interval Earlier, we stated
that one can use confidence intervals to test hypotheses. In Example 7.2.1 we used a
hypothesis testing procedure to test Hy: u = 30 against the alternative, Hy: . # 30. We
were able to reject H, because the computed value of the test statistic fell in the rejec-
tion region.
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Let us see how we might have arrived at this same conclusion by using a 100
(1 — «) percent confidence interval. The 95 percent confidence interval for w is

27 + 1.96 V20/10
27 + 1.96(1.414)
27 + 2.7714
24.2286, 29.7714

Since this interval does not include 30, we say 30 is not a candidate for the mean we
are estimating and, therefore, w is not equal to 30 and H, is rejected. This is the same
conclusion reached by means of the hypothesis testing procedure.

If the hypothesized parameter, 30, had been within the 95 percent confidence inter-
val, we would have said that H, is not rejected at the .05 level of significance. In gen-
eral, when testing a null hypothesis by means of a two-sided confidence interval, we
reject Hy at the a level of significance if the hypothesized parameter is not contained
within the 100(1 — a) percent confidence interval. If the hypothesized parameter is con-
tained within the interval, Hy cannot be rejected at the « level of significance.

One-Sided Hypothesis Tests The hypothesis test illustrated by Example
7.2.1 is an example of a rwo-sided test, so called because the rejection region is split
between the two sides or tails of the distribution of the test statistic. A hypothesis test
may be one-sided, in which case all the rejection region is in one or the other tail of the
distribution. Whether a one-sided or a two-sided test is used depends on the nature of
the question being asked by the researcher.

If both large and small values will cause rejection of the null hypothesis, a two-
sided test is indicated. When either sufficiently “small” values only or sufficiently “large”
values only will cause rejection of the null hypothesis, a one-sided test is indicated.

EXAMPLE 7.2.2

Refer to Example 7.2.1. Suppose, instead of asking if they could conclude that u # 30,
the researchers had asked: Can we conclude that u << 30? To this question we would
reply that they can so conclude if they can reject the null hypothesis that u = 30.

Solution: Let us go through the ten-step procedure to reach a decision based on a
one-sided test.
1. Data. See the previous example.
2. Assumptions. See the previous example.
3. Hypotheses.
Hy: p = 30
Hpy:p < 30

The inequality in the null hypothesis implies that the null hypothesis
consists of an infinite number of hypotheses. The test will be made only
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.05

at the point of equality, since it can be shown that if H is rejected when
the test is made at the point of equality it would be rejected if the test
were done for any other value of w indicated in the null hypothesis.

. Test statistic.

X T My

~ o/Va

Z

. Distribution of test statistic. See the previous example.

. Decision rule. Let us again use o = .05. To determine where to place

the rejection region, let us ask ourselves what magnitude of values
would cause rejection of the null hypothesis. If we look at the
hypotheses, we see that sufficiently small values would cause rejec-
tion and that large values would tend to reinforce the null hypothe-
sis. We will want our rejection region to be where the small values
are—at the lower tail of the distribution. This time, since we have a
one-sided test, all of & will go in the one tail of the distribution. By
consulting Appendix Table D, we find that the value of z to the left
of which lies .05 of the area under the standard normal curve is
—1.645 after interpolating. Our rejection and nonrejection regions are
now specified and are shown in Figure 7.2.2.

Our decision rule tells us to reject Hy if the computed value of
the test statistic is less than or equal to —1.645.

Calculation of test statistic. From our data we compute
27 — 30
=——=-2.12
V20/10
Statistical decision. We are able to reject the null hypothesis since
—2.12 < —1.645.

Conclusion. We conclude that the population mean is smaller than 30
and act accordingly.

Z

. p value. The p value for this test is .0170, since P(z = —2.12), when

H, is true, is .0170 as given by Appendix Table D when we determine

—-1.645 0 z

~

Rejection region

~

Nonrejection region

FIGURE 7.2.2 Rejection and nonrejection regions for Example 7.2.2.
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the magnitude of the area to the left of —2.12 under the standard normal
curve. One can test a one-sided null hypothesis by means of a one-sided
confidence interval. However, we will not cover the construction and inter-
pretation of this type of confidence interval in this book.

If the researcher’s question had been, “Can we conclude that the mean is
greater than 307, following the above ten-step procedure would have led
to a one-sided test with all the rejection region at the upper tail of the dis-
tribution of the test statistic and a critical value of +1.645. |

Sampling from a Normally Distributed Population: Popula-
tion Variance Unknown As we have already noted, the population variance
is usually unknown in actual situations involving statistical inference about a population
mean. When sampling is from an approximately normal population with an unknown
variance, the test statistic for testing Hy: u = ug is

_X " Mo
s/Vn

which, when H, is true, is distributed as Student’s # with n — 1 degrees of freedom. The
following example illustrates the hypothesis testing procedure when the population is
assumed to be normally distributed and its variance is unknown. This is the usual situ-
ation encountered in practice.

t (7.2.2)

EXAMPLE 7.2.3

Nakamura et al. (A-1) studied subjects with medial collateral ligament (MCL) and anterior
cruciate ligament (ACL) tears. Between February 1995 and December 1997, 17 consecu-
tive patients with combined acute ACL and grade III MCL injuries were treated by the same
physician at the research center. One of the variables of interest was the length of time in
days between the occurrence of the injury and the first magnetic resonance imaging (MRI).
The data are shown in Table 7.2.1. We wish to know if we can conclude that the mean
number of days between injury and initial MRI is not 15 days in a population presumed to
be represented by these sample data.

TABLE 7.2.1 Number of Days Until MRI for Subjects with NMCL
and ACL Tears

Subject Days Subject Days Subject Days Subject Days
1 14 6 0 1 28 16 14
2 9 7 10 12 24 17 9
3 18 8 4 13 24

4 26 9 8 14 2

5 12 10 21 15 3

Source: Norimasa Nakamura, Shuji Horibe, Yukyoshi Toritsuka, Tomoki Mitsuoka, Hideki Yoshikawa, and
Konsei Shino, “Acute Grade Ill Medial Collateral Ligament Injury of the Knee Associated with Anterior
Cruciate Ligament Tear,” American Journal of Sports Medicine, 31 (2003), 261-267.
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.025

Solution: We will be able to conclude that the mean number of days for the popula-
tion is not 15 if we can reject the null hypothesis that the population mean
is equal to 15.

1.

Data. The data consist of number of days until MRI on 17 subjects as
previously described.

Assumptions. The 17 subjects constitute a simple random sample from
a population of similar subjects. We assume that the number of days
until MRI in this population is approximately normally distributed.

Hypotheses.

H():/J, =15
HA:[.L # 15

Test statistic. Since the population variance is unknown, our test sta-
tistic is given by Equation 7.2.2.

Distribution of test statistic. Our test statistic is distributed as Stu-
dent’s t with n — 1 = 17 — 1 = 16 degrees of freedom if H, is true.

Decision rule. Let o« = .05. Since we have a two-sided test, we put
a/2 = .025 in each tail of the distribution of our test statistic. The ¢
values to the right and left of which .025 of the area lies are 2.1199 and
—2.1199. These values are obtained from Appendix Table E. The rejec-
tion and nonrejection regions are shown in Figure 7.2.3.

The decision rule tells us to compute a value of the test statistic
and reject Hy, if the computed ¢ is either greater than or equal to 2.1199
or less than or equal to —2.1199.

Calculation of test statistic. From our sample data we compute a sam-
ple mean of 13.2941 and a sample standard deviation of 8.88654. Sub-
stituting these statistics into Equation 7.2.2 gives

L _ 13204115 -17059
8.88654/\/17  2.1553 '

.95

.025

&

-2.1199 0 2.1199 t
A

A

Rejection region

Nonrejection Rejection region
region

FIGURE 7.2.3 Rejection and nonrejection regions for Example 7.2.3.
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Py
&

-1.337 -.791 0 .791 1.337 t
pP>.20

FIGURE 7.2.4 Determination of p value for Example 7.2.3.

8. Statistical decision. Do not reject H,, since —.791 falls in the nonre-
jection region.

9. Conclusion. Our conclusion, based on these data, is that the mean of
the population from which the sample came may be 15.

10. p value. The exact p value for this test cannot be obtained from
Appendix Table E since it gives ¢ values only for selected percentiles.
The p value can be stated as an interval, however. We find that —.791 is
less than —1.337, the value of ¢ to the left of which lies .10 of the area
under the ¢ with 16 degrees of freedom. Consequently, when H, is true,
the probability of obtaining a value of ¢ as small as or smaller than —.791
is greater than .10. That is P(r = —.791) > .10. Since the test was two-
sided, we must allow for the possibility of a computed value of the test
statistic as large in the opposite direction as that observed. Appendix
Table E reveals that P(r = .791) > .10 also. The p value, then, is
p > .20. Figure 7.2.4 shows the p value for this example.

If in the previous example the hypotheses had been
HO: M =15
H A M < 15

the testing procedure would have led to a one-sided test with all the rejection
region at the lower tail of the distribution, and if the hypotheses had been

Hozl.,L =15
HA:[,L > 15

we would have had a one-sided test with all the rejection region at the upper
tail of the distribution. [ |

Sampling from a Population That Is Not Normally Distributed
If, as is frequently the case, the sample on which we base our hypothesis test about a
population mean comes from a population that is not normally distributed, we may, if our
sample is large (greater than or equal to 30), take advantage of the central limit theorem
and use z = (X — po)/(0/Vn) as the test statistic. If the population standard deviation
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is not known, the usual practice is to use the sample standard deviation as an estimate.
The test statistic for testing Hy: w = g, then, is

X 7 Mo

N s/Nn

z (7.2.3)

which, when H,) is true, is distributed approximately as the standard normal distribution
if n is large. The rationale for using s to replace o is that the large sample, necessary
for the central limit theorem to apply, will yield a sample standard deviation that closely
approximates o.

EXAMPLE 7.2.4

The goal of a study by Klingler et al. (A-2) was to determine how symptom recognition
and perception influence clinical presentation as a function of race. They characterized
symptoms and care-seeking behavior in African-American patients with chest pain seen
in the emergency department. One of the presenting vital signs was systolic blood pres-
sure. Among 157 African-American men, the mean systolic blood pressure was 146 mm
Hg with a standard deviation of 27. We wish to know if, on the basis of these data, we
may conclude that the mean systolic blood pressure for a population of African-American
men is greater than 140.

Solution: We will say that the data do provide sufficient evidence to conclude that the
population mean is greater than 140 if we can reject the null hypothesis that
the mean is less than or equal to 140. The following test may be carried out:

1. Data. The data consist of systolic blood pressure scores for 157
African-American men with x = 146 and s = 27.

2. Assumptions. The data constitute a simple random sample from a pop-
ulation of African-American men who report to an emergency depart-
ment with symptoms similar to those in the sample. We are unwilling
to assume that systolic blood pressure values are normally distributed
in such a population.

3. Hypotheses.

Hy p = 140
Hy: > 140

4. Test statistic. The test statistic is given by Equation 7.2.3, since s is
unknown.

5. Distribution of test statistic. Because of the central limit theorem, the
test statistic is at worst approximately normally distributed with & = 0
if Hy is true.

6. Decision rule. Let a = .05. The critical value of the test statistic is
1.645. The rejection and nonrejection regions are shown in Figure 7.2.5.
Reject H, if computed z = 1.645.
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.05

°
&

0 1.645 z

Nonrejection region Rejection region

FIGURE 7.2.5 Rejection and nonrejection regions for Example 7.2.4.

7. Calculation of test statistic.

146 — 140 6
27/V157  2.1548

7= =278

8. Statistical decision. Reject H since 2.78 > 1.645.

9. Conclusion. Conclude that the mean systolic blood pressure for the
sampled population is greater than 140.

10. p value. The p value for this testis 1 — .9973 = .0027, since as shown
in Appendix Table D, the area (.0027) to the right of 2.78 is less than
.05, the area to the right of 1.645. [ |

Procedures for Other Conditions If the population variance had been
known, the procedure would have been identical to the above except that the known value
of o, instead of the sample value s, would have been used in the denominator of the
computed test statistic.

Depending on what the investigators wished to conclude, either a two-sided test or
a one-sided test, with the rejection region at the lower tail of the distribution, could have
been made using the above data.

When testing a hypothesis about a single population mean, we may use Figure
6.3.3 to decide quickly whether the test statistic is z or ¢.

Computer Analysis To illustrate the use of computers in testing hypotheses we
consider the following example.
EXAMPLE 7.2.5

The following are the head circumferences (centimeters) at birth of 15 infants:

33.38 3215 3399 3410 3397
3434 3395 3385 3423 3273
3346 34.13 3445 3419 34.05

We wish to test Hy: u = 34.5 against Hx: u # 34.5.
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Dialog box: Session command:
Stat » Basic Statistics » 1-Sample t MTB > TTEST 34.5 C1

Type CI in Samples in columns. Type 34.5
in the Test mean box. Click OK.

Output:

One-Sample T: C1

TEST OF MU = 34.5 VS NOT = 34.5
VARIABLE N MEAN STDEV SE MEAN 95% CI T P
Ccl 15 33.7980 0.6303 0.1627 (33.4490, 34.1470) —4.31 0.001

FIGURE 7.2.6 MINITAB procedure and output for Example 7.2.5.

Solution: We assume that the assumptions for use of the ¢ statistic are met. We enter
the data into Column 1 and proceed as shown in Figure 7.2.6.

To indicate that a test is one-sided when in Windows, click on the
Options button and then choose “less than” or “greater than” as appropri-
ate in the Alternative box. If z is the appropriate test statistic, we choose
1-Sample z from the Basic Statistics menu. The remainder of the commands
are the same as for the ¢ test.

We learn from the printout that the computed value of the test statis-
tic is —4.31 and the p value for the test is .0007. SAS® users may use the
output from PROC MEANS or PROC UNIVARIATE to perform hypothesis
tests.

When both the z statistic and the ¢ statistic are inappropriate test
statistics for use with the available data, one may wish to use a nonpara-
metric technique to test a hypothesis about a single population measure
of central tendency. One such procedure, the sign test, is discussed in
Chapter 13. [ |

EXERCISES

For each of the following exercises carry out the ten-step hypothesis testing procedure for the given
significance level. For each exercise, as appropriate, explain why you chose a one-sided test or a
two-sided test. Discuss how you think researchers and/or clinicians might use the results of your
hypothesis test. What clinical and/or research decisions and/or actions do you think would be
appropriate in light of the results of your test?

7.2.1 Escobar et al. (A-3) performed a study to validate a translated version of the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) questionnaire used with Spanish-speaking
patients with hip or knee osteoarthritis. For the 76 women classified with severe hip pain, the



7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

7.2.7

7.2.8

7.29

EXERCISES 235

WOMAC mean function score (on a scale from O to 100 with a higher number indicating less
function) was 70.7 with a standard deviation of 14.6. We wish to know if we may conclude that
the mean function score for a population of similar women subjects with severe hip pain is less
than 75. Let « = .01.

A study by Thienprasiddhi et al. (A-4) examined a sample of 16 subjects with open-angle glaucoma
and unilateral hemifield defects. The ages (years) of the subjects were:

62 62 68 48 51 60 51 57
57 41 62 50 53 34 62 61

Source: Phamornsak Thienprasiddhi, Vivienne

C. Greenstein, Candice S. Chen, Jeffrey M. Liebmann,
Robert Ritch, and Donald C. Hood, “Multifocal Visual
Evoked Potential Responses in Glaucoma Patients with
Unilateral Hemifield Defects,” American Journal of
Ophthalmology, 136 (2003), 34-40.

Can we conclude that the mean age of the population from which the sample may be presumed
to have been drawn is less than 60 years? Let a« = .05.

The purpose of a study by Lugli¢ et al. (A-5) was to investigate the oral status of a group of
patients diagnosed with thalassemia major (TM). One of the outcome measures was the decayed,
missing, and filled teeth index (DMFT). In a sample of 18 patients the mean DMFT index value
was 10.3 with a standard deviation of 7.3. Is this sufficient evidence to allow us to conclude that
the mean DMFT index is greater than 9.0 in a population of similar subjects? Let « = .10.

A study was made of a sample of 25 records of patients seen at a chronic disease hospital on an
outpatient basis. The mean number of outpatient visits per patient was 4.8, and the sample stan-
dard deviation was 2. Can it be concluded from these data that the population mean is greater than
four visits per patient? Let the probability of committing a type I error be .05. What assumptions
are necessary?

In a sample of 49 adolescents who served as the subjects in an immunologic study, one variable
of interest was the diameter of skin test reaction to an antigen. The sample mean and standard
deviation were 21 and 11 mm erythema, respectively. Can it be concluded from these data that the
population mean is less than 30?7 Let o = .05.

Nine laboratory animals were infected with a certain bacterium and then immunosuppressed. The
mean number of organisms later recovered from tissue specimens was 6.5 (coded data) with a stan-
dard deviation of .6. Can one conclude from these data that the population mean is greater than
6? Let o = .05. What assumptions are necessary?

A sample of 25 freshman nursing students made a mean score of 77 on a test designed to meas-
ure attitude toward the dying patient. The sample standard deviation was 10. Do these data pro-
vide sufficient evidence to indicate, at the .05 level of significance, that the population mean is
less than 80? What assumptions are necessary?

We wish to know if we can conclude that the mean daily caloric intake in the adult rural popula-
tion of a developing country is less than 2000. A sample of 500 had a mean of 1985 and a stan-
dard deviation of 210. Let a = .05.

A survey of 100 similar-sized hospitals revealed a mean daily census in the pediatrics service of
27 with a standard deviation of 6.5. Do these data provide sufficient evidence to indicate that the
population mean is greater than 25? Let a = .05.
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7.2.10

7.2.11

7.2.12

7.2.13

7.2.14

7.2.15

7.2.16

Following a week-long hospital supervisory training program, 16 assistant hospital administra-
tors made a mean score of 74 on a test administered as part of the evaluation of the training
program. The sample standard deviation was 12. Can it be concluded from these data that the
population mean is greater than 70?7 Let @ = .05. What assumptions are necessary?

A random sample of 16 emergency reports was selected from the files of an ambulance service.
The mean time (computed from the sample data) required for ambulances to reach their destina-
tions was 13 minutes. Assume that the population of times is normally distributed with a vari-
ance of 9. Can we conclude at the .05 level of significance that the population mean is greater
than 10 minutes?

The following data are the oxygen uptakes (milliliters) during incubation of a random sample of
15 cell suspensions:

14.0, 14.1, 145, 13.2, 11.2, 14.0, 14.1, 12.2,
11.1, 13.7, 13.2, 16.0, 12.8, 14.4, 12.9

Do these data provide sufficient evidence at the .05 level of significance that the population mean
is not 12 ml? What assumptions are necessary?

Can we conclude that the mean maximum voluntary ventilation value for apparently healthy col-
lege seniors is not 110 liters per minute? A sample of 20 yielded the following values:

132, 33, 91, 108, 67, 169, 54, 203, 190, 133,
96, 30, 187, 21, 63, 166, 84, 110, 157, 138

Let o = .01. What assumptions are necessary?

The following are the systolic blood pressures (mm Hg) of 12 patients undergoing drug therapy
for hypertension:

183, 152, 178, 157, 194, 163, 144, 114, 178, 152, 118, 158

Can we conclude on the basis of these data that the population mean is less than 165? Let o = .05.
What assumptions are necessary?

Can we conclude that the mean age at death of patients with homozygous sickle-cell disease is
less than 30 years? A sample of 50 patients yielded the following ages in years:

15.5 20 451 1.7 8 1.1 182 9.7 281 182
27.6  45.0 1.0 664 20 674 25 617 162 31.7

69 135 1.9 312 9.0 26 297 135 26 144
20.7 309 36.6 1.1 23.6 9 76 235 63 402
23.7 48 332 271 367 32 38.0 35 218 24

Let & = .05. What assumptions are necessary?
The following are intraocular pressure (mm Hg) values recorded for a sample of 21 elderly subjects:

145 129 140 161 120 175 141 129 179 120
164 242 122 144 170 100 185 208 162 149
19.6

Can we conclude from these data that the mean of the population from which the sample was
drawn is greater than 14? Let @ = .05. What assumptions are necessary?
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7.2.17 Suppose it is known that the IQ scores of a certain population of adults are approximately nor-
mally distributed with a standard deviation of 15. A simple random sample of 25 adults drawn
from this population had a mean IQ score of 105. On the basis of these data can we conclude that
the mean IQ score for the population is not 100? Let the probability of committing a type I error
be .05.

7.2.18 A research team is willing to assume that systolic blood pressures in a certain population of males
are approximately normally distributed with a standard deviation of 16. A simple random sample
of 64 males from the population had a mean systolic blood pressure reading of 133. At the .05
level of significance, do these data provide sufficient evidence for us to conclude that the popula-
tion mean is greater than 130?

7.2.19 A simple random sample of 16 adults drawn from a certain population of adults yielded a mean
weight of 63 kg. Assume that weights in the population are approximately normally distributed with
a variance of 49. Do the sample data provide sufficient evidence for us to conclude that the mean
weight for the population is less than 70 kg? Let the probability of committing a type I error be .01.

7.3 HYPOTHESIS TESTING:
THE DIFFERENCE BETWEEN TWO
POPULATION MEANS

Hypothesis testing involving the difference between two population means is most fre-
quently employed to determine whether or not it is reasonable to conclude that the two
population means are unequal. In such cases, one or the other of the following hypothe-
ses may be formulated:

L Hy:py —pp =0, Hatpg — o #0
2. Hy:poy =2 =0, Hpatpy —pp <0
3. Hy:puy — 2 =0,

\Y

Hyipy — 2 >0

It is possible, however, to test the hypothesis that the difference is equal to, greater
than or equal to, or less than or equal to some value other than zero.

As was done in the previous section, hypothesis testing involving the difference
between two population means will be discussed in three different contexts: (1) when
sampling is from normally distributed populations with known population variances,
(2) when sampling is from normally distributed populations with unknown population
variances, and (3) when sampling is from populations that are not normally distributed.

Sampling from Normally Distributed Populations: Population
Variances Known When each of two independent simple random samples has
been drawn from a normally distributed population with a known variance, the test sta-
tistic for testing the null hypothesis of equal population means is

X| — Xp) — -
.= ( 1 2) (Ml Mz)o 73.1)
o? o}

n np



238

CHAPTER 7 HYPOTHESIS TESTING

where the subscript O indicates that the difference is a hypothesized parameter. When H|) is
true the test statistic of Equation 7.3.1 is distributed as the standard normal.

1.
2.

EXAMPLE 7.3.1

Researchers wish to know if the data they have collected provide sufficient evidence to
indicate a difference in mean serum uric acid levels between normal individuals and indi-
viduals with Down’s syndrome. The data consist of serum uric acid readings on 12 indi-
viduals with Down’s syndrome and 15 normal individuals. The means are X; = 4.5
mg/100 ml and X, = 3.4 mg/100 ml.

Solution: We will say that the sample data do provide evidence that the population
means are not equal if we can reject the null hypothesis that the population
means are equal. Let us reach a conclusion by means of the ten-step hypoth-
esis testing procedure.

Data. See problem statement.

Assumptions. The data constitute two independent simple random
samples each drawn from a normally distributed population with a vari-
ance equal to 1 for the Down’s syndrome population and 1.5 for the
normal population.

Hypotheses.
Hy:py — pp =0
Hyipy =y # 0

An alternative way of stating the hypotheses is as follows:

Hy: py = o
Hp:py # po
Test statistic. The test statistic is given by Equation 7.3.1.

Distribution of test statistic. When the null hypothesis is true, the test
statistic follows the standard normal distribution.

Decision rule. Let « = .05. The critical values of z are +1.96. Reject
Hy unless —1.96 < zeompued < 1.96. The rejection and nonrejection
regions are shown in Figure 7.3.1.

Calculation of test statistic.
(45-34) -0 1.1
STV T 15/15 A2

= 2.57

Statistical decision. Reject H), since 2.57 > 1.96.

Conclusion. Conclude that, on the basis of these data, there is an indi-
cation that the two population means are not equal.

10. p value. For this test, p = .0102.
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-1.96 0 1.96 z
X Ie
Rejection region Nonrejection region Rejection region
FIGURE 7.3.1 Rejection and nonrejection regions for Example 7.3.1. |

A 95 Percent Confidence Interval for gy — p5 In the previous chap-
ter the 95 percent confidence interval for u; — w,, computed from the same data, was
found to be .26 to 1.94. Since this interval does not include 0, we say that 0 is not a
candidate for the difference between population means, and we conclude that the dif-
ference is not zero. Thus we arrive at the same conclusion by means of a confidence
interval.

Sampling from Normally Distributed Populations: Population
Variances Unknown As we have learned, when the population variances are
unknown, two possibilities exist. The two population variances may be equal or they may
be unequal. We consider first the case where it is known, or it is reasonable to assume,
that they are equal. A test of the hypothesis that two population variances are equal is
described in Section 7.8.

Population Variances Equal When the population variances are unknown, but
assumed to be equal, we recall from Chapter 6 that it is appropriate to pool the sample vari-
ances by means of the following formula:

2 (ny = 1)si + (ny — 1)s53

P n1+n2—2

When each of two independent simple random samples has been drawn from a normally
distributed population and the two populations have equal but unknown variances, the
test statistic for testing Hy: w; = u, is given by

t= (7.3.2)

which, when H, is true, is distributed as Student’s # with n; + n, — 2 degrees of freedom.
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EXAMPLE 7.3.2

The purpose of a study by Tam et al. (A-6) was to investigate wheelchair maneuvering in
individuals with lower-level spinal cord injury (SCI) and healthy controls (C). Subjects
used a modified wheelchair to incorporate a rigid seat surface to facilitate the specified
experimental measurements. Interface pressure measurement was recorded by using a high-
resolution pressure-sensitive mat with a spatial resolution of four sensors per square cen-
timeter taped on the rigid seat support. During static sitting conditions, average pressures
were recorded under the ischial tuberosities (the bottom part of the pelvic bones). The data
for measurements of the left ischial tuberosity (in mm Hg) for the SCI and control groups
are shown in Table 7.3.1. We wish to know if we may conclude, on the basis of these data,
that, in general, healthy subjects exhibit lower pressure than SCI subjects.

Solution:

1. Data. See statement of problem.

2. Assumptions. The data constitute two independent simple random
samples of pressure measurements, one sample from a population of
control subjects and the other sample from a population with lower-
level spinal cord injury. We shall assume that the pressure measure-
ments in both populations are approximately normally distributed. The
population variances are unknown but are assumed to be equal.

3. Hypotheses. Hy: puc = uscr, Hat pe < Mscr
4. Test statistic. The test statistic is given by Equation 7.3.2.

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic follows Student’s ¢ distribution with n; + n, — 2 degrees of
freedom.

6. Decision rule. Let @« = .05. The critical value of ¢ is —1.7341. Reject
Hy unless feompuea > —1.7341.

7. Calculation of test statistic. From the sample data we compute
}C = 1261, Sc = 218, }SCI = 1331, Sscr — 32.2
Next, we pool the sample variances to obtain

9(21.8)% + 9(32.2)?
2= (218) ( ):756.04
9+9

N

TABLE 7.3.1 Pressures (mm Hg) Under the Pelvis during
Static Conditions for Example 7.3.2

Control 131 115 124 131 122 17 88 14 150 169
SCI 60 150 130 180 163 130 121 119 130 148

Source: Eric W. Tam, Arthur F. Mak, Wai Nga Lam, John H. Evans, and York Y. Chow, “Pelvic Movement
and Interface Pressure Distribution During Manual Wheelchair Propulsion,” Archives of Physical Medicine
and Rehabilitation, 84 (2003), 1466-1472.
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We now compute

(126.1 — 133.1) — 0
t= = —.569
\/756.04 N 756.04

10 10

8. Statistical decision. We fail to reject Hy, since —1.7341 < —.569; that
is, —.569 falls in the nonrejection region.

9. Conclusion. On the basis of these data, we cannot conclude that the pop-
ulation mean pressure is less for healthy subjects than for SCI subjects.

10. p value. For this test, p > .10 since —1.330 < —.569. ]

Population Variances Unequal When two independent simple random
samples have been drawn from normally distributed populations with unknown and
unequal variances, the test statistic for testing Hy: u; = o is

(X1 = x2) = (M1 = m2)o

t = (7.3.3)
2 2
K
21 + 52
n nj

The critical value of ¢' for an « level of significance and a two-sided test is approximately

, _ Wity + Wty
H—(ap2) = m (7.3.4)

where wy = s1/ny, w, = s3/n,, 1, = t-(aj2) for n; — 1 degrees of freedom, and ¢, =
t1—(af2) for ny — 1 degrees of freedom. The critical value of ¢’ for a one-sided test is
found by computing ¢}, by Equation 7.3.4, using #; = t,_, for n; — 1 degrees of free-
dom and ¢, = t_, for n, — 1 degrees of freedom.

For a two-sided test, reject H, if the computed value of ¢’ is either greater than or
equal to the critical value given by Equation 7.3.4 or less than or equal to the negative
of that value.

For a one-sided test with the rejection region in the right tail of the sampling dis-
tribution, reject Hy if the computed ¢’ is equal to or greater than the critical ¢". For a one-
sided test with a left-tail rejection region, reject Hy if the computed value of ¢’ is equal
to or smaller than the negative of the critical t' computed by the indicated adaptation of
Equation 7.3.4.

EXAMPLE 7.3.3

Dernellis and Panaretou (A-7) examined subjects with hypertension and healthy control
subjects. One of the variables of interest was the aortic stiffness index. Measures of this
variable were calculated from the aortic diameter evaluated by M-mode echocardiogra-
phy and blood pressure measured by a sphygmomanometer. Generally, physicians wish
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to reduce aortic stiffness. In the 15 patients with hypertension (group 1), the mean aor-
tic stiffness index was 19.16 with a standard deviation of 5.29. In the 30 control sub-
jects (group 2), the mean aortic stiffness index was 9.53 with a standard deviation of
2.69. We wish to determine if the two populations represented by these samples differ
with respect to mean aortic stiffness index.

Solution:

1. Data. The sample sizes, means, and sample standard deviations are:

ny = 15, jl = 1916, s = 5.29
n, =30, X, =953, s,=2.69

2. Assumptions. The data constitute two independent random samples,
one from a population of subjects with hypertension and the other from
a control population. We assume that aortic stiffness values are approx-
imately normally distributed in both populations. The population vari-
ances are unknown and unequal.

3. Hypotheses.

Hy:py — pp =0
Hyipy = pp # 0

4. Test statistic. The test statistic is given by Equation 7.3.3.

5. Distribution of test statistic. The statistic given by Equation 7.3.3
does not follow Student’s ¢ distribution. We, therefore, obtain its critical
values by Equation 7.3.4.

6. Decision rule. Let o = .05. Before computing ¢’ we calculate
wy = (5.29)%/15 = 1.8656 and w, = (2.69)?/30 = .2412. In Appen-
dix Table E we find that #; = 2.1448 and 7, = 2.0452. By Equation
7.3.4 we compute

,_ L86S6(2.1448) + 2012020452) _
L= 1.8656 + 2412 -

Our decision rule, then, is reject H, if the computed ¢ is either = 2.133
or = —2.133.

7. Calculation of test statistic. By Equation 7.3.3 we compute

19.16 — 9.53) — 0 9.63
( ) = = 6.63

J(5.29)2 B (2.69)2 14515
15 30
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8. Statistical decision. Since 6.63 > 2.133, we reject H,.

9. Conclusion. On the basis of these results we conclude that the two
population means are different.

10. p value. For this test p < .05. [ |

Sampling from Populations That Are Not Normally Distributed
When sampling is from populations that are not normally distributed, the results of the
central limit theorem may be employed if sample sizes are large (say, =30). This will
allow the use of normal theory since the distribution of the difference between sample
means will be approximately normal. When each of two large independent simple ran-
dom samples has been drawn from a population that is not normally distributed, the test
statistic for testing Hy: oy = i, is

z= — (7.3.5)
2 2
g1 i ()
ny np

which, when H is true, follows the standard normal distribution. If the population vari-
ances are known, they are used; but if they are unknown, as is the usual case, the sample
variances, which are necessarily based on large samples, are used as estimates. Sample
variances are not pooled, since equality of population variances is not a necessary assump-
tion when the z statistic is used.

EXAMPLE 7.3.4

The objective of a study by Sairam et al. (A-8) was to identify the role of various dis-
ease states and additional risk factors in the development of thrombosis. One focus of
the study was to determine if there were differing levels of the anticardiolipin antibody
IgG in subjects with and without thrombosis. Table 7.3.2 summarizes the researchers’
findings:

TABLE 7.3.2 IgG Levels for Subjects with and Without Thrombosis
for Example 7.3.4

Mean IgG Level

Group (ml/unit) Sample Size Standard Deviation
Thrombosis 59.01 53 44.89
No thrombosis 46.61 54 34.85

Source: S. Sairam, B. A. Baethge and T. McNearney, “Analysis of Risk Factors and
Comorbid Diseases in the Development of Thrombosis in Patients with Anticardiolipin
Antibodies,” Clinical Rheumatology, 22 (2003), 24-29.
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thrombosis.

Solution:

10.

We wish to know if we may conclude, on the basis of these results, that, in general,
persons with thrombosis have, on the average, higher IgG levels than persons without

. Data. See statement of example.

. Assumptions. The statistics were computed from two independent sam-

ples that behave as simple random samples from a population of per-
sons with thrombosis and a population of persons who do not have
thrombosis. Since the population variances are unknown, we will use the
sample variances in the calculation of the test statistic.

. Hypotheses.

Hy: pr — pnr = 0
Hypr — pny > 0

or, alternatively,

Hy: oy = pnt
Hp: pr > pnr

. Test statistic. Since we have large samples, the central limit theorem

allows us to use Equation 7.3.5 as the test statistic.

. Distribution of test statistic. When the null hypothesis is true, the test

statistic is distributed approximately as the standard normal.

. Decision rule. Let « = .01. This is a one-sided test with a critical

value of z equal to 2.33. Reject Hy if Zcompued = 2-33.

. Calculation of test statistic.

59.01 — 46.61
7= = 1.59
44897 N 34.85°
53 54

. Statistical decision. Fail to reject Hy, since z = 1.59 is in the nonre-

jection region.

. Conclusion. These data indicate that on the average, persons with

thrombosis and persons without thrombosis may not have differing IgG
levels.

p value. For this test, p = .0559. When testing a hypothesis about the
difference between two populations means, we may use Figure 6.4.1 to
decide quickly whether the test statistic should be z or 7. [ |

We may use MINITAB to perform two-sample ¢ tests. To illustrate, let us
refer to the data in Table 7.3.1. We put the data for control subjects and spinal cord
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Dialog box: Session command:

Stat » Basic Statistics » 2-Sample t MTB > TwoSample 95.0 C1 C2
SUBC> Alternative -1,

Choose Samples in different columns. Type CI SUBC> Pooled.

in First and C2 in Second. Click the Options box
and select “less than” in the Alternatives box.
Check Assume equal variances. Click OK.
Output:

Two-Sample T-Test and CI: C, SCI

Two-sample T for C vs SCI

N Mean StDev SE Mean
C 10 126.1 21.8 6.9
SCI 10 133.1 32.2 10
Difference =mu C — mu SCI
Estimate for difference: —7.0
95% upper bound for difference: 14.3
T-Test of difference =0 (vs <): T-Value = —0.57 P-Value = 0.288

DF = 18
Both use Pooled StDhev = 27.5

FIGURE 7.3.2 MINITAB procedure and output for two-sample t test, Example 7.3.2
(data in Table 7.3.1).

injury subjects in Column 1 and Column 2, respectively, and proceed as shown in
Figure 7.3.2.

The SAS® statistical package performs the  test for equality of population means
under both assumptions regarding population variances: that they are equal and that they
are not equal. Note that SAS® designates the p value as Pr > |t| The default output is
a p value for a two-sided test. The researcher using SAS® must divide this quantity in
half when the hypothesis test is one-sided. The SAS® package also tests for equality of
population variances as described in Section 7.8. Figure 7.3.3 shows the SAS® output
for Example 7.3.2.

Alternatives to z and t Sometimes neither the z statistic nor the ¢ statistic is
an appropriate test statistic for use with the available data. When such is the case, one
may wish to use a nonparametric technique for testing a hypothesis about the difference
between two population measures of central tendency. The Mann-Whitney test statistic
and the median test, discussed in Chapter 13, are frequently used alternatives to the z
and ¢ statistics.
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The SAS System
The TTEST Procedure
Statistics Lower CL Upper CL
Lower CL Upper CL std std std std
Variable group N Mean Mean Mean Dev Dev Dev Err
pressure C 10 110.49 126.1 141.71 15.008 21.82 39.834 6.9
pressure SCI 10 110.08 133.1 156.12 22.133 32.178 58.745 10.176
pressure Diff (1-2) —32.83 =7 18.83 20.773 27.491 40.655 12.294
T-Tests
Variable Method Variances DF t Value Pr > |t
pressure Pooled Equal 18 —0.57 0.5761
pressure Satterthwaite Unequal 15.8 —0.57 0.5771
Equality of Variances
Variable Method Num DF Den DF F Value Pr > F
pressure Folded F 9 9 2.17 0.2626
FIGURE 7.3.3 SAS® output for Example 7.3.2 (data in Table 7.3.1).
EXERCISES
In each of the following exercises, complete the ten-step hypothesis testing procedure. State
the assumptions that are necessary for your procedure to be valid. For each exercise, as appro-
priate, explain why you chose a one-sided test or a two-sided test. Discuss how you
think researchers or clinicians might use the results of your hypothesis test. What clinical or
research decisions or actions do you think would be appropriate in light of the results of your
test?
7.3.1 Subjects in a study by Dabonneville et al. (A-9) included a sample of 40 men who claimed to engage
in a variety of sports activities (multisport). The mean body mass index (BMI) for these men was 22.41
with a standard deviation of 1.27. A sample of 24 male rugby players had a mean BMI of 27.75 with
a standard deviation of 2.64. Is there sufficient evidence for one to claim that, in general, rugby players
have a higher BMI than the multisport men? Let « = .01.
7.3.2 The purpose of a study by Ingle and Eastell (A-10) was to examine the bone mineral density

(BMD) and ultrasound properties of women with ankle fractures. The investigators recruited 31
postmenopausal women with ankle fractures and 31 healthy postmenopausal women to serve as
controls. One of the baseline measurements was the stiffness index of the lunar Achilles. The
mean stiffness index for the ankle fracture group was 76.9 with a standard deviation of 12.6. In
the control group, the mean was 90.9 with a standard deviation of 12.5. Do these data provide
sufficient evidence to allow you to conclude that, in general, the mean stiffness index is higher
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in healthy postmenopausal women than in postmenopausal women with ankle fractures? Let
a = .05.

Hoekema et al. (A-11) studied the craniofacial morphology of 26 male patients with obstructive
sleep apnea syndrome (OSAS) and 37 healthy male subjects (non—-OSAS). One of the variables of
interest was the length from the most superoanterior point of the body of the hyoid bone to the
Frankfort horizontal (measured in millimeters).

Length (mm) Non-OSAS Length (mm) OSAS

96.80 97.00 101.00 88.95 105.95 114.90 113.70
100.70 97.70 88.25 101.05 114.90 114.35 116.30

94.55 97.00 92.60 92.60 110.35 112.25 108.75

99.65 94.55 98.25 97.00 123.10 106.15 113.30
109.15 106.45 90.85 91.95 119.30 102.60 106.00
102.75 94.55 95.25 88.95 110.00 102.40 101.75

97.70 94.05 88.80 95.75 98.95 105.05

92.10 89.45 101.40 114.20 112.65

91.90 89.85 90.55 108.95 128.95

89.50 98.20 109.80 105.05 117.70

Source: A. Hoekema, D.D.S. Used with permission.

Do these data provide sufficient evidence to allow us to conclude that the two sampled popula-
tions differ with respect to length from the hyoid bone to the Frankfort horizontal? Let o = .01.

Can we conclude that patients with primary hypertension (PH), on the average, have higher total
cholesterol levels than normotensive (NT) patients? This was one of the inquiries of interest for Rossi
et al. (A-12). In the following table are total cholesterol measurements (mg/dl) for 133 PH patients
and 41 NT patients. Can we conclude that PH patients have, on average, higher total cholesterol
levels than NT patients? Let a = .05.

Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients

207 221 212 220 190 286 189
172 223 260 214 245 226 196
191 181 210 215 171 187 142
221 217 265 206 261 204 179
203 208 206 247 182 203 212
241 202 198 221 162 206 163
208 218 210 199 182 196 196
199 216 211 196 225 168 189
185 168 274 239 203 229 142
235 168 223 199 195 184 168
214 214 175 244 178 186 121
134 203 203 214 240 281

226 280 168 236 222 203

(Continued)
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7.3.5

7.3.6

Total Cholesterol (mg/dl)

Primary Hypertensive Patients Normotensive Patients
222 203 178 249 117 177 135
213 225 217 212 252 179 161
272 227 200 259 203 194
185 239 226 189 245 206
181 265 207 235 218 219
238 228 232 239 152 173
141 226 182 239 231 189
203 236 215 210 237 194
222 195 239 203 196
221 284 210 188 212
180 183 207 237 168
276 266 224 231 188
226 258 251 222 232
224 214 212 174 242
206 260 201 219 200

Source: Gian Paolo Rossi, M.D., EA.C.C., FA.H.A. Used with permission.

Gargdo and Cabrita (A-13) wanted to evaluate the community pharmacist’s capacity to positively
influence the results of antihypertensive drug therapy through a pharmaceutical care program in Por-
tugal. Eighty-two subjects with essential hypertension were randomly assigned to an intervention
or a control group. The intervention group received monthly monitoring by a research pharmacist
to monitor blood pressure, assess adherence to treatment, prevent, detect, and resolve drug-related
problems, and encourage nonpharmacologic measures for blood pressure control. The changes after
6 months in diastolic blood pressure (pre — post, mm Hg) are given in the following table for
patients in each of the two groups.

Intervention Group Control Group
20 4 12 16 4 12 0
2 24 6 10 12 2 2 8
36 6 24 16 18 2 0 10
26 -2 42 10 0 8 0 14
2 8 20 6 8 10 —4 8
20 8 14 6 10 0 12 0
2 16 -2 2 8 6 4 2
14 14 10 8 14 10 28 -8
30 8 2 16 4 -2 —18 16
18 20 18 —12 -2 2 12 12
6 -6 Source: José Gargdo, M.S.,

Pharm.D. Used with permission.

On the basis of these data, what should the researcher conclude? Let o = .05.

A test designed to measure mothers’ attitudes toward their labor and delivery experiences was
given to two groups of new mothers. Sample 1 (attenders) had attended prenatal classes held at
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the local health department. Sample 2 (nonattenders) did not attend the classes. The sample sizes
and means and standard deviations of the test scores were as follows:

Sample n x s
1 15 4.75 1.0
2 22 3.00 1.5

Do these data provide sufficient evidence to indicate that attenders, on the average, score higher
than nonattenders? Let a = .05.

Cortisol level determinations were made on two samples of women at childbirth. Group 1 subjects
underwent emergency cesarean section following induced labor. Group 2 subjects delivered by
either cesarean section or the vaginal route following spontaneous labor. The sample sizes, mean
cortisol levels, and standard deviations were as follows:

Sample n x s
1 10 435 65
2 12 645 80

Do these data provide sufficient evidence to indicate a difference in the mean cortisol levels in the
populations represented? Let a = .05.

Protoporphyrin levels were measured in two samples of subjects. Sample 1 consisted of 50 adult
male alcoholics with ring sideroblasts in the bone marrow. Sample 2 consisted of 40 apparently
healthy adult nonalcoholic males. The mean protoporphyrin levels and standard deviations for the
two samples were as follows:

Sample x s
1 340 250
45 25

Can one conclude on the basis of these data that protoporphyrin levels are higher in the repre-
sented alcoholic population than in the nonalcoholic population? Let o = .01.

A researcher was interested in knowing if preterm infants with late metabolic acidosis and
preterm infants without the condition differ with respect to urine levels of a certain chemical.
The mean levels, standard deviations, and sample sizes for the two samples studied were as
follows:

Sample n x s

With condition 35 8.5 5.5
Without condition 40 4.8 3.6

‘What should the researcher conclude on the basis of these results? Let o = .05.
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7.3.10 Researchers wished to know if they could conclude that two populations of infants differ with respect
to mean age at which they walked alone. The following data (ages in months) were collected:

Sample from population A: 9.5, 10.5, 9.0, 9.75, 10.0, 13.0,
10.0, 13.5, 10.0, 9.5, 10.0, 9.75
Sample from population B:  12.5, 9.5, 13.5, 13.75, 12.0, 13.75,
12.5, 9.5, 12.0, 13.5, 12.0, 12.0
What should the researchers conclude? Let o = .05.

7.3.11 Does sensory deprivation have an effect on a person’s alpha-wave frequency? Twenty volunteer
subjects were randomly divided into two groups. Subjects in group A were subjected to a 10-day
period of sensory deprivation, while subjects in group B served as controls. At the end of the
experimental period, the alpha-wave frequency component of subjects’ electroencephalograms was
measured. The results were as follows:

Group A:  10.2, 9.5, 10.1, 10.0, 9.8, 10.9, 11.4, 10.8, 9.7, 10.4
Group B:  11.0, 11.2, 10.1, 11.4, 11.7, 11.2, 10.8, 11.6, 10.9, 10.9

Let a = .05.

7.3.12 Can we conclude that, on the average, lymphocytes and tumor cells differ in size? The following
are the cell diameters (um) of 40 lymphocytes and 50 tumor cells obtained from biopsies of
tissue from patients with melanoma:

Lymphocytes
9.0 9.4 4.7 4.8 8.9 4.9 8.4 5.9
6.3 5.7 5.0 3.5 7.8 10.4 8.0 8.0
8.6 7.0 6.8 7.1 5.7 7.6 6.2 7.1
7.4 8.7 49 7.4 6.4 7.1 6.3 8.8
8.8 5.2 7.1 5.3 4.7 8.4 6.4 83
Tumor Cells

12.6 14.6 16.2 23.9 233 17.1 20.0 21.0 19.1 19.4
16.7 15.9 15.8 16.0 17.9 13.4 19.1 16.6 18.9 18.7
20.0 17.8 13.9 22.1 13.9 18.3 22.8 13.0 17.9 15.2
17.7 15.1 16.9 16.4 22.8 19.4 19.6 18.4 18.2 20.7
16.3 17.7 18.1 24.3 11.2 19.5 18.6 16.4 16.1 21.5

Let a = .05.

7.4 PAIRED COMPARISONS

In our previous discussion involving the difference between two population means, it
was assumed that the samples were independent. A method frequently employed for
assessing the effectiveness of a treatment or experimental procedure is one that makes
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use of related observations resulting from nonindependent samples. A hypothesis test
based on this type of data is known as a paired comparisons test.

Reasons for Pairing It frequently happens that true differences do not exist
between two populations with respect to the variable of interest, but the presence of extra-
neous sources of variation may cause rejection of the null hypothesis of no difference. On
the other hand, true differences also may be masked by the presence of extraneous factors.

Suppose, for example, that we wish to compare two sunscreens. There are at least
two ways in which the experiment may be carried out. One method would be to select
a simple random sample of subjects to receive sunscreen A and an independent simple
random sample of subjects to receive sunscreen B. We send the subjects out into the sun-
shine for a specified length of time, after which we will measure the amount of damage
from the rays of the sun. Suppose we employ this method, but inadvertently, most of the
subjects receiving sunscreen A have darker complexions that are naturally less sensitive
to sunlight. Let us say that after the experiment has been completed we find that sub-
jects receiving sunscreen A had less sun damage. We would not know if they had less
sun damage because sunscreen A was more protective than sunscreen B or because the
subjects were naturally less sensitive to the sun.

A better way to design the experiment would be to select just one simple random
sample of subjects and let each member of the sample receive both sunscreens. We could,
for example, randomly assign the sunscreens to the left or the right side of each sub-
ject’s back with each subject receiving both sunscreens. After a specified length of expo-
sure to the sun, we would measure the amount of sun damage to each half of the back.
If the half of the back receiving sunscreen A tended to be less damaged, we could more
confidently attribute the result to the sunscreen, since in each instance both sunscreens
were applied to equally pigmented skin.

The objective in paired comparisons tests is to eliminate a maximum number of
sources of extraneous variation by making the pairs similar with respect to as many
variables as possible.

Related or paired observations may be obtained in a number of ways. The same sub-
jects may be measured before and after receiving some treatment. Litter mates of the same
sex may be assigned randomly to receive either a treatment or a placebo. Pairs of twins or
siblings may be assigned randomly to two treatments in such a way that members of a sin-
gle pair receive different treatments. In comparing two methods of analysis, the material
to be analyzed may be divided equally so that one-half is analyzed by one method and
one-half is analyzed by the other. Or pairs may be formed by matching individuals on some
characteristic, for example, digital dexterity, which is closely related to the measurement
of interest, say, posttreatment scores on some test requiring digital manipulation.

Instead of performing the analysis with individual observations, we use d;, the
difference between pairs of observations, as the variable of interest.

When the n sample differences computed from the n pairs of measurements con-
stitute a simple random sample from a normally distributed population of differences,
the test statistic for testing hypotheses about the population mean difference w, is

d — g,
f=— (7.4.1)
S4
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where d is the sample mean difference, Mg, is the hypothesized population mean dif-
ference, s; = sd/\/ﬁ, n is the number of sample differences, and s, is the standard
deviation of the sample differences. When H, is true, the test statistic is distributed
as Student’s t with n — 1 degrees of freedom.

Although to begin with we have two samples—say, before levels and after levels—
we do not have to worry about equality of variances, as with independent samples, since
our variable is the difference between readings in the same individual, or matched indi-
viduals, and, hence, only one variable is involved. The arithmetic involved in perform-
ing a paired comparisons test, therefore, is the same as for performing a test involving
a single sample as described in Section 7.2.

The following example illustrates the procedures involved in a paired comparisons
test.

EXAMPLE 7.4.1

John M. Morton et al. (A-14) examined gallbladder function before and after fundopli-
cation—a surgery used to stop stomach contents from flowing back into the esophagus
(reflux)—in patients with gastroesophageal reflux disease. The authors measured gall-
bladder functionality by calculating the gallbladder ejection fraction (GBEF) before and
after fundoplication. The goal of fundoplication is to increase GBEF, which is meas-
ured as a percent. The data are shown in Table 7.4.1. We wish to know if these data
provide sufficient evidence to allow us to conclude that fundoplication increases GBEF
functioning.

Solution: We will say that sufficient evidence is provided for us to conclude that the
fundoplication is effective if we can reject the null hypothesis that the pop-
ulation mean change w, is different from zero in the appropriate direction.
We may reach a conclusion by means of the ten-step hypothesis testing
procedure.

1. Data. The data consist of the GBEF for 12 individuals, before
and after fundoplication. We shall perform the statistical analysis on
the differences in preop and postop GBEF. We may obtain the dif-
ferences in one of two ways: by subtracting the preop percents from
the postop percents or by subtracting the postop percents from the
preop percents. Let us obtain the differences by subtracting the preop

TABLE 7.4.1 Gallbladder Function in Patients with Presentations of
Gastroesophageal Reflux Disease Before and After Treatment

Preop (%) 22 63.3 96 9.2 3.1 50 33 69 64 18.8 0 34
Postop (%) 635 915 59 378 10.1 196 41 878 86 55 88 40

Source: John M. Morton, Steven P. Bowers, Tananchai A. Lucktong, Samer Mattar, W. Alan Bradshaw,
Kevin E. Behrns, Mark J. Koruda, Charles A. Herbst, William McCartney, Raghuveer K. Halkar, C. Daniel
Smith, and Timothy M. Farrell, “Gallbladder Function Before and After Fundoplication,” Journal of
Gastrointestinal Surgery, 6 (2002), 806-811.



7.4 PAIRED COMPARISONS 253

percents from the postop percents. The d; = postop — preop differ-
ences are:

41.5, 28.2, —37.0, 28.6, 7.0, —30.4, 8.0, 18.8, 22.0, 36.2, 88.0, 6.0

. Assumptions. The observed differences constitute a simple random
sample from a normally distributed population of differences that could
be generated under the same circumstances.

. Hypotheses. The way we state our null and alternative hypotheses
must be consistent with the way in which we subtract measurements to
obtain the differences. In the present example, we want to know if we
can conclude that the fundoplication is useful in increasing GBEF
percentage. If it is effective in improving GBEF, we would expect the
postop percents to tend to be higher than the preop percents. If, there-
fore, we subtract the preop percents from the postop percents
(postop — preop), we would expect the differences to tend to be posi-
tive. Furthermore, we would expect the mean of a population of such
differences to be positive. So, under these conditions, asking if we can
conclude that the fundoplication is effective is the same as asking if we
can conclude that the population mean difference is positive (greater
than zero).
The null and alternative hypotheses are as follows:

HO:[LdS 0
HA:Md >0

If we had obtained the differences by subtracting the postop percents
from the preop weights (preop — postop), our hypotheses would have
been

H():[,LdEO
HA:I“Ld< 0

If the question had been such that a two-sided test was indicated, the
hypotheses would have been

H():}Ld: 0
HA:/'Ld:'ﬁ 0

regardless of the way we subtracted to obtain the differences.

4. Test statistic. The appropriate test statistic is given by Equation 7.4.1.

. Distribution of test statistic. If the null hypothesis is true, the test
statistic is distributed as Student’s ¢t with n — 1 degrees of freedom.

. Decision rule. Let « = .05. The critical value of ¢ is 1.7959. Reject
H, if computed ¢ is greater than or equal to the critical value. The rejec-
tion and nonrejection regions are shown in Figure 7.4.1.
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a=.05

|

0 1.7959 4
A

Nonrejection region Rejection region

FIGURE 7.4.1 Rejection and nonrejection regions for
Example 7.4.1.

7. Calculation of test statistic. From the n = 12 differences d,, we
compute the following descriptive measures:

Sd;  (415) +(282) + (—37.0) + --- + (6.0)  216.9

d= = = 18.07
== 12 12 8.075
- 2
,  2(d;—d)? nXdi- (Zd;)*  12(15669.49) — (216.9)*
55 = = = = 1068.0930
n—1 n(n—1) (12)(11)

L __18075-0 18075
V1068.0930/12  9.4344

= 19159

8. Statistical decision. Reject H), since 1.9159 is in the rejection region.

9. Conclusion. We may conclude that the fundoplication procedure
increases GBEF functioning.

10. p value. For this test, .025 < p < .05, since 1.7959 < 1.9159 <
2.2010. u

A Confidence Interval for gy A 95 percent confidence interval for w,; may
be obtained as follows:

d £ 1) ()5

18.075 + 2.2010V/1068.0930/12
18.075 + 20.765

—2.690, 38.840

The Use of z If, in the analysis of paired data, the population variance of the
differences is known, the appropriate test statistic is

d— Ma
= 7.4.2

Z

It is unlikely that oy will be known in practice.
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Cc2
C1
Difference

0.041

Paired T-Test and Cl: C2, C1

Paired T for C2 - Cl1

95% lower bound for mean difference: 1.1319
T-Test of mean difference = 0 (vs > 0): T-Value = 1.92 P-Value =

N Mean StDev SE Mean
12 56.6083 27.8001 8.0252
12 38.5333 30.0587 8.6772
12 18.0750 32.6817 9.4344

FIGURE 7.4.2 MINITAB procedure and output for paired comparisons test, Example 7.4.1
(data in Table 7.4.1).

If the assumption of normally distributed d;’s cannot be made, the central limit
theorem may be employed if n is large. In such cases, the test statistic is Equation 7.4.2,
with s; used to estimate o; when, as is generally the case, the latter is unknown.

We may use MINITAB to perform a paired #-test. The output from this procedure
is given in Figure 7.4.2.

Disadvantages The use of the paired comparisons test is not without its problems.
If different subjects are used and randomly assigned to two treatments, considerable time
and expense may be involved in our trying to match individuals on one or more relevant
variables. A further price we pay for using paired comparisons is a loss of degrees of
freedom. If we do not use paired observations, we have 2n — 2 degrees of freedom avail-
able as compared to n — 1 when we use the paired comparisons procedure.

In general, in deciding whether or not to use the paired comparisons procedure,
one should be guided by the economics involved as well as by a consideration of the
gains to be realized in terms of controlling extraneous variation.

Alternatives If neither z nor ¢ is an appropriate test statistic for use with available
data, one may wish to consider using some nonparametric technique to test a hypothe-
sis about a median difference. The sign test, discussed in Chapter 13, is a candidate for
use in such cases.

EXERCISES

In the following exercises, carry out the ten-step hypothesis testing procedure at the specified signif-
icance level. For each exercise, as appropriate, explain why you chose a one-sided test or a two-sided
test. Discuss how you think researchers or clinicians might use the results of your hypothesis test.
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7.4.1

74.2

What clinical or research decisions or actions do you think would be appropriate in light of the results
of your test?

Ellen Davis Jones (A-15) studied the effects of reminiscence therapy for older women with depres-
sion. She studied 15 women 60 years or older residing for 3 months or longer in an assisted liv-
ing long-term care facility. For this study, depression was measured by the Geriatric Depression
Scale (GDS). Higher scores indicate more severe depression symptoms. The participants received
reminiscence therapy for long-term care, which uses family photographs, scrapbooks, and personal
memorabilia to stimulate memory and conversation among group members. Pre-treatment and post-
treatment depression scores are given in the following table. Can we conclude, based on these data,
that subjects who participate in reminiscence therapy experience, on average, a decline in GDS
depression scores? Let a = .01.

Pre-GDS: 12 10 16 2 12 18 11 16 16 10 14 21 9 19 20
Post-GDS: 11 10 11 3 9 13 8 14 16 10 12 22 9 16 18
Source: Ellen Davis Jones, N.D., R.N., FNP-C. Used with permission.

Beney et al. (A-16) evaluated the effect of telephone follow-up on the physical well-being dimen-
sion of health-related quality of life in patients with cancer. One of the main outcome variables was
measured by the physical well-being subscale of the Functional Assessment of Cancer Therapy
Scale—General (FACT-G). A higher score indicates higher physical well-being. The following table
shows the baseline FACT-G score and the follow-up score to evaluate the physical well-being dur-
ing the 7 days after discharge from hospital to home for 66 patients who received a phone call
48-72 hours after discharge that gave patients the opportunity to discuss medications, problems,
and advice. Is there sufficient evidence to indicate that quality of physical well-being significantly
decreases in the first week of discharge among patients who receive a phone call? Let & = .05.

Baseline Follow-up Baseline Follow-up
Subject FACT-G FACT-G Subject FACT-G FACT-G
1 16 19 34 25 14
2 26 19 35 21 17
3 13 9 36 14 22
4 20 23 37 23 22
5 22 25 38 19 16
6 21 20 39 19 15
7 20 10 40 18 23
8 15 20 41 20 21
9 25 22 42 18 11
10 20 18 43 22 22
11 11 6 44 7 17
12 22 21 45 23 9
13 18 17 46 19 16
14 21 13 47 17 16
15 25 25 48 22 20
16 17 21 49 19 23
17 26 22 50 5 17
18 18 22 51 22 17
19 7 9 52 12 6

(Continued)
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Baseline Follow-up Baseline Follow-up
Subject FACT-G FACT-G Subject FACT-G FACT-G
20 25 24 53 19 19
21 22 15 54 17 20
22 15 9 55 7 6
23 19 7 56 27 10
24 23 20 57 22 16
25 19 19 58 16 14
26 21 24 59 26 24
27 24 23 60 17 19
28 21 15 61 23 22
29 28 27 62 23 23
30 18 26 63 13 3
31 25 26 64 24 22
32 25 26 65 17 21
33 28 28 66 22 21

Source: Johnny Beney, Ph.D. and E. Beth Devine, Pharm.D., M.B.A. et al. Used with
permission.

The purpose of an investigation by Morley et al. (A-17) was to evaluate the analgesic effective-
ness of a daily dose of oral methadone in patients with chronic neuropathic pain syndromes. The
researchers used a visual analogue scale (0—100 mm, higher number indicates higher pain) ratings
for maximum pain intensity over the course of the day. Each subject took either 20 mg of
methadone or a placebo each day for 5 days. Subjects did not know which treatment they were
taking. The following table gives the mean maximum pain intensity scores for the 5 days on
methadone and the 5 days on placebo. Do these data provide sufficient evidence, at the .05 level
of significance, to indicate that in general the maximum pain intensity is lower on days when
methadone is taken?

Subject Methadone Placebo

1 29.8 57.2

2 73.0 69.8

3 98.6 98.2

4 58.8 624

5 60.6 67.2

6 57.2 70.6

7 57.2 67.8

8 89.2 95.6 Source: John S. Morley, John Bridson, Tim P. Nash, John B.
9 97.0 98.4 Miles, Sarah White, and Matthew K. Makin, “Low-Dose
10 49.8 63.2 Methadone Has an Analgesic Effect in Neuropathic Pain:
11 37.0 63.6 A Double-Blind Randomized Controlled Crossover Trial,”

Falliative Medicine, 17 (2003), 576-587.

‘Woo and McKenna (A-18) investigated the effect of broadband ultraviolet B (UVB) therapy and top-
ical calcipotriol cream used together on areas of psoriasis. One of the outcome variables is the Pso-
riasis Area and Severity Index (PASI). The following table gives the PASI scores for 20 subjects
measured at baseline and after eight treatments. Do these data provide sufficient evidence, at the .01
level of significance, to indicate that the combination therapy reduces PASI scores?
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7.4.5

After 8
Subject Baseline Treatments
1 5.9 52
2 7.6 12.2
3 12.8 4.6
4 16.5 4.0
5 6.1 04
6 144 3.8
7 6.6 1.2
8 5.4 3.1
9 9.6 35
10 11.6 4.9
11 11.1 11.1
12 15.6 8.4
13 6.9 5.8
14 15.2 5.0
15 21.0 6.4
16 5.9 0.0
17 10.0 2.7
18 12.2 5.1
19 20.2 4.8
20 6.2 4.2

Source: W. K. Woo, M.D. Used with permission.

One of the purposes of an investigation by Porcellini et al. (A-19) was to investigate the effect on
CD4 T cell count of administration of intermittent interleukin (IL-2) in addition to highly active
antiretroviral therapy (HAART). The following table shows the CD4 T cell count at baseline and
then again after 12 months of HAART therapy with IL-2. Do the data show, at the .05 level, a
significant change in CD4 T cell count?

Subject 1 2 3 4 5 6 7

CD4 T cell count at 173 58 103 181 105 301 169
entry (X 10°/L)

CD4 T cell count at end 257 108 315 362 141 549 369
of follow-up (X 10°/L)

Source: Simona Procellini, Giuliana Vallanti, Silvia Nozza, Guido Poli, Adraino Lazzarin,
Guiseppe Tabussi, and Antonio Grassia, “Improved Thymopoietic Potential in Aviremic HIV-
Infected Individuals with HAART by Intermittent IL-2 Administration,” AIDS, 17 (2003),
1621-1630.

7.5 HYPOTHESIS TESTING: A SINGLE
POPULATION PROPORTION

Testing hypotheses about population proportions is carried out in much the same way
as for means when the conditions necessary for using the normal curve are met. One-
sided or two-sided tests may be made, depending on the question being asked. When a
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sample sufficiently large for application of the central limit theorem as discussed in Sec-
tion 5.5 is available for analysis, the test statistic is

(7.5.1)

which, when H, is true, is distributed approximately as the standard normal.

EXAMPLE 7.5.1

Wagenknecht et al. (A-20) collected data on a sample of 301 Hispanic women living in
San Antonio, Texas. One variable of interest was the percentage of subjects with impaired
fasting glucose (IFG). IFG refers to a metabolic stage intermediate between normal glu-
cose homeostasis and diabetes. In the study, 24 women were classified in the IFG stage.
The article cites population estimates for IFG among Hispanic women in Texas as 6.3
percent. Is there sufficient evidence to indicate that the population of Hispanic women
in San Antonio has a prevalence of IFG higher than 6.3 percent?

Solution:

1. Data. The data are obtained from the responses of 301 individuals
of which 24 possessed the characteristic of interest; that is, p =
24/301 = .080.

2. Assumptions. The study subjects may be treated as a simple random
sample from a population of similar subjects, and the sampling distri-
bution of p is approximately normally distributed in accordance with
the central limit theorem.

3. Hypotheses.
Hy:p = .063

We conduct the test at the point of equality. The conclusion we reach
will be the same as we would reach if we conducted the test using any
other hypothesized value of p greater than .063. If H, is true, p = .063
and the standard error o5 = V/(.063)(.937)/301. Note that we use the
hypothesized value of p in computing g;. We do this because the
entire test is based on the assumption that the null hypothesis is true.
To use the sample proportion, p , in computing 0 would not be consis-
tent with this concept.

4. Test statistic. The test statistic is given by Equation 7.5.1.

5. Distribution of test statistic. If the null hypothesis is true, the test sta-
tistic is approximately normally distributed with a mean of zero.

6. Decision rule. Let o = .05. The critical value of z is 1.645. Reject H,
if the computed z is =1.645.
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7. Calculation of test statistic.

= 80— 063 _
(.063)(.937)

301

8. Statistical decision. Do not reject H, since 1.21 < 1.645.

9. Conclusion. We cannot conclude that in the sampled population the
proportion who are IFG is higher than 6.3 percent.

10. p value. p = .1131. ]

Tests involving a single proportion can be carried out using a variety
of computer programs. Outputs from MINITAB and NCSS, using the data
from Example 7.5.1, are shown in Figure 7.5.1. It should be noted that the
results will vary slightly, because of rounding errors, if calculations are done
by hand. It should also be noted that some programs, such as NCSS, use a
continuity correction in calculating the z-value, and therefore the test statis-
tic values and corresponding p values differ slightly from the MINITAB
output.

MINITAB Output

Test and CI for One Proportion
Test of p = 0.063 vs p > 0.063

95% Lower

Sample X N Sample p Bound Z-Value P-Value
1 24 301 0.079734 0.054053 1.19 0.116
Using the normal approximation.

NCSS Output

Normal Approximation using (P0)

Alternative Z-Value Prob Decision

Hypothesis Level (5%)

P<>PO 1.0763 0.281780 Accept HO

P<PO 1.0763 0.859110 Accept HO

P>PO0 1.0763 0.140890 Accept HO

FIGURE 7.5.1 MINITAB and partial NCSS output for the data in Example 7.5.1
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EXERCISES

7.5.1

7.5.2

7.5.3

7.5.4

7.5.5

7.5.6

For each of the following exercises, carry out the ten-step hypothesis testing procedure at the des-
ignated level of significance. For each exercise, as appropriate, explain why you chose a one-sided
test or a two-sided test. Discuss how you think researchers or clinicians might use the results of
your hypothesis test. What clinical or research decisions or actions do you think would be appro-
priate in light of the results of your test?

Jacquemyn et al. (A-21) conducted a survey among gynecologists-obstetricians in the Flanders
region and obtained 295 responses. Of those responding, 90 indicated that they had performed at
least one cesarean section on demand every year. Does this study provide sufficient evidence for
us to conclude that less than 35 percent of the gynecologists-obstetricians in the Flanders region
perform at least one cesarean section on demand each year? Let a = .05.

In an article in the journal Health and Place, Hui and Bell (A-22) found that among 2428 boys
ages 7 to 12 years, 461 were overweight or obese. On the basis of this study, can we conclude
that more than 15 percent of the boys ages 7 to 12 in the sampled population are obese or over-
weight? Let o = .05.

Becker et al. (A-23) conducted a study using a sample of 50 ethnic Fijian women. The women com-
pleted a self-report questionnaire on dieting and attitudes toward body shape and change. The
researchers found that five of the respondents reported at least weekly episodes of binge eating dur-
ing the previous 6 months. Is this sufficient evidence to conclude that less than 20 percent of the
population of Fijian women engage in at least weekly episodes of binge eating? Let o = .05.

The following questionnaire was completed by a simple random sample of 250 gynecologists. The
number checking each response is shown in the appropriate box.

1. When you have a choice, which procedure do you prefer for obtaining samples of endometrium?
(a) Dilation and curettage
(b) Vobra aspiration

2. Have you seen one or more pregnant women during the past year whom you knew to have ele-
vated blood lead levels?

(a) Yes
(b) No

3. Do you routinely acquaint your pregnant patients who smoke with the suspected hazards of
smoking to the fetus?

(a) Yes m
(b) No

Can we conclude from these data that in the sampled population more than 60 percent prefer dila-
tion and curettage for obtaining samples of endometrium? Let « = .01.

Refer to Exercise 7.5.4. Can we conclude from these data that in the sampled population fewer
than 15 percent have seen (during the past year) one or more pregnant women with elevated blood
lead levels? Let o = .05.

Refer to Exercise 7.5.4. Can we conclude from these data that more than 90 percent acquaint
their pregnant patients who smoke with the suspected hazards of smoking to the fetus? Let
a = .05.
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7.6 HYPOTHESIS TESTING:
THE DIFFERENCE BETWEEN TWO
POPULATION PROPORTIONS

The most frequent test employed relative to the difference between two population
proportions is that their difference is zero. It is possible, however, to test that the
difference is equal to some other value. Both one-sided and two-sided tests may be
made.

When the null hypothesis to be tested is p; — p, = 0, we are hypothesizing that
the two population proportions are equal. We use this as justification for combining
the results of the two samples to come up with a pooled estimate of the hypothesized
common proportion. If this procedure is adopted, one computes

where x; and x, are the numbers in the first and second samples, respectively, possess-
ing the characteristic of interest. This pooled estimate of p = p; = p, is used in com-
puting G5, _ ;,, the estimated standard error of the estimator, as follows:

R p(l =p) p(l—-p
Tp h :\/ ( ) + ( ) (7.6.1)
nj np
The test statistic becomes
pr—p) —(pr—p
.= (P 2)A (1 2)0 (7.6.2)
g

which is distributed approximately as the standard normal if the null hypothesis is
true.

EXAMPLE 7.6.1

Noonan syndrome is a genetic condition that can affect the heart, growth, blood clot-
ting, and mental and physical development. Noonan et al. (A-24) examined the stature
of men and women with Noonan syndrome. The study contained 29 male and 44 female
adults. One of the cut-off values used to assess stature was the third percentile of adult
height. Eleven of the males fell below the third percentile of adult male height, while
24 of the females fell below the third percentile of female adult height. Does this study
provide sufficient evidence for us to conclude that among subjects with Noonan syn-
drome, females are more likely than males to fall below the respective third percentile
of adult height? Let a = .05.
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Solution:

1. Data. The data consist of information regarding the height status of Noo-
nan syndrome males and females as described in the statement of the
example.

2. Assumptions. We assume that the patients in the study constitute inde-
pendent simple random samples from populations of males and females
with Noonan syndrome.

3. Hypotheses.

Hy:pp=pm of pp—pu=20
Hpy:pp>pum Of pr—pu >0

where pg is the proportion of females below the third percentile of
female adult height and py, is the proportion of males below the third
percentile of male adult height.

4. Test statistic. The test statistic is given by Equation 7.6.2.

5. Distribution of test statistic. If the null hypothesis is true, the test sta-
tistic is distributed approximately as the standard normal.

6. Decision rule. Let o = .05. The critical value of z is 1.645. Reject H,
if computed z is greater than 1.645.

7. Calculation of test statistic. From the sample data we compute pgp=
24/44 = 545, pyy = 11/29 = 379, and p = (24 + 11)/(44 + 29) =
479. The computed value of the test statistic, then, is

B (.545 — .379) _,
° \/(.479)(.521) @0y
4

8. Statistical decision. Fail to reject H, since 1.39 < 1.645.

9. Conclusion. In the general population of adults with Noonan syndrome
there may be no difference in the proportion of males and females who
have heights below the third percentile of adult height.

10. p value. For this test p = .0823. [ ]

Tests involving two proportions, using the data from Example 7.6.1,
can be carried out with a variety of computer programs. Outputs from
MINITAB and NCSS are shown in Figure 7.6.1. Again, it should be noted
that, because of rounding errors, the results will vary slightly if calculations
are done by hand.
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MINITAB Output

Test and CI for Two Proportions

Sample X N Sample p
1 24 44 0.545455
2 11 29 0.379310

Difference = p (1) — p (2)
Estimate for difference: 0.166144
95% lower bound for difference: —0.0267550

Test for difference = 0 (vs > 0): Z = 1.39 P-Value = 0.082

NCSS Output

Test Test Test Prob Conclude H1
Name Statistic’s Statistic Level at 5%

Distribution Value Significance?
Z-Test Normal 1.390 0.0822 No

FIGURE 7.6.1 MINITAB and partial NCSS output for the data in Example 7.6.1

EXERCISES

In each of the following exercises use the ten-step hypothesis testing procedure. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you think
researchers or clinicians might use the results of your hypothesis test. What clinical or research deci-
sions or actions do you think would be appropriate in light of the results of your test?

7.6.1 Ho et al. (A-25) used telephone interviews of randomly selected respondents in Hong Kong to obtain
information regarding individuals’ perceptions of health and smoking history. Among 1222 current
male smokers, 72 reported that they had “poor” or “very poor” health, while 30 among 282 former
male smokers reported that they had “poor” or “very poor” health. Is this sufficient evidence to
allow one to conclude that among Hong Kong men there is a difference between current and for-
mer smokers with respect to the proportion who perceive themselves as having “poor” and “very
poor” health? Let o = .01.

7.6.2 Landolt et al. (A-26) examined rates of posttraumatic stress disorder (PTSD) in mothers and
fathers. Parents were interviewed 5 to 6 weeks after an accident or a new diagnosis of cancer or
diabetes mellitus type I for their child. Twenty-eight of the 175 fathers interviewed and 43 of the
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180 mothers interviewed met the criteria for current PTSD. Is there sufficient evidence for us to
conclude that fathers are less likely to develop PTSD than mothers when a child is traumatized by
an accident, cancer diagnosis, or diabetes diagnosis? Let a = .05.

7.6.3 In a Kidney International article, Avram et al. (A-27) reported on a study involving
529 hemodialysis patients and 326 peritoneal dialysis patients. They found that at baseline
249 subjects in the hemodialysis treatment group were diabetic, while at baseline 134 of the
subjects in the peritoneal dialysis group were diabetic. Is there a significant difference in dia-
betes prevalence at baseline between the two groups of this study? Let & = .05. What does your
finding regarding sample significance imply about the populations of subjects?

7.6.4 In a study of obesity the following results were obtained from samples of males and females
between the ages of 20 and 75:

n Number Overweight
Males 150 21
Females 200 48

Can we conclude from these data that in the sampled populations there is a difference in the
proportions who are overweight? Let o = .05.

7.7 HYPOTHESIS TESTING: A SINGLE
POPULATION VARIANCE

In Section 6.9 we examined how it is possible to construct a confidence interval for
the variance of a normally distributed population. The general principles presented in
that section may be employed to test a hypothesis about a population variance. When
the data available for analysis consist of a simple random sample drawn from a
normally distributed population, the test statistic for testing hypotheses about a
population variance is

x> = (n—1)s%o? (7.7.1)

which, when Hj, is true, is distributed as X2 with n — 1 degrees of freedom.

EXAMPLE 7.7.1

The purpose of a study by Wilkins et al. (A-28) was to measure the effectiveness of
recombinant human growth hormone (thGH) on children with total body surface area
burns > 40 percent. In this study, 16 subjects received daily injections at home of rhGH.
At baseline, the researchers wanted to know the current levels of insulin-like growth fac-
tor (IGF-I) prior to administration of thGH. The sample variance of IGF-I levels (in
ng/ml) was 670.81. We wish to know if we may conclude from these data that the
population variance is not 600.
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Solution:

10.

.025

. Data. See statement in the example.

. Assumptions. The study sample constitutes a simple random sample

from a population of similar children. The IGF-I levels are normally dis-
tributed.

. Hypotheses.

Hy: o = 600
Hy: o # 600

. Test statistic. The test statistic is given by Equation 7.7.1.
. Distribution of test statistic. When the null hypothesis is true, the test

statistic is distributed as x> with n — 1 degrees of freedom.

. Decision rule. Let o = .05. Critical values of y? are 6.262 and 27.488.

Reject Hy unless the computed value of the test statistic is between
6.262 and 27.488. The rejection and nonrejection regions are shown in
Figure 7.7.1.

. Calculation of test statistic.

15(670.81
Y2 = 15(67081) _ 167
600

. Statistical decision. Do not reject H, since 6.262 < 16.77 < 27.488.

. Conclusion. Based on these data we are unable to conclude that the

population variance is not 600.

p value. The determination of the p value for this test is complicated
by the fact that we have a two-sided test and an asymmetric sampling
distribution. When we have a two-sided test and a symmetric sam-
pling distribution such as the standard normal or ¢, we may, as we
have seen, double the one-sided p value. Problems arise when we
attempt to do this with an asymmetric sampling distribution such as the

.025

0 6.262 27.488 x2
1 I\

15

Rejection region

FIGURE 7.7.1

~———

Nonrejection region Rejection region

Rejection and nonrejection regions for Example 7.7.1.
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chi-square distribution. In this situation the one-sided p value is
reported along with the direction of the observed departure from the
null hypothesis. In fact, this procedure may be followed in the case
of symmetric sampling distributions. Precedent, however, seems to
favor doubling the one-sided p value when the test is two-sided and
involves a symmetric sampling distribution.

For the present example, then, we may report the p value as
follows: p > .05 (two-sided test). A population variance greater than
600 is suggested by the sample data, but this hypothesis is not strongly
supported by the test.

If the problem is stated in terms of the population standard devi-
ation, one may square the sample standard deviation and perform the
test as indicated above. ]

One-Sided Tests Although this was an example of a two-sided test, one-sided
tests may also be made by logical modification of the procedure given here.

For Hy: 0> > o3, reject Hy if computed x2 = x7,

For Hy: 02 < o3, reject Hy if computed y* < x2

Tests involving a single population variance can be carried out using MINITAB
software. Most other statistical computer programs lack procedures for carrying out these
tests directly. The output from MINITAB, using the data from Example 7.7.1, is shown
in Figure 7.7.2.

Test and Cl for One Variance

Statistics

N StDhev Variance
16 25.9 671

95% Confidence Intervals
CI for CI for

Method StDev Variance
Standard (19.1, 40.1) (366, 1607)

Tests
Method Chi-Square DF P-Value
Standard 16.77 15 0.666

FIGURE 7.7.2 MINITAB output for the data in Example 7.7.1.
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EXERCISES

7.7.1

7.7.2

7.7.3

7.7.4

7.7.5

7.7.6

7.7.7

In each of the following exercises, carry out the ten-step testing procedure. For each exercise, as
appropriate, explain why you chose a one-sided test or a two-sided test. Discuss how you think
researchers or clinicians might use the results of your hypothesis test. What clinical or research
decisions or actions do you think would be appropriate in light of the results of your test?

Recall Example 7.2.3, where Nakamura et al. (A-1) studied subjects with acute medial collateral
ligament injury (MCL) with anterior cruciate ligament tear (ACL). The ages of the 17 subjects were:

31, 26, 21, 15, 26, 16, 19, 21, 28, 27, 22, 20, 25, 31, 20, 25, 15

Use these data to determine if there is sufficient evidence for us to conclude that in a population
of similar subjects, the variance of the ages of the subjects is not 20 years. Let o = .01.

Robinson et al. (A-29) studied nine subjects who underwent baffle procedure for transposition of
the great arteries (TGA). At baseline, the systemic vascular resistance (SVR) (measured in
WU X m?) values at rest yielded a standard deviation of 28. Can we conclude from these data
that the SVR variance of a population of similar subjects with TGA is not 700? Let o = .10.

Vital capacity values were recorded for a sample of 10 patients with severe chronic airway obstruc-
tion. The variance of the 10 observations was .75. Test the null hypothesis that the population
variance is 1.00. Let a = .05.

Hemoglobin (g percent) values were recorded for a sample of 20 children who were part of a study
of acute leukemia. The variance of the observations was 5. Do these data provide sufficient evi-
dence to indicate that the population variance is greater than 4? Let a = .05.

A sample of 25 administrators of large hospitals participated in a study to investigate the nature and
extent of frustration and emotional tension associated with the job. Each participant was given a test
designed to measure the extent of emotional tension he or she experienced as a result of the duties
and responsibilities associated with the job. The variance of the scores was 30. Can it be concluded
from these data that the population variance is greater than 25? Let « = .05.

In a study in which the subjects were 15 patients suffering from pulmonary sarcoid disease,
blood gas determinations were made. The variance of the Pao, (mm Hg) values was 450. Test
the null hypothesis that the population variance is greater than 250. Let a = .05.

Analysis of the amniotic fluid from a simple random sample of 15 pregnant women yielded the
following measurements on total protein (grams per 100 ml) present:

.69, 1.04, .39, .37, .64, .73, .69, 1.04,
.83, 1.00, .19, .61, 42, .20, .79

Do these data provide sufficient evidence to indicate that the population variance is greater than
.05? Let « = .05. What assumptions are necessary?

7.8 HYPOTHESIS TESTING: THE RATIO
OF TWO POPULATION VARIANCES

As we have seen, the use of the ¢ distribution in constructing confidence intervals and in
testing hypotheses for the difference between two population means assumes that the
population variances are equal. As a rule, the only hints available about the magnitudes
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of the respective variances are the variances computed from samples taken from the
populations. We would like to know if the difference that, undoubtedly, will exist between
the sample variances is indicative of a real difference in population variances, or if the
difference is of such magnitude that it could have come about as a result of chance alone
when the population variances are equal.

Two methods of chemical analysis may give the same results on the average. It
may be, however, that the results produced by one method are more variable than the
results of the other. We would like some method of determining whether this is likely
to be true.

Variance Ratio Test Decisions regarding the comparability of two population
variances are usually based on the variance ratio test, which is a test of the null hypoth-
esis that two population variances are equal. When we test the hypothesis that two pop-
ulation variances are equal, we are, in effect, testing the hypothesis that their ratio is

equal to 1.
We learned in the preceding chapter that, when certain assumptions are met, the
quantity (si/a1)/(s3/ o3) is distributed as F with n; — 1 numerator degrees of freedom

and n, — 1 denominator degrees of freedom. If we are hypothesizing that o7 = o3, we

assume that the hypothesis is true, and the two variances cancel out in the above expres-
sion leaving s7/s3, which follows the same F distribution. The ratio s1/s3 will be desig-
nated V.R. for variance ratio.

For a two-sided test, we follow the convention of placing the larger sample vari-
ance in the numerator and obtaining the critical value of F for «/2 and the appropriate
degrees of freedom. However, for a one-sided test, which of the two sample variances
is to be placed in the numerator is predetermined by the statement of the null hypothe-
sis. For example, for the null hypothesis that 0%/0'%, the appropriate test statistic is
V.R. = s%/s%. The critical value of F is obtained for a (not «/2) and the appropriate
degrees of freedom. In like manner, if the null hypothesis is that o7 = o3, the appropri-
ate test statistic is V.R. = s3/s7. In all cases, the decision rule is to reject the null hypoth-
esis if the computed V.R. is equal to or greater than the critical value of F.

EXAMPLE 7.8.1

Borden et al. (A-30) compared meniscal repair techniques using cadaveric knee speci-
mens. One of the variables of interest was the load at failure (in newtons) for knees fixed
with the FasT-FIX technique (group 1) and the vertical suture method (group 2). Each
technique was applied to six specimens. The standard deviation for the FasT-FIX method
was 30.62, and the standard deviation for the vertical suture method was 11.37. Can we
conclude that, in general, the variance of load at failure is higher for the FasT-FIX tech-
nique than the vertical suture method?

Solution:
1. Data. See the statement of the example.

2. Assumptions. Each sample constitutes a simple random sample of a
population of similar subjects. The samples are independent. We assume
the loads at failure in both populations are approximately normally
distributed.



270

CHAPTER 7 HYPOTHESIS TESTING

.05

0 5.05 Fis,5)

~ ~

Nonrejection region Rejection region

FIGURE 7.8.1 Rejection and nonrejection regions,
Example 7.8.1.

3. Hypotheses.

Hy: 0'% = 0'%

Hy:0% > o3

4. Test statistic.

VR. = (7.8.1)

] =]
ST e S

5. Distribution of test statistic. When the null hypothesis is true, the test
statistic is distributed as F with n; — 1 numerator and n, — 1 denom-
inator degrees of freedom.

6. Decision rule. Let « = .05. The critical value of F, from Appendix Table
G, is 5.05. Note that if Table G does not contain an entry for the given
numerator degrees of freedom, we use the column closest in value to the
given numerator degrees of freedom. Reject H, if V.R. = 5.05.
The rejection and nonrejection regions are shown in Figure 7.8.1.

7. Calculation of test statistic.

(30.62)*
R =—"5 =725
(11.37)?

8. Statistical decision. We reject H, since 7.25 > 5.05; that is, the com-
puted ratio falls in the rejection region.

9. Conclusion. The failure load variability is higher when using the FasT-
FIX method than the vertical suture method.

10. p value. Because the computed V.R. of 7.25 is greater than 5.05, the p
value for this test is less than 0.05. [ |

Several computer programs can be used to test the equality of two variances. Outputs
from these programs will differ depending on the test that is used. We saw in Figure 7.3.3,
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for example, that the SAS system uses a folded F-test procedure. MINITAB uses two dif-
ferent tests. The first is an F-test under the assumption of normality, and the other is a mod-
ified Levene’s test (1) that is used when normality cannot be assumed. SPSS uses an unmod-
ified Levene’s test (2). Regardless of the options, these tests are generally considered superior
to the variance ratio test that is presented in Example 7.8.1. Discussion of the mathematics
behind these tests is beyond the scope of this book, but an example is given to illustrate
these procedures, since results from these tests are often provided automatically as outputs
when a computer program is used to carry out a ¢-test.

EXAMPLE 7.8.2

Using the data from Example 7.3.2, we are interested in testing whether the assumption
of the equality of variances can be assumed prior to performing a t-test. For ease of dis-
cussion, the data are reproduced below (Table 7.8.1):

TABLE 7.8.1 Pressures (mm Hg) Under the Pelvis During Static Conditions for
Example 7.3.2

Control | 131 115 124 131 122 17 88 14 150 169
SCI 60 150 130 180 163 130 121 119 130 148

Partial outputs for MINITAB, SAS, and SPSS are shown in Figure 7.8.2. Regardless of
the test or program that is used, we fail to reject the null hypothesis of equal variances
(Hy: 07 = 03) because all p values > 0.05. We may now proceed with a r-test under

the assumption of equal variances. ]
MINITAB Output SPSS Output
F-Test Levene’s Test for
Test Statistic 0.46 Equality of Variances
P-Value 0.263 F sig.
Levene’s Test 664 482
Test Statistic 0.49
P-Value 0.495
SAS Output
Equality of Variances
Variable Method Num DF Den DF F Value Pr > F
pressure Folded F 9 9 2.17 0.2626

FIGURE 7.8.2 Partial MINITAB, SPSS, and SAS outputs for testing the equality of two
population variances.
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EXERCISES

7.8.1

7.8.2

7.8.3

7.8.4

7.8.5

7.8.6

In the following exercises perform the ten-step test. For each exercise, as appropriate, explain why
you chose a one-sided test or a two-sided test. Discuss how you think researchers or clinicians
might use the results of your hypothesis test. What clinical or research decisions or actions do you
think would be appropriate in light of the results of your test?

Dora et al. (A-31) investigated spinal canal dimensions in 30 subjects symptomatic with disc hernia-
tion selected for a discectomy and 45 asymptomatic individuals. The researchers wanted to know if
spinal canal dimensions are a significant risk factor for the development of sciatica. Toward that end,
they measured the spinal canal dimension between vertebrae L3 and L4 and obtained a mean of 17.8
mm in the discectomy group with a standard deviation of 3.1. In the control group, the mean was
18.5 mm with a standard deviation of 2.8 mm. Is there sufficient evidence to indicate that in relevant
populations the variance for subjects symptomatic with disc herniation is larger than the variance for
control subjects? Let & = .05.

Nagy et al. (A-32) studied 50 stable patients who were admitted for a gunshot wound that tra-
versed the mediastinum. Of these, eight were deemed to have a mediastinal injury and 42 did
not. The standard deviation for the ages of the eight subjects with mediastinal injury was 4.7
years, and the standard deviation of ages for the 42 without injury was 11.6 years. Can we con-
clude from these data that the variance of age is larger for a population of similar subjects with-
out injury compared to a population with mediastinal injury? Let o = .05.

A test designed to measure level of anxiety was administered to a sample of male and a sample
of female patients just prior to undergoing the same surgical procedure. The sample sizes and the
variances computed from the scores were as follows:

Males: n=16,s> = 150
Females: n=21,s*= 275

Do these data provide sufficient evidence to indicate that in the represented populations the scores
made by females are more variable than those made by males? Let o = .05.

In an experiment to assess the effects on rats of exposure to cigarette smoke, 11 animals were exposed
and 11 control animals were not exposed to smoke from unfiltered cigarettes. At the end of the exper-
iment, measurements were made of the frequency of the ciliary beat (beats/min at 20°C) in each ani-
mal. The variance for the exposed group was 3400 and 1200 for the unexposed group. Do these data
indicate that in the populations represented the variances are different? Let a = .05.

Two pain-relieving drugs were compared for effectiveness on the basis of length of time elapsing
between administration of the drug and cessation of pain. Thirteen patients received drug 1, and
13 received drug 2. The sample variances were s7 = 64 and s3 = 16. Test the null hypothesis that
the two populations variances are equal. Let o = .05.

Packed cell volume determinations were made on two groups of children with cyanotic congeni-
tal heart disease. The sample sizes and variances were as follows:

Group n s

1 10 40
2 16 84
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Do these data provide sufficient evidence to indicate that the variance of population 2 is larger
than the variance of population 1? Let & = .05.

7.8.7 Independent simple random samples from two strains of mice used in an experiment yielded the fol-
lowing measurements on plasma glucose levels following a traumatic experience:
Strain A: 54,99, 105, 46, 70, 87, 55, 58, 139, 91
Strain B: 93,91, 93, 150, 80, 104, 128, 83, 88, 95, 94, 97

Do these data provide sufficient evidence to indicate that the variance is larger in the population of
strain A mice than in the population of strain B mice? Let & = .05. What assumptions are necessary?

7.9 THETYPE Il ERROR AND
THE POWER OF A TEST

In our discussion of hypothesis testing our focus has been on «, the probability of com-
mitting a type I error (rejecting a true null hypothesis). We have paid scant attention to
B, the probability of committing a type II error (failing to reject a false null hypothe-
sis). There is a reason for this difference in emphasis. For a given test, « is a single num-
ber assigned by the investigator in advance of performing the test. It is a measure of the
acceptable risk of rejecting a true null hypothesis. On the other hand, 8 may assume one
of many values. Suppose we wish to test the null hypothesis that some population param-
eter is equal to some specified value. If Hy is false and we fail to reject it, we commit
a type II error. If the hypothesized value of the parameter is not the true value, the value
of B (the probability of committing a type II error) depends on several factors: (1) the
true value of the parameter of interest, (2) the hypothesized value of the parameter,
(3) the value of «, and (4) the sample size, n. For fixed a and n, then, we may, before
performing a hypothesis test, compute many values of 8 by postulating many values for
the parameter of interest given that the hypothesized value is false.

For a given hypothesis test it is of interest to know how well the test controls type
II errors. If Hy is in fact false, we would like to know the probability that we will reject
it. The power of a test, designated 1 — 3, provides this desired information. The quan-
tity 1 — B is the probability that we will reject a false null hypothesis; it may be com-
puted for any alternative value of the parameter about which we are testing a hypothesis.
Therefore, 1 — 3 is the probability that we will take the correct action when H,, is false
because the true parameter value is equal to the one for which we computed 1 — (. For
a given test we may specify any number of possible values of the parameter of interest
and for each compute the value of 1 — . The result is called a power function. The
graph of a power function, called a power curve, is a helpful device for quickly assess-
ing the nature of the power of a given test. The following example illustrates the proce-
dures we use to analyze the power of a test.

EXAMPLE 7.9.1

Suppose we have a variable whose values yield a population standard deviation of 3.6.
From the population we select a simple random sample of size n = 100. We select a
value of o = .05 for the following hypotheses:

Hyp =175, Hyp# 175
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Solution:

When we study the power of a test, we locate the rejection and nonrejec-
tion regions on the x scale rather than the z scale. We find the critical val-
ues of x for a two-sided test using the following formulas:

o

Xy = Mo t+ ZW (7.9.1)
and

_ o

XL, = Mo — ZW (7.9.2)

where Xy and X are the upper and lower critical values, respectively, of X;
+z and —z are the critical values of z; and p is the hypothesized value of
. For our example, we have

- (3.6)
Xy = 17.50 + 1.96~— = 17.50 + 1.96(.36)

(10)
17.50 + 7056 = 18.21

and

Xy = 17.50 — 1.96(.36) = 17.50 — .7056 = 16.79

Suppose that Hj is false, that is, that w is not equal to 17.5. In that case,
1 is equal to some value other than 17.5. We do not know the actual value of
w. But if Hj is false, w is one of the many values that are greater than or
smaller than 17.5. Suppose that the true population mean is p; = 16.5. Then
the sampling distribution of Xx; is also approximately normal, with
Mz = i = 16.5. We call this sampling distribution f(x ), and we call the sam-
pling distribution under the null hypothesis f(Xg).

B, the probability of the type II error of failing to reject a false null
hypothesis, is the area under the curve of f(x;) that overlaps the nonrejec-
tion region specified under H,. To determine the value of B, we find the
area under f(x,), above the X axis, and between x = 16.79 and x = 18.21.
The value of B is equal to P(16.79 = x = 18.21) when u = 16.5. This is
the same as

(16.79 - 165 1821 — 16.5) (.29 1.71)
Pl————=7=————|=P| —=7= —

36 36 36 36
= P(81 = z = 4.75)
~ 1 - .7910 = 2090

Thus, the probability of taking an appropriate action (that is, rejecting
Hy) when the null hypothesis states that u = 17.5, but in fact u = 16.5, is
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Nonrejection
region

Rejection region ———{-— —»=|-<«—— Rejection region

. o 3 X

16.79 17.5 18 |[18.21 19

FIGURE 7.9.1 Size of B for selected values for H; for Example 7.9.1.

1 —.2090 = .7910. As we noted, u may be one of a large number of pos-
sible values when H, is false. Figure 7.9.1 shows a graph of several such
possibilities. Table 7.9.1 shows the corresponding values of 8 and 1 — 8
(which are approximate), along with the values of B for some additional
alternatives.

Note that in Figure 7.9.1 and Table 7.9.1 those values of w under the
alternative hypothesis that are closer to the value of u specified by H, have
larger associated (3 values. For example, when pu = 18 under the alterna-
tive hypothesis, 8 = .7190; and when w = 19.0 under Hy, B = .0143. The
power of the test for these two alternatives, then, is 1 — .7190 = .2810 and
1 — .0143 = 9857, respectively. We show the power of the test graphically
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TABLE 7.9.1 Values of g and 1 — B for
Selected Alternative Values of u,, Example
7.9.1

Possible Values of u Under
Hp When H, is False B 1-p

16.0 0.0143 0.9857
16.5 0.2090 0.7910
17.0 0.7190 0.2810
18.0 0.7190 0.2810
18.5 0.2090 0.7910
19.0 0.0143 0.9857

1-B
1.00 —
0.90 —
0.80 —
0.70 —
0.60 —
0.50 —
0.40 —
0.30 —
0.20 —
0.10 —

I I N Iy S IO N B
16.0 17.0 18.0 19.0
Alternative values of u

FIGURE 7.9.2 Power curve for Example 7.9.1.

in a power curve, as in Figure 7.9.2. Note that the higher the curve, the
greater the power. [ |

Although only one value of « is associated with a given hypothesis test, there are many
values of 3, one for each possible value of w if w, is not the true value of w as hypoth-
esized. Unless alternative values of w are much larger or smaller than w,, B is relatively
large compared with a. Typically, we use hypothesis-testing procedures more often in
those cases in which, when H,, is false, the true value of the parameter is fairly close to
the hypothesized value. In most cases, 3, the computed probability of failing to reject a
false null hypothesis, is larger than «, the probability of rejecting a true null hypothesis.
These facts are compatible with our statement that a decision based on a rejected null
hypothesis is more conclusive than a decision based on a null hypothesis that is not
rejected. The probability of being wrong in the latter case is generally larger than the
probability of being wrong in the former case.

Figure 7.9.2 shows the V-shaped appearance of a power curve for a two-sided test.
In general, a two-sided test that discriminates well between the value of the parameter
in Hy and values in H; results in a narrow V-shaped power curve. A wide V-shaped curve
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indicates that the test discriminates poorly over a relatively wide interval of alternative
values of the parameter.

Power Curves for One-Sided Tests The shape of a power curve for a
one-sided test with the rejection region in the upper tail is an elongated S. If the rejec-
tion region of a one-sided test is located in the lower tail of the distribution, the power
curve takes the form of a reverse elongated S. The following example shows the nature
of the power curve for a one-sided test.

EXAMPLE 7.9.2

The mean time laboratory employees now take to do a certain task on a machine is 65 sec-
onds, with a standard deviation of 15 seconds. The times are approximately normally distrib-
uted. The manufacturers of a new machine claim that their machine will reduce the mean
time required to perform the task. The quality-control supervisor designs a test to determine
whether or not she should believe the claim of the makers of the new machine. She chooses
a significance level of @ = 0.01 and randomly selects 20 employees to perform the task on
the new machine. The hypotheses are

Hyp =65 Hpy:p <65

The quality-control supervisor also wishes to construct a power curve for the test.

Solution: The quality-control supervisor computes, for example, the following value
of 1 — B for the alternative . = 55. The critical value of 1 —  for the
test is

15
65 — 233 —= ) = 57
(VZO)

We find B as follows:

57 — 55
15/V20

B P(x>57|,u=55)=P<z> )=P(z>.60)

=1 - 7257 = 2743

Consequently, 1 — 8 =1 — .2743 = .7257. Figure 7.9.3 shows the calcu-
lation of B. Similar calculations for other alternative values of w also yield

=|

FIGURE 7.9.3 B calculated for u = 55.
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1-8
1.00 ;z
0.90 —
0.80 [—
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0.60 —
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FIGURE 7.9.4 Power curve for Example 7.9.2.

values of 1 — . When plotted against the values of u, these give the power
curve shown in Figure 7.9.4. ]

Operating Characteristic Curves Another way of evaluating a test is to
look at its operating characteristic (OC) curve. To construct an OC curve, we plot val-
ues of 3, rather than 1 — S, along the vertical axis. Thus, an OC curve is the comple-
ment of the corresponding power curve.

EXERCISES

7.9.1
7.9.2
7.9.3

Construct and graph the power function for each of the following situations.
Hy pw =516, Hy:p > 516, n=16,0 = 32, a = 0.05.

Hyw=3, Hyp#3, n=100,0 =1,a = 0.05.

IA

Hyw =425 Hpyp>425 n=28l,0 =18 a=001.

7.10 DETERMINING SAMPLE SIZE
TO CONTROL TYPE 1l ERRORS

You learned in Chapter 6 how to find the sample sizes needed to construct confidence
intervals for population means and proportions for specified levels of confidence. You
learned in Chapter 7 that confidence intervals may be used to test hypotheses. The
method of determining sample size presented in Chapter 6 takes into account the prob-
ability of a type I error, but not a type II error since the level of confidence is deter-
mined by the confidence coefficient, 1 — a.
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In many statistical inference procedures, the investigator wishes to consider the
type II error as well as the type I error when determining the sample size. To illustrate
the procedure, we refer again to Example 7.9.2.

EXAMPLE 7.10.1
In Example 7.9.2, the hypotheses are
Hyp =65, Hpu <65

The population standard deviation is 15, and the probability of a type I error is set at
.01. Suppose that we want the probability of failing to reject Hy() to be .05 if Hy is
false because the true mean is 55 rather than the hypothesized 65. How large a sample
do we need in order to realize, simultaneously, the desired levels of o and 3?

Solution: For a = .01 and n = 20, 3 is equal to .2743. The critical value is 57. Under
the new conditions, the critical value is unknown. Let us call this new crit-
ical value C. Let gy be the hypothesized mean and w; the mean under the
alternative hypothesis. We can transform each of the relevant sampling dis-
tributions of X, the one with a mean of wy and the one with a mean of w,
to a z distribution. Therefore, we can convert C to a z value on the hori-
zontal scale of each of the two standard normal distributions. When we
transform the sampling distribution of x that has a mean of u to the stan-
dard normal distribution, we call the z that results z,. When we transform
the sampling distribution X that has a mean of w; to the standard normal
distribution, we call the z that results z,. Figure 7.10.1 represents the situ-
ation described so far.

We can express the critical value C as a function of z, and u, and
also as a function of z; and ;. This gives the following equations:

g
C= Mo — 20 W (7101)
C=p +1 % (7.10.2)

=

9!

T~ P
:
;
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FIGURE 7.10.1 Graphic representation of relationships in determination
of sample size to control both type | and type Il errors.
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EXERCISES

We set the right-hand sides of these equations equal to each other and solve
for n, to obtain

+ 2
n= [W} (7.10.3)

(o — m1)

To find n for our illustrative example, we substitute appropriate quanti-
ties into Equation 7.10.3. We have uy = 65, w; = 55, and o = 15. From
Appendix Table D, the value of z that has .01 of the area to its left is —2.33.
The value of z that has .05 of the area to its right is 1.645. Both z and z; are
taken as positive. We determine whether C lies above or below either w, or
1 when we substitute into Equations 7.10.1 and 7.10.2. Thus, we compute

(2.33 + 1.645)(15) 2

- = 3555
" (65 — 55)

We would need a sample of size 36 to achieve the desired levels of o and
B when we choose p; = 55 as the alternative value of w.

We now compute C, the critical value for the test, and state an appro-
priate decision rule. To find C, we may substitute known numerical values
into either Equation 7.10.1 or Equation 7.10.2. For illustrative purposes, we
solve both equations for C. First we have

15
C=65—-233|——=
(\/36

From Equation 7.10.2, we have

) = 59.175

15

C =55 — 1.645
(\/36

) = 59.1125
The difference between the two results is due to rounding error.
The decision rule, when we use the first value of C, is as follows:

Select a sample of size 36 and compute x, if x = 59.175, reject Hy. If
x > 59.175, do not reject H,,.

We have limited our discussion of the type II error and the power of
a test to the case involving a population mean. The concepts extend to cases
involving other parameters. [ |

7.10.1 Given Hy: u = 516, Hp:p > 516, n = 16,0 = 32, = .05.Let 8 = .10 and n; = 520, and
find n and C. State the appropriate decision rule.

7.10.2 Given Hy: pu = 4.500, Hp:p > 4.500, n =16, ¢ = .020, « = .01. Let 8 = .05 and u, =
4.52, and find n and C. State the appropriate decision rule.

7.10.3 Given Hy: u = 425, Hpyp > 425 n=281,0 =18 a= .01 Let B =.03 and u; = 5.00,
and find n and C. State the appropriate decision rule.
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7.11 SUMMARY

In this chapter the general concepts of hypothesis testing are discussed. A general proce-
dure for carrying out a hypothesis test consisting of the following ten steps is suggested.

o=

. Description of data.

Statement of necessary assumptions.
Statement of null and alternative hypotheses.

Specification of the test statistic.

Specification of the distribution of the test statistic.
Statement of the decision rule.
Calculation of test statistic from sample data.

The statistical decision based on sample results.

R L

Conclusion.

[
R

Determination of p value.

A number of specific hypothesis tests are described in detail and illustrated with
appropriate examples. These include tests concerning population means, the difference
between two population means, paired comparisons, population proportions, the difference
between two population proportions, a population variance, and the ratio of two popula-
tion variances. In addition we discuss the power of a test and the determination of sample
size for controlling both type I and type II errors.

SUMMARY OF FORMULAS FOR CHAPTER 7

Formula Number Name Formula
7.1.1,7.1.2,7.2.1 z-transformation = X = Mo
(using either w or ) o /\/,;
7.2.2 t-transformation X — Mo
t=—
s/ Vn
7.2.3 Test statistic )

when sampling from a
population that is not
normally distributed

s/\/i;

7.3.1 Test statistic (1 = X2) = (1 — m2)o
when sampling = > >
from normally distributed g1, %
populations: population ny Ny

variances known

(Continued)
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732

Test statistic when sampling
from normally distributed
populations: population
variances unknown and
equal

7.3.3,734

Test statistic when
sampling from normally
distributed populations:
population variances
unknown and

unequal

735

Sampling from populations
that are not normally
distributed

74.1

Test statistic for paired
differences when the
population variance is
unknown

742

Test statistic for paired
differences when the
population variance is
known

7.5.1

Test statistic for a single
population proportion

7.6.1,7.6.2

Test statistic

for the difference
between two population
proportions

7.7.1

Test statistic for a single
population variance

7.8.1

Variance ratio
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e C = critical value
+ x* = chi-square distribution
» d = average difference
* u = mean of population
* o = hypothesized mean
e n = sample size
e p = proportion for population
p = average proportion
*qg=(1-p
p = estimated proportion for sample
« ¢ = population variance
¢ o = population standard deviation
* o, = standard error of difference
e g5 = standard error
* s = standard deviation of sample
* s = standard deviation of the difference
* 5, = pooled standard deviation
¢ t = Student’s t-transformation
e t' = Cochran’s correction to ¢
* X = mean of sample
e x; = lower limit of critical value for x
* Xy = upper limit of critical value for x
e z = standard normal transformation

7.9.1,79.2 Upper and lower critical X, = + .7
- U~ Mo T2
values for x Vi
e o
L= Mo~ T~
Vn
7.10.1, 7.10.2 Critical value for C=po—2z g _ my + 2
determining sample 0 0 Vn : 1\/;1
size to control type II
errors
7.10.3 Sample size to control (zo + 21)07?
type II errors n= { (1o — }
Symbol Key * o = type 1 error rate

REVIEW QUESTIONS AND EXERCISES

1. What is the purpose of hypothesis testing?

2. What is a hypothesis?

3. List and explain each step in the ten-step hypothesis testing procedure.
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10.
11.

12.

13.
14.
15.
16.
17.
18.

19.

Define:

(a) Type I error (b) Type II error

(¢) The power of a test (d) Power function

(e) Power curve (f) Operating characteristic curve

Explain the difference between the power curves for one-sided tests and two-sided tests.

Explain how one decides what statement goes into the null hypothesis and what statement goes
into the alternative hypothesis.

What are the assumptions underlying the use of the ¢ statistic in testing hypotheses about a single
mean? The difference between two means?

When may the z statistic be used in testing hypotheses about
(a) a single population mean?

(b) the difference between two population means?

(c) a single population proportion?

(d) the difference between two population proportions?

In testing a hypothesis about the difference between two population means, what is the rationale
behind pooling the sample variances?

Explain the rationale behind the use of the paired comparisons test.

Give an example from your field of interest where a paired comparisons test would be appropri-
ate. Use real or realistic data and perform an appropriate hypothesis test.

Give an example from your field of interest where it would be appropriate to test a hypothesis
about the difference between two population means. Use real or realistic data and carry out the
ten-step hypothesis testing procedure.

Do Exercise 12 for a single population mean.

Do Exercise 12 for a single population proportion.

Do Exercise 12 for the difference between two population proportions.
Do Exercise 12 for a population variance.

Do Exercise 12 for the ratio of two population variances.

Ochsenkiihn et al. (A-33) studied birth as a result of in vitro fertilization (IVF) and birth from
spontaneous conception. In the sample, there were 163 singleton births resulting from IVF with a
mean birth weight of 3071 g and sample standard deviation of 761 g. Among the 321 singleton
births resulting from spontaneous conception, the mean birth weight was 3172 g with a standard
deviation of 702 g. Determine if these data provide sufficient evidence for us to conclude that the
mean birth weight in grams of singleton births resulting from IVF is lower, in general, than the
mean birth weight of singleton births resulting from spontaneous conception. Let o = .10.

William Tindall (A-34) performed a retrospective study of the records of patients receiving care
for hypercholesterolemia. The following table gives measurements of total cholesterol for patients
before and 6 weeks after taking a statin drug. Is there sufficient evidence at the o = .01 level of
significance for us to conclude that the drug would result in reduction in total cholesterol in a pop-
ulation of similar hypercholesterolemia patients?
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Id. No. Before  After Id. No. Before After Id. No. Before After
1 195 125 37 221 191 73 205 151
2 208 164 38 245 164 74 298 163
3 254 152 39 250 162 75 305 171
4 226 144 40 266 180 76 262 129
5 290 212 41 240 161 77 320 191
6 239 171 42 218 168 78 271 167
7 216 164 43 278 200 79 195 158
8 286 200 44 185 139 80 345 192
9 243 190 45 280 207 81 223 117

10 217 130 46 278 200 82 220 114

11 245 170 47 223 134 83 279 181

12 257 182 48 205 133 84 252 167

13 199 153 49 285 161 85 246 158

14 277 204 50 314 203 86 304 190

15 249 174 51 235 152 87 292 177

16 197 160 52 248 198 88 276 148

17 279 205 53 291 193 89 250 169

18 226 159 54 231 158 90 236 185

19 262 170 55 208 148 91 256 172

20 231 180 56 263 203 92 269 188

21 234 161 57 205 156 93 235 172

22 170 139 58 230 161 94 184 151

23 242 159 59 250 150 95 253 156

24 186 114 60 209 181 96 352 219

25 223 134 61 269 186 97 266 186

26 220 166 62 261 164 98 321 206

27 277 170 63 255 164 99 233 173

28 235 136 64 275 195 100 224 109

29 216 134 65 239 169 101 274 109

30 197 138 66 298 177 102 222 136

31 253 181 67 265 217 103 194 131

32 209 147 68 220 191 104 293 228

33 245 164 69 196 129 105 262 211

34 217 159 70 177 142 106 306 192

35 187 139 71 211 138 107 239 174

36 265 171 72 244 166

Source: William Tindall, Ph.D. and the Wright State University Consulting Center. Used with permission.

The objective of a study by van Vollenhoven et al. (A-35) was to examine the effectiveness of
Etanercept alone and Etanercept in combination with methotrexate in the treatment of rheumatoid
arthritis. They performed a retrospective study using data from the STURE database, which collects
efficacy and safety data for all patients starting biological treatments at the major hospitals in
Stockholm, Sweden. The researchers identified 40 subjects who were prescribed Etanercept only and
57 who were given Etanercept with methotrexate. One of the outcome measures was the number of
swollen joints. The following table gives the mean number of swollen joints in the two groups as well
as the standard error of the mean. Is there sufficient evidence at the @ = .05 level of significance for
us to conclude that there is a difference in mean swollen joint counts in the relevant populations?
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21.

22,

23.

24.

Treatment Mean Standard Error of Mean
Etanercept 5.56 0.84
Etanercept plus methotrexate 4.40 0.57

Miyazaki et al. (A-36) examined the recurrence-free rates of stripping with varicectomy and strip-
ping with sclerotherapy for the treatment of primary varicose veins. The varicectomy group con-
sisted of 122 limbs for which the procedure was done, and the sclerotherapy group consisted of 98
limbs for which that procedure was done. After 3 years, 115 limbs of the varicectomy group and 87
limbs of the sclerotherapy group were recurrence-free. Is this sufficient evidence for us to conclude
there is no difference, in general, in the recurrence-free rate between the two procedures for treating
varicose veins? Let a = .05.

Recall the study, reported in Exercise 7.8.1, in which Dora et al. (A-37) investigated spinal
canal dimensions in 30 subjects symptomatic with disc herniation selected for a discectomy
and 45 asymptomatic individuals (control group). One of the areas of interest was determining
if there is a difference between the two groups in the spinal canal cross-sectional area (cm?)
between vertebrae L5/S1. The data in the following table are simulated to be consistent with
the results reported in the paper. Do these simulated data provide evidence for us to conclude
that a difference in the spinal canal cross-sectional area exists between a population of sub-
jects with disc herniations and a population of those who do not have disc herniations? Let
a = .05.

Herniated Disc Group Control Group
2.62 2.57 1.98 3.21 3.59 3.72 4.30 2.87 3.87 2.73 5.28
1.60 1.80 391 2.56 1.53 1.33 2.36 3.67 1.64 3.54 3.63
2.39 2.67 3.53 2.26 2.82 4.26 3.08 332 4.00 2.76 3.58
2.05 1.19 3.01 2.39 3.61 3.11 3.94 4.39 3.73 222 2.73
2.09 3.79 2.45 2.55 2.10 5.02 3.62 3.02 3.15 3.57 2.37
2.28 2.33 2.81 3.70 2.61 542 3.35 2.62 3.72 4.37 5.28

4.97 2.58 2.25 3.12 343
3.95 2.98 4.11 3.08 222

Source: Simulated data.

Iannelo et al. (A-38) investigated differences between triglyceride levels in healthy obese (con-
trol) subjects and obese subjects with chronic active B or C hepatitis. Triglyceride levels of
208 obese controls had a mean value of 1.81 with a standard error of the mean of .07 mmol/L.
The 19 obese hepatitis subjects had a mean of .71 with a standard error of the mean of .05. Is
this sufficient evidence for us to conclude that, in general, a difference exists in average triglyc-
eride levels between obese healthy subjects and obese subjects with hepatitis B or C? Let
a = .01.

Kindergarten students were the participants in a study conducted by Susan Bazyk et al. (A-39).
The researchers studied the fine motor skills of 37 children receiving occupational therapy. They
used an index of fine motor skills that measured hand use, eye—hand coordination, and manual
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dexterity before and after 7 months of occupational therapy. Higher values indicate stronger fine
motor skills. The scores appear in the following table.

Subject Pre Post Subject  Pre Post
1 91 94 20 76 112
2 61 94 21 79 91
3 85 103 22 97 100
4 88 112 23 109 112
5 94 91 24 70 70
6 112 112 25 58 76
7 109 112 26 97 97
8 79 97 27 112 112
9 109 100 28 97 112

10 115 106 29 112 106

11 46 46 30 85 112

12 45 41 31 112 112

13 106 112 32 103 106

14 112 112 33 100 100

15 91 94 34 88 88

16 115 112 35 109 112

17 59 94 36 85 112

18 85 109 37 38 97

19 112 112

Source: Susan Bazyk, M.H.S. Used with permission.

Can one conclude on the basis of these data that after 7 months, the fine motor skills in a popu-
lation of similar subjects would be stronger? Let & = .05. Determine the p value.

A survey of 90 recently delivered women on the rolls of a county welfare department revealed that
27 had a history of intrapartum or postpartum infection. Test the null hypothesis that the popula-
tion proportion with a history of intrapartum or postpartum infection is less than or equal to .25.
Let a = .05. Determine the p value.

In a sample of 150 hospital emergency admissions with a certain diagnosis, 128 listed vomiting as a
presenting symptom. Do these data provide sufficient evidence to indicate, at the .01 level of signifi-
cance, that the population proportion is less than .92? Determine the p value.

A research team measured tidal volume in 15 experimental animals. The mean and standard devi-
ation were 45 and 5 cc, respectively. Do these data provide sufficient evidence to indicate that the
population mean is greater than 40 cc? Let o = .05.

A sample of eight patients admitted to a hospital with a diagnosis of biliary cirrhosis had a mean
IgM level of 160.55 units per milliliter. The sample standard deviation was 50. Do these data pro-
vide sufficient evidence to indicate that the population mean is greater than 1507 Let o = .05.
Determine the p value.

Some researchers have observed a greater airway resistance in smokers than in nonsmokers. Sup-
pose a study, conducted to compare the percent of tracheobronchial retention of particles in
smoking-discordant monozygotic twins, yielded the following results:
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30.

31.

32.

33.

34.

35.

Percent Retention Percent Retention
Smoking Twin Nonsmoking Twin Smoking Twin Nonsmoking Twin
60.6 47.5 57.2 54.3
12.0 133 62.7 13.9
56.0 33.0 28.7 8.9
752 552 66.0 46.1
12.5 21.9 252 29.8
29.7 27.9 40.1 36.2

Do these data support the hypothesis that tracheobronchial clearance is slower in smokers? Let
a = .05. Determine the p value for this test.

Circulating levels of estrone were measured in a sample of 25 postmenopausal women following
estrogen treatment. The sample mean and standard deviation were 73 and 16, respectively. At the
.05 significance level can one conclude on the basis of these data that the population mean is higher
than 70?

Systemic vascular resistance determinations were made on a sample of 16 patients with chronic,
congestive heart failure while receiving a particular treatment. The sample mean and standard
deviation were 1600 and 700, respectively. At the .05 level of significance do these data provide
sufficient evidence to indicate that the population mean is less than 20007

The mean length at birth of 14 male infants was 53 cm with a standard deviation of 9 cm. Can
one conclude on the basis of these data that the population mean is not 50 cm? Let the probability
of committing a type I error be .10.

For each of the studies described in Exercises 33 through 38, answer as many of the fol-
lowing questions as possible: (a) What is the variable of interest? (b) Is the parameter of interest
a mean, the difference between two means (independent samples), a mean difference (paired data),
a proportion, or the difference between two proportions (independent samples)? (c) What is the
sampled population? (d) What is the target population? (e) What are the null and alternative
hypotheses? (f) Is the alternative one-sided (left tail), one-sided (right tail), or two-sided? (g) What
type I and type II errors are possible? (h) Do you think the null hypothesis was rejected? Explain
why or why not.

During a one-year period, Hong et al. (A-40) studied all patients who presented to the surgical serv-
ice with possible appendicitis. One hundred eighty-two patients with possible appendicitis were ran-
domized to either clinical assessment (CA) alone or clinical evaluation and abdominal/pelvic CT. A
true-positive case resulted in a laparotomy that revealed a lesion requiring operation. A true-nega-
tive case did not require an operation at one-week follow-up evaluation. At the close of the study,
they found no significant difference in the hospital length of stay for the two treatment groups.

Recall the study reported in Exercise 7.8.2 in which Nagy et al. (A-32) studied 50 stable patients
admitted for a gunshot wound that traversed the mediastinum. They found that eight of the sub-
jects had a mediastinal injury, while 42 did not have such an injury. They performed a student’s ¢
test to determine if there was a difference in mean age (years) between the two groups. The
reported p value was .59.

Dykstra et al. (A-41) studied 15 female patients with urinary frequency with or without incon-
tinence. The women were treated with botulinum toxin type B (BTX-B). A ¢ test of the
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pre/post-difference in frequency indicated that these 15 patients experienced an average of 5.27
fewer frequency episodes per day after treatment with BTX-B. The p value for the test was
less than 0.001.

Recall the study reported in Exercise 6.10.2 in which Horesh et al. (A-42) investigated suicidal
behavior among adolescents. In addition to impulsivity, the researchers studied hopelessness among
the 33 subjects in the suicidal group and the 32 subjects in the nonsuicidal group. The means for
the two groups on the Beck Hopelessness Scale were 11.6 and 5.2, respectively, and the ¢ value
for the test was 5.13.

Mauksch et Al. (A-43) surveyed 500 consecutive patients (ages 18 to 64 years) in a primary care
clinic serving only uninsured, low-income patients. They used self-report questions about why
patients were coming to the clinic, and other tools to classify subjects as either having or not hav-
ing major mental illness. Compared with patients without current major mental illness, patients
with a current major mental illness reported significantly (p < .001) more concerns, chronic ill-
nesses, stressors, forms of maltreatment, and physical symptoms.

A study by Hosking et al. (A-44) was designed to compare the effects of alendronate and rise-
dronate on bone mineral density (BMD). One of the outcome measures was the percent increase
in BMD at 12 months. Alendronate produced a significantly higher percent change (4.8 percent)
in BMD than risedronate (2.8 percent) with a p value < .001.

For each of the following situations, identify the type I and type II errors and the correct actions.
(a) Hy: A new treatment is not more effective than the traditional one.
(1) Adopt the new treatment when the new one is more effective.
(2) Continue with the traditional treatment when the new one is more effective.
(3) Continue with the traditional treatment when the new one is not more effective.
(4) Adopt the new treatment when the new one is not more effective.
(b) Hy: A new physical therapy procedure is satisfactory.
(1) Employ a new procedure when it is unsatisfactory.
(2) Do not employ a new procedure when it is unsatisfactory.
(3) Do not employ a new procedure when it is satisfactory.
(4) Employ a new procedure when it is satisfactory.

(¢) Hy: A production run of a drug is of satisfactory quality.
(1) Reject a run of satisfactory quality.
(2) Accept a run of satisfactory quality.
(3) Reject a run of unsatisfactory quality.
(4) Accept a run of unsatisfactory quality.

For each of the studies described in Exercises 40 through 55, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence interval
construction) that you think would yield useful information for the researchers.

(b) State all assumptions that are necessary to validate your analysis.

(c) Find p values for all computed test statistics.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

A study by Bell (A-45) investigated the hypothesis that alteration of the vitamin D—endocrine sys-
tem in blacks results from reduction in serum 25-hydroxyvitamin D and that the alteration is reversed
by oral treatment with 25-hydroxyvitamin D;. The eight subjects (three men and five women) were
studied while on no treatment (control) and after having been given 25-hydroxyvitamin D5 for 7 days
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41.

42,

(25-OHD3). The following are the urinary calcium (mg/d) determinations for the eight subjects under
the two conditions.

Subject Control 25-OHD;

A 66 98
B 115 142
C 54 78
D 88 101
E 82 134
F 115 158
G 176 219
H 46 60 Source: Dr. Norman H. Bell.

Used with permission.

Montner et al. (A-46) conducted studies to test the effects of glycerol-enhanced hyperhydration
(GEH) on endurance in cycling performance. The 11 subjects, ages 22—-40 years, regularly cycled
at least 75 miles per week. The following are the pre-exercise urine output volumes (ml) following
ingestion of glycerol and water:

Experimental, ml Control, ml

Subject # (Glycerol) (Placebo)

1 1410 2375

2 610 1610

3 1170 1608

4 1140 1490

5 515 1475

6 580 1445

7 430 885

8 1140 1187

9 720 1445
10 275 890
11 875 1785 Source: Dr. Paul Montner.

Used with permission.

D’ Alessandro et al. (A-47) wished to know if preexisting airway hyperresponsiveness (HR) predis-
poses subjects to a more severe outcome following exposure to chlorine. Subjects were healthy vol-
unteers between the ages of 18 and 50 years who were classified as with and without HR. The
following are the FEV, and specific airway resistance (Sraw) measurements taken on the subjects
before and after exposure to appropriately diluted chlorine gas:

Hyperreactive Subjects

Pre-Exposure Post-Exposure
Subject FEV, Sraw FEV,; Sraw

1 3.0 5.80 1.8 214
2 4.1 9.56 3.7 12.5
3 34 7.84 3.0 14.3
4 33 6.41 3.0 10.9
5 33 9.12 3.0 17.1
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Normal Subjects

Pre-Exposure Post-Exposure
Subject FEV, Sraw FEV, Sraw

1 4.3 5.52 4.2 8.70
2 3.9 6.43 3.7 6.94
3 3.6 5.67 33 10.00
4 3.6 3.77 3.5 4.54
5 5.1 5.53 4.9 7.37  Source: Dr. Paul Blanc.

Used with permission.

Noting the paucity of information on the effect of estrogen on platelet membrane fatty acid compo-
sition, Ranganath et al. (A-48) conducted a study to examine the possibility that changes may be pres-
ent in postmenopausal women and that these may be reversible with estrogen treatment. The 31 women
recruited for the study had not menstruated for at least 3 months or had symptoms of the menopause.
No woman was on any form of hormone replacement therapy (HRT) at the time she was recruited.
The following are the platelet membrane linoleic acid values before and after a period of HRT:

Subject  Before  After Subject  Before  After Subject  Before  After

1 6.06 5.34 12 7.65 5.55 23 5.04 4.74
2 6.68 6.11 13 4.57 4.25 24 7.89 7.48
3 522 5.79 14 5.97 5.66 25 7.98 6.24
4 5.79 5.97 15 6.07 5.66 26 6.35 5.66
5 6.26 5.93 16 6.32 5.97 27 4.85 4.26
6 6.41 6.73 17 6.12 6.52 28 6.94 5.15
7 4.23 4.39 18 6.05 5.70 29 6.54 5.30
8 4.61 4.20 19 6.31 3.58 30 4.83 5.58
9 6.79 5.97 20 4.44 4.52 31 4.71 4.10

10 6.16 6.00 21 5.51 4.93

11 6.41 5.35 22 8.48 8.80

Source: Dr. L. Ranganath. Used with permission.

The purpose of a study by Goran et al. (A-49) was to examine the accuracy of some widely used
body-composition techniques for children through the use of the dual-energy X-ray absorptiometry
(DXA) technique. Subjects were children between the ages of 4 and 10 years. The following are fat
mass measurements taken on the children by three techniques—DXA, skinfold thickness (ST), and
bioelectrical resistance (BR):

Sex
DXA ST BR (1 = Male, 0 = Female)
3.6483 4.5525 4.2636 1
29174 2.8234 6.0888 0
7.5302 3.8888 5.1175 0
6.2417 5.4915 8.0412 0
10.5891 10.4554 14.1576 0
9.5756 11.1779 12.4004 0

(Continued)
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Sex
DXA ST BR (1 = Male, 0 = Female)

2.4424 3.5168 3.7389
3.5639 5.8266 4.3359
1.2270 2.2467 2.7144
2.2632 2.4499 2.4912
2.4607 3.1578 1.2400
4.0867 5.5272 6.8943
4.1850 4.0018 3.0936
2.7739 5.1745 *
4.4748 3.6897 42761
4.2329 4.6807 5.2242
2.9496 4.4187 4.9795
2.9027 3.8341 4.9630
5.4831 4.8781 5.4468
3.6152 4.1334 4.1018
5.3343 3.6211 4.3097
3.2341 2.0924 2.5711
54779 5.3890 5.8418
4.6087 4.1792 3.9818
2.8191 2.1216 1.5406
4.1659 4.5373 5.1724
3.7384 2.5182 4.6520
4.8984 4.8076 6.5432
3.9136 3.0082 3.2363
12.1196 13.9266 16.3243
15.4519 15.9078 18.0300
20.0434 19.5560 21.7365
9.5300 8.5864 4.7322
2.7244 2.8653 2.7251
3.8981 5.1352 5.2420
4.9271 8.0535 6.0338
3.5753 4.6209 5.6038
6.7783 6.5755 6.6942
3.2663 4.0034 3.2876
1.5457 24742 3.6931
2.1423 2.1845 2.4433
4.1894 3.0594 3.0203
1.9863 2.5045 3.2229
3.3916 3.1226 3.3839
2.3143 2.7677 3.7693
1.9062 3.1355 12.4938
3.7744 4.0693 5.9229
2.3502 2.7872 4.3192
4.6797 4.4804 6.2469
4.7260 5.4851 7.2809
4.2749 4.4954 6.6952
2.6462 3.2102 3.8791
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Sex
DXA ST BR (1 = Male, 0 = Female)

2.7043 3.0178 5.6841
4.6148 4.0118 5.1399
3.0896 3.2852 4.4280
5.0533 5.6011 4.3556
6.8461 7.4328 8.6565
11.0554 13.0693 11.7701
4.4630 4.0056 7.0398
2.4846 3.5805 3.6149
7.4703 5.5016 9.5402
8.5020 6.3584 9.6492
6.6542 6.8948 9.3396
4.3528 4.1296 6.9323
3.6312 3.8990 4.2405
4.5863 5.1113 4.0359
2.2948 2.6349 3.8080
3.6204 3.7307 4.1255
2.3042 3.5027 3.4347
4.3425 3.7523 4.3001
4.0726 3.0877 5.2256
1.7928 2.8417 3.8734
4.1428 3.6814 2.9502
5.5146 5.2222 6.0072
3.2124 2.7632 3.4809
5.1687 5.0174 3.7219
3.9615 4.5117 2.7698
3.6698 4.9751 1.8274
4.3493 7.3525 4.8862
2.9417 3.6390 3.4951
5.0380 4.9351 5.6038
7.9095 9.5907 8.5024
1.7822 3.0487 3.0028
3.4623 3.3281 2.8628
11.4204 14.9164 10.7378
1.2216 2.2942 2.6263
2.9375 3.3124 3.3728
4.6931 5.4706 5.1432
8.1227 7.7552 7.7401
10.0142 8.9838 11.2360
2.5598 2.8520 4.5943
3.7669 3.7342 4.7384
4.2059 2.6356 4.0405
6.7340 6.6878 8.1053
3.5071 3.4947 4.4126
2.2483 2.8100 3.6705
7.1891 5.4414 6.6332
6.4390 3.9532 5.1693

* Missing data.

Source: Dr. Michael 1. Goran.
Used with permission.
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45. Hartard et al. (A-50) conducted a study to determine whether a certain training regimen can coun-
teract bone density loss in women with postmenopausal osteopenia. The following are strength
measurements for five muscle groups taken on 15 subjects before (B) and after (A) 6 months of
training:

Leg Press Hip Flexor Hip Extensor

Subject  (B) (A) (B) (A) B A

1 100 180 8 15 10 20
2 155 195 10 20 12 25
3 115 150 8 13 12 19
4 130 170 10 14 12 20
5 120 150 7 12 12 15
6 60 140 5 12 8 16
7 60 100 4 6 6 9
8 140 215 12 18 14 24
9 110 150 10 13 12 19
10 95 120 6 8 8 14
11 110 130 10 12 10 14
12 150 220 10 13 15 29
13 120 140 9 20 14 25
14 100 150 9 10 15 29
15 110 130 6 9 8 12
Arm Abductor Arm Adductor

Subject B) (A) B) (A)

1 10 12 12 19

2 7 20 10 20

3 8 14 8 14

4 8 15 6 16

5 8 13 9 13

6 5 13 6 13

7 4 8 4 8

8 12 15 14 19

9 10 14 8 14

10 6 9 6 10

11 8 11 8 12

12 8 14 13 15

13 8 19 11 18

14 4 7 10 22

15 4 8 8 12

Source: Dr. Manfred Hartard. Used with permission.

46. Vitacca et al. (A-51) conducted a study to determine whether the supine position or sitting position
worsens static, forced expiratory flows and measurements of lung mechanics. Subjects were aged
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persons living in a nursing home who were clinically stable and without clinical evidence of car-
diorespiratory diseases. Among the data collected were the following FEV percent values for sub-
jects in sitting and supine postures:

Sitting  Supine Sitting  Supine
64 56 103 94
44 37 109 92
44 39 -99 -99
40 43 169 165
32 32 73 66
70 61 95 94
82 58 -99 -99
74 48 73 58
91 63

Source: Dr. M. Vitacca. Used with permission.

The purpose of an investigation by Young et al. (A-52) was to examine the efficacy and safety of
a particular suburethral sling. Subjects were women experiencing stress incontinence who also met
other criteria. Among the data collected were the following pre- and postoperative cystometric
capacity (ml) values:

Pre Post Pre Post Pre Post Pre Post
350 321 340 320 595 557 475 344
700 483 310 336 315 221 427 277
356 336 361 333 363 291 405 514
362 447 339 280 305 310 312 402
361 214 527 492 200 220 385 282
304 285 245 330 270 315 274 317
675 480 313 310 300 230 340 323
367 330 241 230 792 575 524 383
387 325 313 298 275 140 301 279
535 325 323 349 307 192 411 383
328 250 438 345 312 217 250 285
557 410 497 300 375 462 600 618
569 603 302 335 440 414 393 355
260 178 471 630 300 250 232 252
320 362 540 400 379 335 332 331
405 235 275 278 682 339 451 400
351 310 557 381

Source: Dr. Stephen B. Young. Used with permission.

Diamond et al. (A-53) wished to know if cognitive screening should be used to help select appro-
priate candidates for comprehensive inpatient rehabilitation. They studied a sample of geriatric
rehabilitation patients using standardized measurement strategies. Among the data collected were
the following admission and discharge scores made by the subjects on the Mini Mental State Exam-
ination (MMSE):



296 CHAPTER 7 HYPOTHESIS TESTING

Admission  Discharge Admission  Discharge

9 10 24 26
11 11 24 30
14 19 24 28
15 15 25 26
16 17 25 22
16 15 26 26
16 17 26 28
16 17 26 26
17 14 27 28
17 18 27 28
17 21 27 27
18 21 27 27
18 21 27 27
19 21 28 28
19 25 28 29
19 21 28 29
19 22 28 29
19 19 29 28
20 22 29 28
21 23 29 30
22 22 29 30
22 19 29 30
22 26 29 30
23 21 29 30
24 21 30 30
24 20

Source: Dr. Stephen N. Macciocchi. Used with permission.

49. In a study to explore the possibility of hormonal alteration in asthma, Weinstein et al. (A-54) col-
lected data on 22 postmenopausal women with asthma and 22 age-matched, postmenopausal,
women without asthma. The following are the dehydroepiandrosterone sulfate (DHEAS) values
collected by the investigators:

Without Asthma  With Asthma Without Asthma  With Asthma

20.59 87.50 15.90 166.02
37.81 111.52 49.77 129.01
76.95 143.75 25.86 31.02
77.54 25.16 55.27 47.66
19.30 68.16 33.83 171.88
35.00 136.13 56.45 241.88
146.09 89.26 19.91 235.16
166.02 96.88 24.92 25.16
96.58 144.34 76.37 78.71
24.57 97.46 6.64 111.52
53.52 82.81 115.04 54.69

Source: Dr. Robert E. Weinstein. Used with permission.
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The motivation for a study by Gruber et al. (A-55) was a desire to find a potentially useful serum
marker in rheumatoid arthritis (RA) that reflects underlying pathogenic mechanisms. They meas-
ured, among other variables, the circulating levels of gelatinase B in the serum and synovial fluid
(SF) of patients with RA and of control subjects. The results were as follows:

Serum Synovial Fluid Serum Synovial Fluid

RA Control RA Control RA Control RA  Control
26.8 234 71.8 3.0 36.7
19.1 30.5 29.4 4.0 572
249.6 10.3 185.0 39 71.3
53.6 8.0 114.0 6.9 25.2
66.1 73 69.6 9.6 46.7
52.6 10.1 52.3 22.1 30.9
14.5 17.3 113.1 134 27.5
22.7 244 104.7 133 17.2
435 19.7 60.7 10.3
254 8.4 116.8 7.5
29.8 20.4 84.9 31.6
27.6 16.3 215.4 30.0
106.1 16.5 33.6 42.0
76.5 222 158.3 20.3

Source: Dr. Darius Sorbi. Used with permission.

Benini et al. (A-56) conducted a study to evaluate the severity of esophageal acidification in achala-
sia following successful dilatation of the cardias and to determine which factors are associated with
pathological esophageal acidification in such patients. Twenty-two subjects, of whom seven were
males; ranged in ages from 28 to 78 years. On the basis of established criteria they were classified as
refluxers or nonrefluxers. The following are the acid clearance values (min/reflux) for the 22 subjects:

Refluxers Nonrefluxers

8.9 2.3
30.0 0.2
23.0 0.9

6.2 8.3
11.5 0.0

0.9
0.4
2.0
0.7
3.6
0.5
1.4
0.2
0.7
17.9

2.1
0.0 Source: Dr. Luigi Benini.
: Used with permission.
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52.

53.

The objective of a study by Baker et al. (A-57) was to determine whether medical deformation alters
in vitro effects of plasma from patients with preeclampsia on endothelial cell function to produce a
paradigm similar to the in vivo disease state. Subjects were 24 nulliparous pregnant women before
delivery, of whom 12 had preeclampsia and 12 were normal pregnant patients. Among the data col-
lected were the following gestational ages (weeks) at delivery:

Preeclampsia Normal Pregnant
38 40

32 41

42 38

30 40

38 40

35 39

32 39

38 41

39 41

29 40

29 40

32 40 Source: Dr. James M. Roberts.

Used with permission.

Zisselman et al. (A-58) conducted a study to assess benzodiazepine use and the treatment of depres-
sion before admission to an inpatient geriatric psychiatry unit in a sample of elderly patients.
Among the data collected were the following behavior disorder scores on 27 patients treated with
benzodiazepines (W) and 28 who were not (WO).

w WO
.00 1.00 .00 .00
.00 1.00 .00 10.00
.00 .00 .00 .00
.00 .00 .00 18.00
.00 10.00 .00 .00
.00 2.00 .00 2.00
.00 .00 5.00
.00 .00
.00 4.00
.00 1.00
4.00 2.00
3.00 .00
2.00 6.00
.00 .00
10.00 .00
2.00 1.00
.00 2.00
9.00 1.00
.00 22.00
1.00 .00
16.00 00 Source: Dr. Yochi Shmuely.

Used with permission.
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The objective of a study by Reinecke et al. (A-59) was to investigate the functional activity and expres-
sion of the sarcolemmal Na*/Ca?* exchange in the failing human heart. The researchers obtained left
ventricular samples from failing human hearts of 11 male patients (mean age 51 years) undergoing
cardiac transplantation. Nonfailing control hearts were obtained from organ donors (four females, two
males, mean age 41 years) whose hearts could not be transplanted for noncardiac reasons. The
following are the Na*/Ca?" exchanger activity measurements for the patients with end-stage heart
failure (CHF) and nonfailing controls (NF).

NF CHF
0.075 0.221
0.073 0.231
0.167 0.145
0.085 0.112
0.110 0.170
0.083 0.207
0.112
0.291
0.164
0.195
0.185

Source: Dr. Hans Reinecke. Used with permission.

Reichman et al. (A-60) conducted a study with the purpose of demonstrating that negative symp-
toms are prominent in patients with Alzheimer’s disease and are distinct from depression. The
following are scores made on the Scale for the Assessment of Negative Symptoms in Alzheimer’s
Disease by patients with Alzheimer’s disease (PT) and normal elderly, cognitively intact, comparison
subjects (C).

PT

a

19
5
36
22
1
18
24
17
7
19
5
2
14
9
34
13

(Continued)
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PT C
0 0
21 5
30 1
43 2
19 3
31 19
21 3
41 5
24
3 Source: Dr. Andrew C. Coyne.

Used with permission.

Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

Refer to the creatine phosphokinase data on 1005 subjects (PCKDATA). Researchers would like
to know if psychologically stressful situations cause an increase in serum creatine phosphokinase
(CPK) levels among apparently healthy individuals. To help the researchers reach a decision, select
a simple random sample from this population, perform an appropriate analysis of the sample data,
and give a narrative report of your findings and conclusions. Compare your results with those of
your classmates.

Refer to the prothrombin time data on 1000 infants (PROTHROM). Select a simple random sample
of size 16 from each of these populations and conduct an appropriate hypothesis test to determine
whether one should conclude that the two populations differ with respect to mean prothrombin time.
Let a = .05. Compare your results with those of your classmates. What assumptions are necessary
for the validity of the test?

Refer to the head circumference data of 1000 matched subjects (HEADCIRC). Select a simple
random sample of size 20 from the population and perform an appropriate hypothesis test to deter-
mine if one can conclude that subjects with the sex chromosome abnormality tend to have smaller
heads than normal subjects. Let & = .05. Construct a 95 percent confidence interval for the pop-
ulation mean difference. What assumptions are necessary? Compare your results with those of your
classmates.

Refer to the hemoglobin data on 500 children with iron deficiency anemia and 500 apparently
healthy children (HEMOGLOB). Select a simple random sample of size 16 from population A
and an independent simple random sample of size 16 from population B. Does your sample
data provide sufficient evidence to indicate that the two populations differ with respect to mean
Hb value? Let o = .05. What assumptions are necessary for your procedure to be valid? Com-
pare your results with those of your classmates.

Refer to the manual dexterity scores of 500 children with learning disabilities and 500 children
with no known learning disabilities (MANDEXT). Select a simple random sample of size 10 from
population A and an independent simple random sample of size 15 from population B. Do your
samples provide sufficient evidence for you to conclude that learning-disabled children, on the aver-
age, have lower manual dexterity scores than children without a learning disability? Let o = .05.
What assumptions are necessary in order for your procedure to be valid? Compare your results
with those of your classmates.


www.wiley.com/college/daniel
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CHAPTER 8

ANALYSIS OF VARIANCE

CHAPTER OVERVIEW

The topic of this chapter, analysis of variance, provides a methodology for
partitioning the total variance computed from a data set into components,
each of which represents the amount of the total variance that can be attrib-
uted to a specific source of variation. The results of this partitioning can then
be used to estimate and test hypotheses about population variances and
means. In this chapter we focus our attention on hypothesis testing of means.
Specifically, we discuss the testing of differences among means when there
is interest in more than two populations or two or more variables. The tech-
niques discussed in this chapter are widely used in the health sciences.

TOPICS

8.1 INTRODUCTION

8.2 THE COMPLETELY RANDOMIZED DESIGN

8.3 THE RANDOMIZED COMPLETE BLOCK DESIGN
8.4 THE REPEATED MEASURES DESIGN

8.5 THE FACTORIAL EXPERIMENT

8.6 SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will

1. understand how the total variation in a data set can be partitioned into different
components.

2. be able to compare the means of more than two samples simultaneously.
understand multiple comparison tests and when their use is appropriate.
4. understand commonly used experimental designs.

w
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INTRODUCTION

In the preceding chapters the basic concepts of statistics have been examined, and they
provide a foundation for the present and succeeding chapters.

This chapter is concerned with analysis of variance, which may be defined as a
technique whereby the total variation present in a set of data is partitioned into two or
more components. Associated with each of these components is a specific source of vari-
ation, so that in the analysis it is possible to ascertain the magnitude of the contribu-
tions of each of these sources to the total variation.

The development of analysis of variance (ANOVA) is due mainly to the work of
R. A. Fisher (1), whose contributions to statistics, spanning the years 1912 to 1962, have
had a tremendous influence on modern statistical thought (2, 3).

Applications Analysis of variance finds its widest application in the analysis of
data derived from experiments. The principles of the design of experiments are well cov-
ered in many books, including those by Hinkelmann and Kempthorne (4), Montgomery
(5), and Myers and Well (6). We do not study this topic in detail, since to do it justice
would require a minimum of an additional chapter. Some of the important concepts in
experimental design, however, will become apparent as we discuss analysis of variance.

Analysis of variance is used for two different purposes: (1) to estimate and test
hypotheses about population variances, and (2) to estimate and test hypotheses about pop-
ulation means. We are concerned here with the latter use. However, as we will see, our
conclusions regarding the means will depend on the magnitudes of the observed variances.

As we shall see, the concepts and techniques that we cover under the heading of
analysis of variance are extensions of the concepts and techniques covered in Chapter 7.
In Chapter 7 we learned to test the null hypothesis that two means are equal. In this
chapter we learn to test the null hypothesis that three or more means are equal. Whereas,
for example, what we learned in Chapter 7 enables us to determine if we can conclude
that two treatments differ in effectiveness, what we learn in this chapter enables us to
determine if we can conclude that three or more treatments differ in effectiveness. The
following example illustrates some basic ideas involved in the application of analysis of
variance. These will be extended and elaborated on later in this chapter.

EXAMPLE 8.1.1

Suppose we wish to know if three drugs differ in their effectiveness in lowering serum
cholesterol in human subjects. Some subjects receive drug A, some drug B, and some
drug C. After a specified period of time measurements are taken to determine the extent
to which serum cholesterol was reduced in each subject. We find that the amount by which
serum cholesterol was lowered is not the same in all subjects. In other words, there is
variability among the measurements. Why, we ask ourselves, are the measurements not
all the same? Presumably, one reason they are not the same is that the subjects received
different drugs. We now look at the measurements of those subjects who received drug
A. We find that the amount by which serum cholesterol was lowered is not the same
among these subjects. We find this to be the case when we look at the measurements for
subjects who received drug B and those subjects who received drug C. We see that there



8.1 INTRODUCTION 307

is variability among the measurements within the treatment groups. Why, we ask our-
selves again, are these measurements not the same? Among the reasons that come to mind
are differences in the genetic makeup of the subjects and differences in their diets.
Through an analysis of the variability that we have observed, we will be able to reach a
conclusion regarding the equality of the effectiveness of the three drugs. To do this we
employ the techniques and concepts of analysis of variance. ]

Variables In our example we allude to three kinds of variables. We find these vari-
ables to be present in all situations in which the use of analysis of variance is appropriate.
First we have the treatment variable, which in our example was “drug.” We had three “val-
ues” of this variable, drug A, drug B, and drug C. The second kind of variable we refer
to is the response variable. In the example it is change in serum cholesterol. The response
variable is the variable that we expect to exhibit different values when different “values” of
the treatment variable are employed. Finally, we have the other variables that we mention—
genetic composition and diet. These are called extraneous variables. These variables may
have an effect on the response variable, but they are not the focus of our attention in the
experiment. The treatment variable is the variable of primary concern, and the question to
be answered is: Do the different “values” of the treatment variable result in differences,
on the average, in the response variable?

Assumptions Underlying the valid use of analysis of variance as a tool of statis-
tical inference are a set of fundamental assumptions. Although an experimenter must not
expect to find all the assumptions met to perfection, it is important that the user of analy-
sis of variance techniques be aware of the underlying assumptions and be able to recog-
nize when they are substantially unsatisfied. Because experiments in which all the
assumptions are perfectly met are rare, analysis of variance results should be considered
as approximate rather than exact. These assumptions are pointed out at appropriate points
in the following sections.

We discuss analysis of variance as it is used to analyze the results of two different
experimental designs, the completely randomized and the randomized complete block
designs. In addition to these, the concept of a factorial experiment is given through its use
in a completely randomized design. These do not exhaust the possibilities. A discussion of
additional designs may be found in the references (4—6).

The ANOVA Procedure In our presentation of the analysis of variance for the
different designs, we follow the ten-step procedure presented in Chapter 7. The follow-
ing is a restatement of the steps of the procedure, including some new concepts neces-
sary for its adaptation to analysis of variance.

1. Description of data. In addition to describing the data in the usual way, we dis-
play the sample data in tabular form.

2. Assumptions. Along with the assumptions underlying the analysis, we present the
model for each design we discuss. The model consists of a symbolic representa-
tion of a typical value from the data being analyzed.

3. Hypotheses.
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Test statistic.
Distribution of test statistic.

Decision rule.

AR

Calculation of test statistic. The results of the arithmetic calculations will be sum-
marized in a table called the analysis of variance (ANOVA) table. The entries in
the table make it easy to evaluate the results of the analysis.

8. Statistical decision.
9. Conclusion.

10. Determination of p value.

We discuss these steps in greater detail in Section 8.2.

The Use of Computers The calculations required by analysis of variance are
lengthier and more complicated than those we have encountered in preceding chapters.
For this reason the computer assumes an important role in analysis of variance. All the
exercises appearing in this chapter are suitable for computer analysis and may be used
with the statistical packages mentioned in Chapter 1. The output of the statistical pack-
ages may vary slightly from that presented in this chapter, but this should pose no major
problem to those who use a computer to analyze the data of the exercises. The basic
concepts of analysis of variance that we present here should provide the necessary back-
ground for understanding the description of the programs and their output in any of the
statistical packages.

8.2 THE COMPLETELY RANDOMIZED DESIGN

We saw in Chapter 7 how it is possible to test the null hypothesis of no difference
between two population means. It is not unusual for the investigator to be interested in
testing the null hypothesis of no difference among several population means. The stu-
dent first encountering this problem might be inclined to suggest that all possible pairs
of sample means be tested separately by means of the Student ¢ test. Suppose there are
five populations involved. The number of possible pairs of sample means is ;C, = 10.
As the amount of work involved in carrying out this many # tests is substantial, it would
be worthwhile if a more efficient alternative for analysis were available. A more impor-
tant consequence of performing all possible ¢ tests, however, is that it is very likely to
lead to a false conclusion.

Suppose we draw five samples from populations having equal means. As we have
seen, there would be 10 tests if we were to do each of the possible tests separately. If we
select a significance level of & = .05 for each test, the probability of failing to reject a
hypothesis of no difference in each case would be .95. By the multiplication rule of prob-
ability, if the tests were independent of one another, the probability of failing to reject a
hypothesis of no difference in all 10 cases would be (.95)'® = .5987. The probability of
rejecting at least one hypothesis of no difference, then, would be 1 — .5987 = .4013.
Since we know that the null hypothesis is true in every case in this illustrative example,
rejecting the null hypothesis constitutes the committing of a type I error. In the long run,
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then, in testing all possible pairs of means from five samples, we would commit a type I
error 40 percent of the time. The problem becomes even more complicated in practice,
since three or more ¢ tests based on the same data would not be independent of one
another.

It becomes clear, then, that some other method for testing for a significant differ-
ence among several means is needed. Analysis of variance provides such a method.

One-Way ANOVA The simplest type of analysis of variance is that known as
one-way analysis of variance, in which only one source of variation, or factor, is
investigated. It is an extension to three or more samples of the 7 test procedure (discussed
in Chapter 7) for use with two independent samples. Stated another way, we can say that
the 7 test for use with two independent samples is a special case of one-way analysis of
variance.

In a typical situation we want to use one-way analysis of variance to test the null
hypothesis that three or more treatments are equally effective. The necessary experiment
is designed in such a way that the treatments of interest are assigned completely at ran-
dom to the subjects or objects on which the measurements to determine treatment effec-
tiveness are to be made. For this reason the design is called the completely randomized
experimental design.

We may randomly allocate subjects to treatments as follows. Suppose we have 16
subjects available to participate in an experiment in which we wish to compare four
drugs. We number the subjects from 01 through 16. We then go to a table of random
numbers and select 16 consecutive, unduplicated numbers between 01 and 16. To illus-
trate, let us use Appendix Table A and a random starting point that, say, is at the inter-
section of Row 4 and Columns 11 and 12. The two-digit number at this intersection is
98. The succeeding (moving downward) 16 consecutive two-digit numbers between 01
and 16 are 16, 09, 06, 15, 14, 11, 02, 04, 10, 07, 05, 13, 03, 12, 01, and 08. We allo-
cate subjects 16, 09, 06, and 15 to drug A; subjects 14, 11, 02, and 04 to drug B;
subjects 10, 07, 05, and 13 to drug C; and subjects 03, 12, 01, and 08 to drug D. We
emphasize that the number of subjects in each treatment group does not have to be the
same. Figure 8.2.1 illustrates the scheme of random allocation.

subjects

nampers |16][09][ o8] 15][14][n [[02 ][0 ][ 10][07 |[os || 13 |03 || 12] o1 ] o8]
numbers

[re] ] o2 [s]
B c D

Treatment A

FIGURE 8.2.1 Allocation of subjects to treatments, completely randomized design.
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TABLE 8.2.1 Table of Sample Values for the
Completely Randomized Design

Treatment
1 2 3 k

X11 X12 X13 e X1k

X21 X22 X23 e Xok

X31 X32 X33 T X3k

Xn1‘| Xn22 Xn33 Xnkk
Total Ta T, T3 e Tk T.
Mean X.1 X.2 X3 e X.k X..

Hypothesis Testing Steps Once we decide that the completely randomized
design is the appropriate design, we may proceed with the hypothesis testing steps. We
discuss these in detail first, and follow with an example.

1. Description of data. The measurements (or observations) resulting from a com-
pletely randomized experimental design, along with the means and totals that can
be computed from them, may be displayed for convenience as in Table 8.2.1. The
symbols used in Table 8.2.1 are defined as follows:

x;; = the ith observation resulting from the j th treatment
(there are a total of k treatments)

i=1,2...,n, j=12..,k

7
T, = Ex,-j = total of the j th treatment
i=1

T.
. .
— = mean of the j th treatment

=1
Il

2. Assumptions. Before stating the assumptions, let us specify the model for the
experiment described here.

The Model As already noted, a model is a symbolic representation of a typical value
of a data set. To write down the model for the completely randomized experimental design,
let us begin by identifying a typical value from the set of data represented by the sample
displayed in Table 8.2.1. We use the symbol x; to represent this typical value.



8.2 THE COMPLETELY RANDOMIZED DESIGN 311

The one-way analysis of variance model may be written as follows:

x;=pt Tt o€ i=1,2,...,nj,

j=12.. .k (8.2.1)

The terms in this model are defined as follows:

1. w represents the mean of all the k population means and is called the grand mean.

2. 7, represents the difference between the mean of the jth population and the grand
mean and is called the treatment effect.

3. € represents the amount by which an individual measurement differs from the
mean of the population to which it belongs and is called the error term.

Components of the Model By looking at our model we can see that a typ-
ical observation from the total set of data under study is composed of (1) the grand mean,
(2) a treatment effect, and (3) an error term representing the deviation of the observa-
tion from its group mean.

In most situations we are interested only in the k treatments represented in our
experiment. Any inferences that we make apply only to these treatments. We do not
wish to extend our inference to any larger collection of treatments. When we place
such a restriction on our inference goals, we refer to our model as the fixed-effects
model, or model 1. The discussion in this book is limited to this model.

Assumptions of the Model The assumptions for the fixed-effects model are as
follows:

(a) The k sets of observed data constitute k independent random samples from the
respective populations.

(b) Each of the populations from which the samples come is normally distributed with
mean u; and variance 0j2

]' .
(¢) Each of the populations has the same variance. That is, 0 = 03 = -+ = 07 = o?

the common variance.

(d) The 7; are unknown constants and Eﬂrj = 0 since the sum of all deviations of the
w; from their mean, u, is zero.

(e) The €; have a mean of 0, since the mean of x;; is w;.
(f) The €; have a variance equal to the variance of the x;, since the €; and x;; differ
only by a constant; that is, the error variance is equal to o>, the common variance

specified in assumption c.

(g) The €; are normally (and independently) distributed.

3. Hypotheses. We test the null hypothesis that all population or treatment means are
equal against the alternative that the members of at least one pair are not equal.
We may state the hypotheses formally as follows:

Horpy = pp =0 = py
H:not all y; are equal
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FIGURE 8.2.2 Picture of the populations represented in
a completely randomized design when H, is true and the
assumptions are met.

If the population means are equal, each treatment effect is equal to zero, so that, alter-
natively, the hypotheses may be stated as

Hy:1; = 0, J=12,...,k
Hp:notall7; = 0

If H, is true and the assumptions of equal variances and normally distributed pop-
ulations are met, a picture of the populations will look like Figure 8.2.2. When H, is
true the population means are all equal, and the populations are centered at the same
point (the common mean) on the horizontal axis. If the populations are all normally dis-
tributed with equal variances the distributions will be identical, so that in drawing their
pictures each is superimposed on each of the others, and a single picture sufficiently rep-
resents them all.

When H,, is false it may be false because one of the population means is different
from the others, which are all equal. Or, perhaps, all the population means are different.
These are only two of the possibilities when H is false. There are many other possible
combinations of equal and unequal means. Figure 8.2.3 shows a picture of the popula-
tions when the assumptions are met, but H, is false because no two population means
are equal.

4. Test statistic. The test statistic for one-way analysis of variance is a computed vari-
ance ratio, which we designate by V.R. as we did in Chapter 7. The two variances

| | |

Ha ] e . Hy
FIGURE 8.2.3 Picture of the populations represented in a
completely randomized design when the assumptions of equal
variances and normally distributed populations are met, but H,
is false because none of the population means are equal.
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from which V.R. is calculated are themselves computed from the sample data. The
methods by which they are calculated will be given in the discussion that follows.

5. Distribution of test statistic. As discussed in Section 7.8, V.R. is distributed as
the F' distribution when H,, is true and the assumptions are met.

6. Decision rule. In general, the decision rule is: reject the null hypothesis if the
computed value of V.R. is equal to or greater than the critical value of F for the
chosen « level.

7. Calculation of test statistic. We have defined analysis of variance as a process
whereby the total variation present in a set of data is partitioned into components
that are attributable to different sources. The term variation used in this context
refers to the sum of squared deviations of observations from their mean, or sum of
squares for short.

The initial computations performed in one-way ANOVA consist of the partitioning
of the total variation present in the observed data into its basic components, each of
which is attributable to an identifiable source.

Those who use a computer for calculations may wish to skip the following discus-
sion of the computations involved in obtaining the test statistic.

The Total Sum of Squares Before we can do any partitioning, we must first
obtain the total sum of squares. The total sum of squares is the sum of the squares of
the deviations of individual observations from the mean of all the observations taken
together. This total sum of squares is defined as

k1
SST = > Di(x; — x..)° (8.2.2)

j=1i=1

where X%, tells us to sum the squared deviations for each treatment group, and 2;:1
tells us to add the k group totals obtained by applying X.,. The reader will recognize
Equation 8.2.2 as the numerator of the variance that may be computed from the com-
plete set of observations taken together.

The Within Groups Sum of Squares Now let us show how to compute
the first of the two components of the total sum of squares.

The first step in the computation calls for performing certain calculations within
each group. These calculations involve computing within each group the sum of the
squared deviations of the individual observations from their mean. When these calcula-
tions have been performed within each group, we obtain the sum of the individual group
results. This component of variation is called the within groups sum of squares and may
be designated SSW. This quantity is sometimes referred to as the residual or error sum
of squares. The expression for these calculations is written as follows:

k1
SSW = D> (x; — x ;) (8.2.3)

j=1i=1
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The Among Groups Sum of Squares To obtain the second component
of the total sum of squares, we compute for each group the squared deviation of the
group mean from the grand mean and multiply the result by the size of the group. Finally,
we add these results over all groups. This quantity is a measure of the variation among
groups and is referred to as the sum of squares among groups or SSA. The formula for
calculating this quantity is as follows:

k
SSA = Dinj(x; —x.) (8.2.4)
Jj=l

In summary, then, we have found that the total sum of squares is equal to the sum
of the among and the within sum of squares. We express this relationship as follows:

SST = SSA + SSW

From the sums of squares that we have now learned to compute, it is possible to obtain
two estimates of the common population variance, o2, It can be shown that when the
assumptions are met and the population means are all equal, both the among sum of
squares and the within sum of squares, when divided by their respective degrees of free-
dom, yield independent and unbiased estimates of .

The First Estimate of o2 Within any sample,

provides an unbiased estimate of the true variance of the population from which the sam-
ple came. Under the assumption that the population variances are all equal, we may pool
the k estimates to obtain

msw = ! (8.2.5)

This is our first estimate of o> and may be called the within groups variance, since it is
the within groups sum of squares of Equation 8.2.3 divided by the appropriate degrees
of freedom. The student will recognize this as an extension to k samples of the pooling
of variances procedure encountered in Chapters 6 and 7 when the variances from two
samples were pooled in order to use the ¢ distribution. The quantity in Equation 8.2.5 is
customarily referred to as the within groups mean square rather than the within groups
variance.
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The within groups mean square is a valid estimate of o only if the population
variances are equal. It is not necessary, however, for H; to be true in order for the within
groups mean square to be a valid estimate of o2; that is, the within groups mean square
estimates o regardless of whether H, is true or false, as long as the population vari-
ances are equal.

The Second Estimate of o2 The second estimate of o> may be obtained

from the familiar formula for the variance of sample means, o-% = o/n.If we solve this

equation for ¢%, the variance of the population from which the samples were drawn, we
have

o? = no? (8.2.6)

An unbiased estimate of o2 computed from sample data is provided by

E(;C.j - %)

Jj=1
k—1

If we substitute this quantity into Equation 8.2.6, we obtain the desired estimate of o2,

k
n;(f.j -x.)°

MSA = ———— 8.2.7
r— 1 (8.2.7)

The reader will recognize the numerator of Equation 8.2.7 as the among groups
sum of squares for the special case when all sample sizes are equal. This sum of squares
when divided by the associated degrees of freedom k — 1 is referred to as the among
groups mean square.

When the sample sizes are not all equal, an estimate of o based on the variabil-
ity among sample means is provided by

2}”‘;‘ (x; —x.)?°
MSA = FT (8.2.8)

If, indeed, the null hypothesis is true we would expect these two estimates of o~
to be fairly close in magnitude. If the null hypothesis is false, that is, if all population
means are not equal, we would expect the among groups mean square, which is com-
puted by using the squared deviations of the sample means from the overall mean, to be
larger than the within groups mean square.

In order to understand analysis of variance we must realize that the among groups
mean square provides a valid estimate of o> when the assumption of equal population
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variances is met and when H), is true. Both conditions, a true null hypothesis and equal
population variances, must be met in order for the among groups mean square to be a
valid estimate of o,

The Variance Ratio What we need to do now is to compare these two estimates
of o, and we do this by computing the following variance ratio, which is the desired
test statistic:

amon roups mean square
VR. = 2 £107P 1

within groups means square

If the two estimates are about equal, V.R. will be close to 1. A ratio close to 1 tends to
support the hypothesis of equal population means. If, on the other hand, the among
groups mean square is considerably larger than the within groups mean square, V.R. will
be considerably greater than 1. A value of V.R. sufficiently greater than 1 will cast doubt
on the hypothesis of equal population means.

We know that because of the vagaries of sampling, even when the null hypothesis
is true, it is unlikely that the among and within groups mean squares will be equal. We
must decide, then, how big the observed difference has to be before we can conclude
that the difference is due to something other than sampling fluctuation. In other words,
how large a value of V.R. is required for us to be willing to conclude that the observed
difference between our two estimates of ¢ is not the result of chance alone?

The F Test To answer the question just posed, we must consider the sampling dis-
tribution of the ratio of two sample variances. In Chapter 6 we learned that the quantity
(s3/o1)/(s3/03) follows a distribution known as the F distribution when the sample vari-
ances are computed from random and independently drawn samples from normal popu-
lations. The F distribution, introduced by R. A. Fisher in the early 1920s, has become
one of the most widely used distributions in modern statistics. We have already become
acquainted with its use in constructing confidence intervals for, and testing hypotheses
about, population variances. In this chapter, we will see that it is the distribution funda-
mental to analysis of variance. For this reason the ratio that we designate V.R. is fre-
quently referred to as F, and the testing procedure is frequently called the F test. It is of
interest to note that the F distribution is the ratio of two Chi-square distributions.

In Chapter 7 we learned that when the population variances are the same, they can-
cel in the expression (s1/o7)/(s3/03), leaving s71/53, which is itself distributed as . The
F distribution is really a family of distributions, and the particular F' distribution we use
in a given situation depends on the number of degrees of freedom associated with the
sample variance in the numerator (numerator degrees of freedom) and the number of
degrees of freedom associated with the sample variance in the denominator (denomina-
tor degrees of freedom).

Once the appropriate F distribution has been determined, the size of the observed
V.R. that will cause rejection of the hypothesis of equal population variances depends
on the significance level chosen. The significance level chosen determines the critical
value of F, the value that separates the nonrejection region from the rejection region.
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TABLE 8.2.2 Analysis of Variance Table for the Completely Randomized Design

Source of Degrees Variance
Variation Sum of Squares of Freedom Mean Square Ratio
k MSA
Among samples SSA = Y nmi(x; - x.)? k—1 MSA = SSA/(k — 1) VR = ———
= MSswW
kK 0
Within samples SSW= 33 (x; — x,)? N— k MSW = SSW/(N — k)
==
kK 0
Total SST= > > (x;— x.)? N-1

==

As we have seen, we compute V.R. in situations of this type by placing the among
groups mean square in the numerator and the within groups mean square in the denom-
inator, so that the numerator degrees of freedom is equal to (k — 1), the number of
groups minus 1, and the denominator degrees of freedom value is equal to

zk:(”j—l)=(§:,n_,-)—k=N—k

Jj=1

The ANOVA Table The calculations that we perform may be summarized and
displayed in a table such as Table 8.2.2, which is called the ANOVA table.

8. Statistical decision. To reach a decision we must compare our computed V.R. with
the critical value of F, which we obtain by entering Appendix Table G with k — 1
numerator degrees of freedom and N — k denominator degrees of freedom.

If the computed V.R. is equal to or greater than the critical value of F, we reject the null
hypothesis. If the computed value of V.R. is smaller than the critical value of F, we do
not reject the null hypothesis.

Explaining a Rejected Null Hypothesis There are two possible expla-
nations for a rejected null hypothesis. If the null hypothesis is true, that is, if the two
sample variances are estimates of a common variance, we know that the probability of
getting a value of V.R. as large as or larger than the critical F' is equal to our chosen
level of significance. When we reject H, we may, if we wish, conclude that the null
hypothesis is true and assume that because of chance we got a set of data that gave rise
to a rare event. On the other hand, we may prefer to take the position that our large com-
puted V.R. value does not represent a rare event brought about by chance but, instead,
reflects the fact that something other than chance is operative. This other something we
conclude to be a false null hypothesis.

It is this latter explanation that we usually give for computed values of V.R. that
exceed the critical value of F. In other words, if the computed value of V.R. is greater
than the critical value of F, we reject the null hypothesis.
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It will be recalled that the original hypothesis we set out to test was
Horpy = pp = -0 =

Does rejection of the hypothesis about variances imply a rejection of the hypothesis of
equal population means? The answer is yes. A large value of V.R. resulted from the fact
that the among groups mean square was considerably larger than the within groups mean
square. Since the among groups mean square is based on the dispersion of the sample
means about their mean (called the grand mean), this quantity will be large when there
is a large discrepancy among the sizes of the sample means. Because of this, then, a sig-
nificant value of V.R. tells us to reject the null hypothesis that all population means are
equal.

9. Conclusion. When we reject H,, we conclude that not all population means are
equal. When we fail to reject H,, we conclude that the population means may all
be equal.

10. Determination of p value.

EXAMPLE 8.2.1

Game meats, including those from white-tailed deer and eastern gray squirrels, are
used as food by families, hunters, and other individuals for health, cultural, or per-
sonal reasons. A study by David Holben (A-1) assessed the selenium content of meat
from free-roaming white-tailed deer (venison) and gray squirrel (squirrel) obtained
from a low selenium region of the United States. These selenium content values were
also compared to those of beef produced within and outside the same region. We want
to know if the selenium levels are different in the four meat groups.

Solution:

1. Description of data. Selenium content of raw venison (VEN), squirrel
meat (SQU), region-raised beef (RRB), and nonregion-raised beef (NRB),
in ug/100 g of dry weight, are shown in Table 8.2.3. A graph of the data
in the form of a dotplot is shown in Figure 8.2.4. Such a graph highlights

TABLE 8.2.3 Selenium Content, in ug/100g, of Four Different Meat Types

Meat Type

VEN sQu RRB NRB
26.72 14.86 37.42 37.57 11.23 15.82 44.33
28.58 16.47 56.46 25.71 29.63 27.74 76.86
29.71 25.19 51.91 23.97 20.42 22.35 4.45
26.95 3745 62.73 13.82 10.12 34.78 55.01
10.97 45.08 4.55 42.21 39.91 35.09 58.21
21.97 25.22 39.17 35.88 32.66 32.60 74.72
14.35 22.11 38.44 10.54 38.38 37.03 11.84

(Continued)
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Meat Type
VEN sau RRB NRB

32.21 33.01 40.92 2797 36.21 27.00 139.09
19.19 31.20 58.93 41.89 16.39 44.20 69.01
30.92 26.50 61.88 23.94 2744 13.09 94.61
10.42 32.77 49.54 49.81 17.29 33.03 48.35
35.49 8.70 64.35 30.71 56.20 9.69 37.65
36.84 25.90 82.49 50.00 28.94 32.45 66.36
25.03 29.80 38.54 87.50 20.1 37.38 72.48
33.59 3763 39.53 68.99 25.35 34.91 87.09
33.74 21.69 21.77 27.99 26.34
18.02 21.49 31.62 22.36 71.24
22.27 18.11 32.63 22.68 90.38
26.10 31.50 30.31 26.52 50.86
20.89 27.36 46.16 46.01
29.44 21.33 56.61 38.04

24.47 30.88

29.39 30.04

40.71 25.91

18.52 18.54

27.80 25.51

19.49

Source: David H. Holben, Ph.D. Used with permission.

the main features of the data and brings into clear focus differences in sele-

nium levels among the different meats.

Assumptions. We assume that the four sets of data constitute independ-

ent simple random samples from the four indicated populations. We
assume that the four populations of measurements are normally distrib-
uted with equal variances.

VEN 7 T T T T
°
o) (] (N ] o 00 ° ..==:. :. o0 =. (] L]
g sQu T T T T T
P
©
[}
= H
RRB T T T T
(] (] [] (] e 00 o o o 0000 O e o L]
NRB w w w w
0 20 40 60 80 100 120 140

Selenium content (ug/100 g of dry weight)

FIGURE 8.2.4 Selenium content of four meat types. VEN = venison, SQU = squirrel,
RRB = region-raised beef, and NRB = nonregion-raised beef.
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TABLE 8.2.4 ANOVA Table for Example 8.2.1

10. p value. Since 27.00 > 3.95, p < .01 for this test.

Source SS df MS F
Among samples 21261.82886 3 7087.27629 27.00
Within samples 36747.22674 140 262.48019
Total 58009.05560 143

3. Hypotheses.

Hy: = wp = p3 = g (On average the four meats have the same
selenium content.)

Hy: Not all w’s are equal (At least one meat yields an average selenium
content different from the average selenium content of at least one other
meat.)

4. Test statistic. The test statistic is V.R. = MSA/MSW.

Distribution of test statistic. If H, is true and the assumptions are met,
the V.R. follows the F distribution with 4 — 1 = 3 numerator degrees of
freedom and 144 — 4 = 140 denominator degrees of freedom.

Decision rule. Suppose we let @ = .01. The critical value of F from
Appendix Table G is < 3.95. The decision rule, then, is reject H, if the
computed V.R. statistic is equal to or greater than 3.95.

Calculation of test statistic. By Equation 8.2.2 we compute
SST = 58009.05560
By Equation 8.2.4 we compute

SSA = 21261.82886
SSW = 58009.05560 — 21261.82886 = 36747.22674

The results of our calculations are displayed in Table 8.2.4.
Statistical decision. Since our computed F of 27.00 is greater than 3.95
we reject H.

Conclusion. Since we reject Hy, we conclude that the alternative
hypothesis is true. That is, we conclude that the four meat types do not
all have the same average selenium content.

A Word of Caution The completely randomized design is simple and, therefore,
widely used. It should be used, however, only when the units receiving the treatments are
homogeneous. If the experimental units are not homogeneous, the researcher should con-
sider an alternative design such as one of those to be discussed later in this chapter.

In our illustrative example the treatments are treatments in the usual sense of the
word. This is not always the case, however, as the term “treatment” as used in experi-
mental design is quite general. We might, for example, wish to study the response to the
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Dialog box:
Stat » ANOVA » Oneway (Unstacked) MTB>AOVONEWAY C1-C4

Type CI-C4 in responses (in separate columns)

Click OK.

Output:

One-way ANOVA: NRB, RRB, SQU, VEN

Analysis

Source
Meat Typ
Error
Total

Individual 95

Level N Mean Sthev —-—---——-- o o ————— o ——————
NRB 19 62.05 31.15 (-===F-—---)
RRB 53 29.08 10.38 (-=-*--)
SQU 30 43.25 19.51 (-=-=*---)
VEN 42 25.88 8.03 (-=*---)

——————— B T E
Pooled StDev = 16.20 30 45 60

Session command:

of Variance for Selenium

DF SS MS F P
3 21262 7087 27.00 0.000

140 36747 262

143 58009

oe

CIs For Mean

Based on Pooled StDev

FIGURE 8.2.5 MINITAB procedure and output for Example 8.2.1.

same treatment (in the usual sense of the word) of several breeds of animals. We would,
however, refer to the breed of animal as the “treatment.”

We must also point out that, although the techniques of analysis of variance are
more often applied to data resulting from controlled experiments, the techniques also
may be used to analyze data collected by a survey, provided that the underlying assump-
tions are reasonably well met.

Computer Analysis Figure 8.2.5 shows the computer procedure and output for
Example 8.2.1 provided by a one-way analysis of variance program found in the
MINITAB package. The data were entered into Columns 1 through 4. When you com-
pare the ANOVA table on this printout with the one given in Table 8.2.4, you see that the
printout uses the label “factor” instead of “among samples.” The different treatments are
referred to on the printout as levels. Thus level 1 = treatment 1, level 2 = treatment 2,
and so on. The printout gives the four sample means and standard deviations as well as
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Dependent

Source
Model
Error
Corrected

The SAS System

Analysis of Variance Procedure

Variable: selen
Sum of
DF Squares Mean Square F Value Pr > F
3 21261.82886 7087.27629 27.00 <.0001
140 36747.22674 262.48019
Total 143 58009.05560
R-Square Coeff Var Root MSE selen Mean
0.366526 45.70507 16.20124 35.44736

FIGURE 8.2.6 Partial SAS® printout for Example 8.2.1.

the pooled standard deviation. This last quantity is equal to the square root of the error
mean square shown in the ANOVA table. Finally, the computer output gives graphic rep-
resentations of the 95 percent confidence intervals for the mean of each of the four pop-
ulations represented by the sample data.

Figure 8.2.6 contains a partial SAS® printout resulting from analysis of the data
of Example 8.2.1 through use of the SAS® statement PROC ANOVA. SAS® computes
some additional quantities as shown in the output. R-Square = SSA/SST. This quan-
tity tells us what proportion of the total variability present in the observations is
accounted for by differences in response to the treatments. C.V. = 100 (root MSE/selen
mean). Root MSE is the square root of MSW, and selen mean is the mean of the 18
observations.

Note that the test statistic V.R. is labeled differently by different statistical soft-
ware programs. MINITAB, for example, uses F rather than V.R. SAS® uses the label
F Value.

A useful device for displaying important characteristics of a set of data analyzed
by one-way analysis of variance is a graph consisting of side-by-side boxplots. For each
sample a boxplot is constructed using the method described in Chapter 2. Figure 8.2.7
shows the side-by-side boxplots for Example 8.2.1. Note that in Figure 8.2.7 the vari-
able of interest is represented by the vertical axis rather than the horizontal axis.

Alternatives If the data available for analysis do not meet the assumptions for one-
way analysis of variance as discussed here, one may wish to consider the use of the
Kruskal-Wallis procedure, a nonparametric technique discussed in Chapter 13.

Testing for Significant Differences Between Individual Pairs
of Means When the analysis of variance leads to a rejection of the null hypothe-
sis of no difference among population means, the question naturally arises regarding just
which pairs of means are different. In fact, the desire, more often than not, is to carry
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FIGURE 8.2.7 Side-by-side boxplots for Example 8.2.1.

out a significance test on each and every pair of treatment means. For instance, in Exam-
ple 8.2.1, where there are four treatments, we may wish to know, after rejecting
Hy: py = po = pu3 = py, which of the six possible individual hypotheses should be
rejected. The experimenter, however, must exercise caution in testing for significant dif-
ferences between individual means and must always make certain that the procedure is
valid. The critical issue in the procedure is the level of significance. Although the prob-
ability, «, of rejecting a true null hypothesis for the test as a whole is made small, the
probability of rejecting at least one true hypothesis when several pairs of means are tested
is, as we have seen, greater than «. There are several multiple comparison procedures
commonly used in practice. Below we illustrate two popular procedures, namely Tukey’s
HSD test and Bonferroni’s method. The interested student is referred to the books by
Hsu (7) and Westfall et al. (8) for additional techniques.

Tukey’s HSD Test Over the years several procedures for making multiple com-
parisons have been suggested. A multiple comparison procedure developed by Tukey (9)
is frequently used for testing the null hypothesis that all possible pairs of treatment means
are equal when the samples are all of the same size. When this test is employed we select
an overall significance level of «. The probability is «, then, that one or more of the null
hypotheses is false.

Tukey’s test, which is usually referred to as the HSD (honestly significant differ-
ence) test, makes use of a single value against which all differences are compared. This
value, called the HSD, is given by

MSE
HSD = Qo Nk — (829)

n

where « is the chosen level of significance, k is the number of means in the experiment,
N is the total number of observations in the experiment, n is the number of observations
in a treatment, MSE is the error or within mean square from the ANOVA table, and ¢ is
obtained by entering Appendix Table H with «, k, and N — k.
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The statistic ¢, tabulated in Appendix Table H, is known as the studentized range
statistic. It is defined as the difference between the largest and smallest treatment means
from an ANOVA (that is, it is the range of the treatment means) divided by the error
mean square over n, the number of observations in a treatment. The studentized range
is discussed in detail by Winer (10).

All possible differences between pairs of means are computed, and any differ-
ence that yields an absolute value that exceeds HSD is declared significant.

Tukey’s Test for Unequal Sample Sizes When the samples are not all
the same size, as is the case in Example 8.2.1, Tukey’s HSD test given by Equation
8.2.9 is not applicable. Tukey himself (9) and Kramer (11), however, have extended the
Tukey procedure to the case where the sample sizes are different. Their procedure,
which is sometimes called the Tukey-Kramer method, consists of replacing MSE/n in
Equation 8.2.9 with (MSE/2)(1/n; + 1/n;), where n; and n; are the sample sizes of
the two groups to be compared. If we designate the new quantity by HSD*, we have
as the new test criterion

" MSE [ 1 1
HSD* = 9ok N—k T — + — (8210)

n; n]

Any absolute value of the difference between two sample means that exceeds
HSD* is declared significant.

Bonferroni’s Method Another very commonly used multiple comparison
test is based on a method developed by C. E. Bonferroni. As with Tukey’s method,
we desire to maintain an overall significance level of « for the total of all pair-wise
tests. In the Bonferroni method, we simply divide the desired significance level by
the number of individual pairs that we are testing. That is, instead of testing at a sig-
nificance level of a, we test at a significance level of a/k, where k is the number of
paired comparisons. The sum of all a/k terms cannot, then, possibly exceed our stated
level of a. For example, if one has three samples, A, B, and C, then there are k = 3
pair-wise comparisons. These are ws = up, ta = pc, and ug = ue. If we choose a
significance level of @ = .05, then we would proceed with the comparisons and use
a Bonferroni-corrected significance level of «/3 = .017 Therefore, our p value must
be no greater then .017 in order to reject the null hypothesis and conclude that two
means differ.

Most computer packages compute values using the Bonferroni method and pro-
duce an output similar to the Tukey’s HSD or other multiple comparison procedures. In
general, these outputs report the actual corrected p value using the Bonferroni method.
Given the basic relationship that p = a/k, then algebraically we can multiply both sides
of the equation by k to obtain & = pk. In other words, the total « is simply the sum of
all of the pk values, and the actual corrected p value is simply the calculated p value
multiplied by the number of tests that were performed.
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EXAMPLE 8.2.2

Let us illustrate the use of the HSD test with the data from Example 8.2.1.

Solution: The first step is to prepare a table of all possible (ordered) differences
between means. The results of this step for the present example are dis-
played in Table 8.2.5.

Suppose we let & = .05. Entering Table H with & = .05,k = 4, and N — k = 140, we
find that ¢ < 3.68. The actual value is ¢ = 3.667, which can be obtained from SAS®.
In Table 8.2.4 we have MSE = 262.4802.

The hypotheses that can be tested, the value of HSD*, and the statistical decision
for each test are shown in Table 8.2.6.

SAS® uses Tukey’s procedure to test the hypothesis of no difference between
population means for all possible pairs of sample means. The output also contains

TABLE 8.2.5 Differences Between Sample
Means (Absolute Value) for Example 8.2.2

VEN RRB SQR NRB
VEN - 3.208 17.37 36.171
RRB - 14.163 32.963
SQu — 18.801

NRB —

Table 8.2.6 Multiple Comparison Tests Using Data of Example 8.2.1 and HSD*

Hypotheses HSD* Statistical Decision

HO:/J“VEN = WRRB HSD* = 3.677 = 8.68 Do not reject Ho

since 3.208 < 8.68

HO:/“LVEN = Msau HSD* = 3.677 = 10.04 Reject HO since

17.37 > 10.04

Ho: ven = Kngs HSD* = 3.677 = 11.61 Reject H, since

(&)
(a2 )
(8 %)
(&%)
(7 )

Ho: rre = Msau HSD* = 3.677 = 9.60 Reject Hy since

14.163 > 9.60

HO:/“LRRB = MNRB HSD* = 3.677 =11.23 RejeCt HO since

32.963 > 11.23

Ho:sau = mnrB HSD* = 3.677 =12.32 Reject H, since

18.801 > 12.32
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NOTE:

The SAS System

Analysis of Variance Procedure

Tukey'’s Studentized Range

Alpha

Error Degrees of Freedom

Error Mean Square

(HSD) Test for selen

Critical Value of Studentized Range

Comparisons significant at the 0.05 level are

Simultaneous 95%
Confidence Limits

6.

4.

Difference

type Between
Comparison Means
NRB - SQU 18.801
NRB - RRB 32.963 21.
NRB - VEN 36.171 24.
SQU - NRB -18.801 -31.
SQU - RRB 14.163
SQU - VEN 17.370 7
RRB - NRB -32.963 -44 .
RRB - SQU -14.163 -23
RRB - VEN 3.208 -5
VEN - NRB -36.171 -47.
VEN - SQU -17.370 -27
VEN - RRB -3.208 -11.

449
699
524
152
538

.300

228

.787
.495

818

.440

910

31.
44.
.818

47

-6.
. 787
.440

23
27

-21.
-4.
11.

-24.

.300

5.

=7

152
228

449

699

538

910

524

495

0.05

140
262.4802
3.67719

indicated by

* kK

* kK

* kK

* kK

* kK

* kK

* kK

* kK

* kK

* kK

This test controls the Type I experimentwise error rate.

* kK

FIGURE 8.2.8 SAS® multiple comparisons for Example 8.2.1.

confidence intervals for the difference between all possible pairs of population means.
This SAS output for Example 8.2.1 is displayed in Figure 8.2.8.

One may also use SPSS to perform multiple comparisons by a variety of meth-
ods, including Tukey’s. The SPSS outputs for Tukey’s HSD and Bonferroni’s method
for the data for Example 8.2.1 are shown in Figures 8.2.9 and 8.2.10. The outputs con-
tain an exhaustive comparison of sample means, along with the associated standard
errors, p values, and 95% confidence intervals.




Dependent Variable: Selenium

Multiple Comparisons

Tukey HSD
Mean 95% Confidence Interval
Difference

(I) Meat_type (J) Meat_type (I-J) Std. Error | Sig. | Lower Bound | Upper Bound

VEN sQu —17.370190* | 3.872837210 |.000 |—27.44017302 | —7.30020793
RRB —3.2075427 | 3.346936628 |.773 | —11.91010145 5.49501609
NRB —36.170840%* | 4.479316382 (.000 |—47.81776286 |—24.52391634

sQu VEN 17.370190* | 3.872837210 {.000 7.30020793 2744017302
RRB 14.162648* | 3.701593729 |.001 453792509 | 23.78737051
NRB —18.800649*% | 4.750167007 |.001 |—31.15182638 | —6.44947187

RRB VEN 3.2075427 | 3.346936628 |.773 | —5.49501609 11.91010145
sQu —14.162648* | 3.701593729 |.001 |—23.78737051 | —4.53792509
NRB —32.963297*% | 4.332113033 |.000 |—44.22746845 | —21.69912540

NRB VEN 36.170840* | 4.479316382 (.000 | 24.52391634 47.81776286
sQu 18.800649* | 4.750167007 |.001 6.44947187 | 31.15182638
RRB 32.963297* | 4.332113033 |.000 | 21.69912540 44.22746845

*The mean difference is significant at the .05 level.

FIGURE 8.2.9 SPSS output for Tukey’s HSD using data from Example 8.2.1.

Dependent Variable: Selenium

Multiple Comparisons

Bonferroni
Mean 95% Confidence Interval
Difference
(I) Meat_type (J) Meat_type (I-J) Std. Error | Sig. | Lower Bound | Upper Bound
VEN RRB —3.20754 3.34694 1.000 —12.1648 5.7497
sQu —17.37019% 3.87284 .000| —277349 —7.0055
NRB —36.17084* 4.47932 .000| —48.1587 —24.1830
RRB VEN 3.20754 3.34694 1.000 —5.7497 12.1648
SQuU —14.16265* 3.70159 .001 —24.0691 —4.2562
NRB —32.96330* 4.33211 .000| —44.5572 —21.3694
sQu VEN 17.37019* 3.87284 .000 7.0055 27.7349
RRB 14.16265* 3.70159 .001 4.2562 24.0691
NRB —18.80065* 4.75017 .001| —-31.5134 —6.0879
NRB VEN 36.17084* 4.47932 .000 24.1830 48.1587
RRB 32.96330* 4.33211 .000 21.3694 44.5572
SsQu 18.80065* 4.75017 .001 6.0879 31.5134

*The mean difference is significant at the .05 level.

FIGURE 8.2.10 SPSS output for Bonferroni’s method using data from Example 8.2.1.

327




328 CHAPTER 8 ANALYSIS OF VARIANCE

EXERCISES

8.2.1

In Exercises 8.2.1 to 8.2.7, go through the ten steps of analysis of variance hypothesis testing to
see if you can conclude that there is a difference among population means. Let & = .05 for each
test. Use Tukey’s HSD procedure to test for significant differences among individual pairs of means
(if appropriate). Use the same « value for the F test. Construct a dot plot and side-by-side box-
plots of the data.

Researchers at Case Western Reserve University (A-2) wanted to develop and implement a trans-
ducer, manageable in a clinical setting, for quantifying isometric moments produced at the elbow
joint by individuals with tetraplegia (paralysis or paresis of all four limbs). The apparatus, called
an elbow moment transducer (EMT), measures the force the elbow can exert when flexing. The
output variable is voltage. The machine was tested at four different elbow extension angles, 30,
60, 90, and 120 degrees, on a mock elbow consisting of two hinged aluminum beams. The data
are shown in the following table.

Elbow Angle (Degrees)

30 60 90 120
—0.003 1.094 0.000 —0.001 0.000 —0.007 0.558 0.003
0.050  1.061 0.053 0.010 0.006 0.012 0.529 0.062
0272 1.040 0.269 0.028 0.026 —0.039 0.524 0.287
0.552 1.097 0.555 0.055 0.053 —0.080 0.555 0.555
1.116  1.080 1.103 0.105 0.108 —0.118 0.539 1.118
2733 1.051 2727 0.272 0.278 —0.291 0.536 2.763
0.000  1.094 —0.002 0.553 0.555 —0.602 0.557 0.006
0.056  1.075 0.052 0.840 0.834 —0.884 0.544 0.050
0275  1.035 0.271 1.100 1.106 —1.176 0.539 0.277
0.556  1.096 0.550 1.647 1.650 —1.725 1.109 0.557
1.100  1.100 1.097 2.728 2.729 0.003 1.085 1.113
2723 1.096 2.725 —0.001 0.005 0.003 1.070 2.759
—0.003 1.108 0.003 0.014 —0.023 —0.011 1.110 0.010
0.055 1.099 0.052 0.027 —0.037 —0.060 1.069 0.060
0273  1.089 0.270 0.057 —0.046 —0.097 1.045 0.286
0.553  1.107 0.553 0.111 —0.134 —0.320 1.110 0.564
1.100  1.094 1.100 0.276 —0.297 —0.593 1.066 1.104
2713 1.092 2727 0.555 —0.589 —0.840 1.037 2.760
0.007  1.092 0.022 0.832 —0.876 —1.168 2.728 —0.003
—0.066 1.104 —0.075 1.099 —1.157 —1.760 2.69%4 —0.060
—0.258  1.121 —0.298 1.651 —1.755 0.004 2.663 —0.289
—0.581 1.106 —0.585 2.736 —2.862 0.566 2.724 —0.585
—1.162  1.135 —1.168 0.564 0.000 1.116 2.693 —1.180
0.008  1.143 0.017 0.556 0.245 2.762 2.670 0.000
—0.045 1.106 —0.052 0.555 0.497 0.563 2.720 —0.034
—-0.274  1.135 —0.258 0.567 0.001 0.551 2.688 —0.295
—0.604 1.156 —0.548 0.559 0.248 0.551 2.660 —0.579
—1.143  1.112 —1.187 0.551 0.498 0.561 0.556 —1.165
—0.004 1.104 0.019 1.107 0.001 0.555 0.560 —0.019

(Continued)
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Elbow Angle (Degrees)
30 60 90 120
—0.050 1.107 —0.044 1.104 0.246 0.558 0.557 —0.056
—0.290 1.107 —-0.292 1.102 0.491 0.551 0.551 —0.270
—0.607 1.104 —0.542 1.112 0.001 0.566 0.564 —0.579
—1.164 1.117 —1.189 1.103 0.262 0.560 0.555 —1.162
1.105 1.101 1.104 0.527 1.107 0.551
1.103 1.114 0.001 1.104 0.563
1.095 0.260 1.109 0.559
1.100 0.523 1.108 1.113
2.739 —0.005 1.106 1.114
2.721 0.261 1.102 1.101
2.687 0.523 1.111 1.113
2.732 2.696 1.102 1.113
2.702 2.664 1.107 1.097
2.660 2.722 2.735 1.116
2.743 2.686 2.733 1.112
2.687 2.661 2.659 1.098
2.656 0.548 2.727 2.732
2.733 2.739 0.542 2.722
2.731 2.742 0.556 2.734
2.728 2.747

Source: S. A. Snyder, M.S. Used with permission.
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Patients suffering from rheumatic diseases or osteoporosis often suffer critical losses in bone min-
eral density (BMD). Alendronate is one medication prescribed to build or prevent further loss of
BMD. Holcomb and Rothenberg (A-3) looked at 96 women taking alendronate to determine if a
difference existed in the mean percent change in BMD among five different primary diagnosis
classifications. Group 1 patients were diagnosed with rheumatoid arthritis (RA). Group 2 patients
were a mixed collection of patients with diseases including lupus, Wegener’s granulomatosis and
polyarteritis, and other vasculitic diseases (LUPUS). Group 3 patients had polymyalgia rheumat-
ica or temporal arthritis (PMRTA). Group 4 patients had osteoarthritis (OA) and group 5 patients
had osteoporosis (O) with no other rheumatic diseases identified in the medical record. Changes
in BMD are shown in the following table.

Diagnosis
RA LUPUS PMRTA OA (0]
11.091 7.412 2.961 —3.669 11.146 2.937
24.414 5.559 0.293 —7.816 —0.838 15.968
10.025 4.761 8.394 4.563 4.082 5.349
—3.156 —3.527 2.832 —0.093 6.645 1.719
6.835 4.839 —1.369 —0.185 4.329 6.445
3.321 1.850 11.288 1.302 1.234 20.243
1.493 —3.933 3.997 5.299 —2.817 3.290

(Continued)
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Diagnosis
RA LUPUS PMRTA OA (0]

—1.864 9.669 7.260 10.734 3.544 8.992

5.386 4.659 5.546 1.399 4.160 6.120

3.868 1.137 0.497 1.160 25.655
6.209 7.521 0.592 —0.247
—5.640 0.073 3.950 5.372
3.514 —8.684 0.674 6.721
—2.308 —0.372 9.354 9.950
15.981 21.311 2.610 10.820
—9.646 10.831 5.682 7.280
5.188 3.351 6.605
—1.892 9.557 7.507
16.553 5.075
0.163
12.767
3.481
0.917
15.853

Source: John P. Holcomb, Ph.D. and Ralph J. Rothenberg, M.D. Used with permission.

Ilich-Ernst et al. (A-4) investigated dietary intake of calcium among a cross section of 113 healthy
women ages 20-88. The researchers formed four age groupings as follows: Group A, 20.0-45.9
years; group B, 46.0-55.9 years; group C, 56.0-65.9 years; and group D, over 66 years. Calcium
from food intake was measured in mg/day. The data below are consistent with summary statistics

given in the paper.

Age Groups (Years)

Age Groups (Years)

A B C D A B C D
1820 191 724 1652 1020 775
2588 1098 613 1309 805 1393
2670 644 918 1002 631 533
1022 136 949 966 641 734
1555 1605 877 788 760 485

222 1247 1368 472 449
1197 1529 1692 471 236
1249 1422 697 771 831
1520 445 849 869 698

489 990 1199 513 167
2575 489 429 731 824
1426 2408 798 1130 448
1846 1064 631 1034 991
1088 629 1016 1261 590

912 1025 42 994
1383 948 767 1781

(Continued)
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Age Groups (Years)

Age Groups (Years)

A B C D A B C D
1483 1085 752 937
1723 775 804 1022

727 1307 1182 1073
1463 344 1243 948
1777 961 985 222
1129 239 1295 721

944 1676 375
1096 754 1187

Gold et al. (A-5) investigated the effectiveness on smoking cessation of a nicotine patch, bupro-
pion SR, or both, when co-administered with cognitive-behavioral therapy. Consecutive consent-
ing patients (n = 164) assigned themselves to one of three treatments according to personal
preference: nicotine patch (NTP, n = 13), bupropion SR (B;n = 92), and bupropion SR plus
nicotine patch (BNTP, n = 59). At their first smoking cessation class, patients estimated the num-
ber of packs of cigarettes they currently smoked per day and the numbers of years they smoked.
The “pack years” is the average number of packs the subject smoked per day multiplied by the
number of years the subject had smoked. The results are shown in the following table.

Pack Years

NTP B BNTP
15 8 60 90 8 80
17 10 60 90 15 80
18 15 60 90 25 82
20 20 60 95 25 86
20 22 60 96 25 87
20 24 60 98 26 90
30 25 60 98 30 90
37 26 66 99 34 90
43 27 66 100 35 90
48 29 67 100 36 90
60 30 68 100 40 95
100 30 68 100 45 99
100 35 70 100 45 100
35 70 100 45 102
39 70 105 45 105
40 75 110 48 105
40 75 110 48 105
40 75 120 49 111
40 75 120 52 113
40 76 123 60 120
40 80 125 60 120
45 80 125 60 125

(Continued)
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8.2.5

8.2.6

Pack Years
NTP B BNTP

45 80 126 64 125
45 80 130 64 129
50 80 130 70 130
51 80 132 70 133
52 80 132 70 135
55 84 142 75 140
58 84 157 75 154
60 84 180 76

60 90

Source: Paul B. Gold, Ph.D. Used with Permission.

In a study by Wang et al. (A-6), researchers examined bone strength. They collected 10 cadaveric
femurs from subjects in three age groups: young (19—49 years), middle-aged (50-69 years), and
elderly (70 years or older) [Note: one value was missing in the middle-aged group]. One of the
outcome measures (W) was the force in newtons required to fracture the bone. The following table
shows the data for the three age groups.

Young (Y) Middle-aged (MA) Elderly (E)

193.6 125.4 59.0
137.5 126.5 87.2
122.0 115.9 84.4
145.4 98.8 78.1
117.0 943 51.9
105.4 99.9 57.1

99.9 83.3 54.7

74.0 72.8 78.6

74.4 83.5 53.7
112.8 96.0

Source: Xiaodu Wang, Ph.D. Used with permission.

In a study of 90 patients on renal dialysis, Farhad Atassi (A-7) assessed oral home care practices.
He collected data from 30 subjects who were in (1) dialysis for less than 1 year, (2) dialysis for
1 to 3 years, and (3) dialysis for more than 3 years. The following table shows plaque index scores
for these subjects. A higher score indicates a greater amount of plaque.

Group 1 Group 2 Group 3
2.00 2.67 2.83 2.83 1.83 1.83
1.00 2.17 2.00 1.83 2.00 2.67
2.00 1.00 2.67 2.00 1.83 1.33
1.50 2.00 2.00 1.83 1.83 2.17
2.00 2.00 2.83 2.00 2.83 3.00

(Continued)
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Group 1 Group 2 Group 3
1.00 2.00 2.17 2.17 2.17 2.33
1.00 2.33 2.17 1.67 2.83 2.50
1.00 1.50 2.00 2.33 2.50 2.83
1.00 1.00 2.00 2.00 2.17 2.83
1.67 2.00 1.67 2.00 1.67 2.33
1.83 .83 2.33 2.17 2.17 2.33
2.17 .50 2.00 3.00 1.83 2.67
1.00 2.17 1.83 2.50 2.83 2.00
2.17 2.33 1.67 2.17 2.33 2.00
2.83 2.83 2.17 2.00 2.00 2.00

Source: Farhad Atassi, DDS, MSC, FICOI. Used with permission.

Thrombocytopaenia is a condition of abnormally low platelets that often occurs during necrotizing
enterocolitis (NEC)—a serious illness in infants that can cause tissue damage to the intestines.
Ragazzi et al. (A-8) investigated differences in the log; of platelet counts in 178 infants with NEC.
Patients were grouped into four categories of NEC status. Group 0 referred to infants with no gan-
grene, group 1 referred to subjects in whom gangrene was limited to a single intestinal segment,
group 2 referred to patients with two or more intestinal segments of gangrene, and group 3 referred
to patients with the majority of small and large bowel involved. The following table gives the logq
platelet counts for these subjects.

Gangrene Grouping

0 1 2 3

1.97 2.33 2.48 1.38 2.45 1.87 2.37 1.77
0.85 2.60 2.23 1.86 2.60 1.90 1.75 1.68
1.79 1.88 2.51 2.26 1.83 243 2.57 1.46
2.30 2.33 2.38 1.99 247 1.32 1.51 1.53
1.71 2.48 2.31 1.32 1.92 2.06 1.08 1.36
2.66 2.15 2.08 2.11 2.51 1.04 2.36 1.65
2.49 1.41 2.49 2.54 1.79 1.99 1.58 2.12
2.37 2.03 221 2.06 2.17 1.52 1.83 1.73
1.81 2.59 2.45 241 2.18 1.99 2.55 1.91
2.51 2.23 1.96 2.23 2.53 2.52 1.80 1.57
2.38 1.61 2.29 2.00 1.98 1.93 2.44 2.27
2.58 1.86 2.54 2.74 1.93 2.29 2.81 1.00
2.58 2.33 2.23 2.00 242 1.75 2.17 1.81
2.84 2.34 2.78 2.51 0.79 2.16 2.72 2.27
2.55 1.38 2.36 2.08 1.38 1.81 2.44 2.43

1.90 2.52 1.89 2.46 1.98 1.74
2.28 2.35 2.26 1.66 1.57 1.60
2.33 2.63 1.79 2.51 2.05 2.08
1.77 2.03 1.87 1.76 2.30 2.34
1.83 1.08 2.51 1.72 1.36 1.89
1.67 2.40 2.29 2.57 248 1.75

(Continued)
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8.2.8

8.2.9

Gangrene Grouping

0 1 2 3
2.67 1.77 2.38 2.30 1.40 1.69
1.80 0.70 1.75 2.49

2.16 2.67 1.75
2.17 2.37 1.86
2.12 1.46 1.26
2.27 1.91 2.36

Source: Simon Eaton, M.D. Used with permission.

The objective of a study by Romito et al. (A-9) was to determine whether there is a different
response to different calcium channel blockers. Two hundred and fifty patients with mild-to-
moderate hypertension were randomly assigned to 4 weeks of treatment with once-daily doses of
(1) lercanidipine, (2) felodipine, or (3) nifedipine. Prior to treatment and at the end of 4 weeks,
each of the subjects had his or her systolic blood pressure measured. Researchers then calculated
the change in systolic blood pressure. What is the treatment variable in this study? The response
variable? What extraneous variables can you think of whose effects would be included in the error
term? What are the “values” of the treatment variable? Construct an analysis of variance table in
which you specify for this study the sources of variation and the degrees of freedom.

Kosmiski et al. (A-10) conducted a study to examine body fat distributions of men infected and not
infected with HIV, taking and not taking protease inhibitors (PI), and having been diagnosed and not
diagnosed with lipodystrophy. Lipodystrophy is a syndrome associated with HIV/PI treatment that
remains controversial. Generally, it refers to fat accumulation in the abdomen or viscera accompanied
by insulin resistance, glucose intolerance, and dyslipidemia. In the study, 14 subjects were taking pro-
tease inhibitors and were diagnosed with lipodystrophy, 12 were taking protease inhibitors, but were
not diagnosed with lipodystrophy, five were HIV positive, not taking protease inhibitors, nor had
diagnosed lypodystrophy, and 43 subjects were HIV negative and not diagnosed with lipodystrophy.
Each of the subjects underwent body composition and fat distribution analyses by dual-energy X-ray
absorptiometry and computed tomography. Researchers were able to then examine the percent of body
fat in the trunk. What is the treatment variable? The response variable? What are the “values” of the
treatment variable? Who are the subjects? What extraneous variables can you think of whose effects
would be included in the error term? What was the purpose of including HIV-negative men in the
study? Construct an ANOVA table in which you specify the sources of variation and the degrees of
freedom for each. The authors reported a computed V.R. of 11.79. What is the p value for the test?

8.3 THE RANDOMIZED COMPLETE
BLOCK DESIGN

The randomized complete block design was developed about 1925 by R. A. Fisher, who
was seeking methods of improving agricultural field experiments. The randomized com-
plete block design is a design in which the units (called experimental units) to which
the treatments are applied are subdivided into homogeneous groups called blocks, so
that the number of experimental units in a block is equal to the number (or some mul-
tiple of the number) of treatments being studied. The treatments are then assigned at
random to the experimental units within each block. It should be emphasized that each
treatment appears in every block, and each block receives every treatment.
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Objective The objective in using the randomized complete block design is to iso-
late and remove from the error term the variation attributable to the blocks, while assur-
ing that treatment means will be free of block effects. The effectiveness of the design
depends on the ability to achieve homogeneous blocks of experimental units. The abil-
ity to form homogeneous blocks depends on the researcher’s knowledge of the experi-
mental material. When blocking is used effectively, the error mean square in the ANOVA
table will be reduced, the V.R. will be increased, and the chance of rejecting the null
hypothesis will be improved.

In animal experiments, the breed of animal may be used as a blocking factor. Lit-
ters may also be used as blocks, in which case an animal from each litter receives a
treatment. In experiments involving human beings, if it is desired that differences result-
ing from age be eliminated, then subjects may be grouped according to age so that one
person of each age receives each treatment. The randomized complete block design also
may be employed effectively when an experiment must be carried out in more than one
laboratory (block) or when several days (blocks) are required for completion.

The random allocation of treatments to subjects is restricted in the randomized
complete block design. That is, each treatment must be represented an equal number of
times (one or more times) within each blocking unit. In practice this is generally accom-
plished by assigning a random permutation of the order of treatments to subjects within
each block. For example, if there are four treatments representing three drugs and a
placebo (drug A, drug B, drug C, and placebo [p]), then there are 4! = 24 possible per-
mutations of the four treatments: (A, B, C, P) or (A, C, B, P) or (C, A, P, B), and so
on. One permutation is then randomly assigned to each block.

Advantages One of the advantages of the randomized complete block design is
that it is easily understood. Furthermore, certain complications that may arise in the
course of an experiment are easily handled when this design is employed.

It is instructive here to point out that the paired comparisons analysis presented in
Chapter 7 is a special case of the randomized complete block design. Example 7.4.1, for
example, may be treated as a randomized complete block design in which the two points
in time (Pre-op and Post-op) are the treatments and the individuals on whom the meas-
urements were taken are the blocks.

Data Display In general, the data from an experiment utilizing the randomized
complete block design may be displayed in a table such as Table 8.3.1. The following
new notation in this table should be observed:

total of the ith block = T, = D x;
i=1

-~

mean of the ith block = Xx;,

k
grand total = T, = ETJ = T.
J=1

i=l1
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TABLE 8.3.1 Table of Sample Values for the Randomized
Complete Block Design

Treatments

Blocks 1 2 3 s k Total Mean
1 X1 X12 X13 X1k 1. X1,
2 X21 X22 X23 e Xok T. X2,
3 X31 X32 X33 T X3k Ts. X3,
n X1 Xn2 Xn3 e Xnk Tn. Xn,
Total T T T3 T Tk T.

Mean X1 X2 X3 T X.k X..

indicating that the grand total may be obtained either by adding row totals or by adding
column totals.

Two-Way ANOVA The technique for analyzing the data from a randomized com-
plete block design is called two-way analysis of variance since an observation is
categorized on the basis of two criteria—the block to which it belongs as well as the treat-
ment group to which it belongs.

The steps for hypothesis testing when the randomized complete block design is
used are as follows:

1. Data. After identifying the treatments, the blocks, and the experimental units, the
data, for convenience, may be displayed as in Table 8.3.1.

2. Assumptions. The model for the randomized complete block design and its under-
lying assumptions are as follows:

The Model

Ra
|

i=1,2,...,n j=1,2,...,k

(8.3.1)

In this model

X;; is a typical value from the overall population.
M is an unknown constant.

B; represents a block effect reflecting the fact that the experimental unit fell
in the ith block.

7; represents a treatment effect, reflecting the fact that the experimental unit
received the jth treatment.

€; is a residual component representing all sources of variation other than
treatments and blocks.
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Assumptions of the Model

(a) Each xj that is observed constitutes a random independent sample of size 1 from
one of the kn populations represented.

(b) Each of these kn populations is normally distributed with mean u;; and the same
variance o®. This implies that the €;; are independently and normally distributed

with mean 0 and variance o

(c) The block and treatment effects are additive. This assumption may be interpreted
to mean that there is no interaction between treatments and blocks. In other words,
a particular block-treatment combination does not produce an effect that is greater
or less than the sum of their individual effects. It can be shown that when this
assumption is met,

The consequences of a violation of this assumption are misleading results. One need
not become concerned with the violation of the additivity assumption unless the
largest mean is more than 50 percent greater than the smallest.

When these assumptions hold true, the 7; and B; are a set of fixed constants, and we
have a situation that fits the fixed-effects model.

3. Hypotheses. We may test

HO: T, =

=0, =12k

against the alternative

Hy:notall7; = 0

A hypothesis test regarding block effects is not usually carried out under the
assumptions of the fixed-effects model for two reasons. First, the primary interest is in
treatment effects, the usual purpose of the blocks being to provide a means of eliminat-
ing an extraneous source of variation. Second, although the experimental units are ran-
domly assigned to the treatments, the blocks are obtained in a nonrandom manner.

4. Test statistic. The test statistic is V.R.

5. Distribution of test statistic. When H, is true and the assumptions are met, V.R.
follows an F' distribution.

6. Decision rule. Reject the null hypothesis if the computed value of the test statis-
tic V.R. is equal to or greater than the critical value of F.

7. Calculation of test statistic. It can be shown that the total sum of squares for the
randomized complete block design can be partitioned into three components, one
each attributable to treatments (SS7r), blocks (SSBI), and error (SSE). That is,

SST = SSBl + SSTr + SSE (8.3.2)
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The formulas for the quantities in Equation 8.3.2 are as follows:

k n
SST = > D (x; — %) (8.3.3)
j=1i=l1
k n
SSBl = D D (x;, —x.)* (8.3.4)
j=l i=1
k n
SSTr= D > (%, — %.)? (8.3.5)
j=1i=l
SSE = SST — SSBI — SSTr (8.3.6)

The appropriate degrees of freedom for each component of Equation 8.3.2
are

total blocks treatments residual (error)

kn —1=m-1) + (k—1) + (n—1)(k—1)

The residual degrees of freedom, like the residual sum of squares, may be
obtained by subtraction as follows:

(kn—1)—-(n—-1)—(k—1)=kn—1—-n+1—-k+1
nk—1)—1(k=1)=(n— 1)k —1)

The ANOVA Table The results of the calculations for the randomized complete
block design may be displayed in an ANOVA table such as Table 8.3.2.

8. Statistical decision. It can be shown that when the fixed-effects model applies and
the null hypothesis of no treatment effects (all ; = 0) is true, both the error, or
residual, mean square and the treatments mean square are estimates of the com-
mon variance o>. When the null hypothesis is true, therefore, the quantity

MSTr/MSE

is distributed as F with k — 1 numerator degrees of freedom and (n — 1) X
(k — 1) denominator degrees of freedom. The computed variance ratio, therefore,
is compared with the critical value of F.

TABLE 8.3.2 ANOVA Table for the Randomized Complete Block Design

Source SS d.f. MS V.R.
Treatments SSTr (k—=1) MSTr = SSTr/(k — 1) MSTr/MSE
Blocks SSBI (n—=1) MSBI = SSBI/(n — 1)

Residual SSE (n=1)(k—-1) MSE = SSE/(n — 1)(k — 1)

Total SST kn — 1
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9. Conclusion. If we reject Hy, we conclude that the alternative hypothesis is true.
If we fail to reject H,, we conclude that H, may be true.

10. p value.

The following example illustrates the use of the randomized complete block

design.

EXAMPLE 8.3.1

A physical therapist wished to compare three methods for teaching patients to use a cer-
tain prosthetic device. He felt that the rate of learning would be different for patients of
different ages and wished to design an experiment in which the influence of age could
be taken into account.

Solution:

The randomized complete block design is the appropriate design for this
physical therapist.

1. Data. Three patients in each of five age groups were selected to partici-
pate in the experiment, and one patient in each age group was randomly
assigned to each of the teaching methods. The methods of instruction con-
stitute our three treatments, and the five age groups are the blocks. The
data shown in Table 8.3.3 were obtained.

2. Assumptions. We assume that each of the 15 observations constitutes
a simple random of size 1 from one of the 15 populations defined by a
block-treatment combination. For example, we assume that the number
7 in the table constitutes a randomly selected response from a popula-
tion of responses that would result if a population of subjects under
the age of 20 received teaching method A. We assume that the responses
in the 15 represented populations are normally distributed with equal
variances.

TABLE 8.3.3 Time (in Days) Required to Learn the Use
of a Certain Prosthetic Device

Teaching Method

Age Group A B Cc Total Mean
Under 20 7 9 10 26 8.67
20 to 29 8 9 10 27 9.00
30 to 39 9 9 12 30 10.00
40 to 49 10 9 12 31 10.33
50 and over 1 12 14 37 12.33
Total 45 48 58 151

Mean 9.0 9.6 11.6 10.07
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3. Hypotheses.

Hy:7;=0 j=12,73
Hy:notall7; = 0

Let « = .05.

. Test statistic. The test statistic is V.R. = MSTr/MSE.

. Distribution of test statistic. When H,, is true and the assumptions are

met, V.R. follows an F distribution with 2 and 8 degrees of freedom.

. Decision rule. Reject the null hypothesis if the computed V.R. is equal

to or greater than the critical F, which we find in Appendix Table G to
be 4.46.

. Calculation of test statistic. We compute the following sums of squares:

SST = (7 — 10.07)> + (8 — 10.07)> + -+ + (14 — 10.07)* = 46.9335

SSBI = 3[(8.67 — 10.07)% + (9.00 — 10.07)> + -+ + (12.33 — 10.07)*] = 24.855
SSTr = 5[(9 —10.07)> + (9.6 — 10.07)> + (11.6 — 10.07)2} = 18.5335

SSE = 46.9335 — 24.855 — 18.5335 = 3.545

The degrees of freedom are total = (3)(5) — 1 = 14, blocks =
5—1=4, treatments = 3 — 1 = 2, and residual = (5 — 1)(3—1) =
8. The results of the calculations may be displayed in an ANOVA table
as in Table 8.3.4.

. Statistical decision. Since our computed variance ratio, 20.91, is greater

than 4.46, we reject the null hypothesis of no treatment effects on the
assumption that such a large V.R. reflects the fact that the two sample
mean squares are not estimating the same quantity. The only other expla-
nation for this large V.R. would be that the null hypothesis is really true,
and we have just observed an unusual set of results. We rule out the sec-
ond explanation in favor of the first.

TABLE 8.3.4 ANOVA Table for Example 8.3.1

Source SS d.f. MS V.R.
Treatments 18.5335 2 9.26675 20.91
Blocks 24.855 4 6.21375

Residual 3.545 8 443125

Total 46.9335 14
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9. Conclusion. We conclude that not all treatment effects are equal to zero,
or equivalently, that not all treatment means are equal.

10. p value. For this test p < .005. ]

Computer Analysis Most statistics software packages will analyze data from a
randomized complete block design. We illustrate the input and output for MINITAB. We
use the data from the experiment to set up a MINITAB worksheet consisting of three
columns. Column 1 contains the observations, Column 2 contains numbers that identify
the block to which each observation belongs, and Column 3 contains numbers that iden-
tify the treatment to which each observation belongs. Figure 8.3.1 shows the MINITAB
worksheet for Example 8.3.1. Figure 8.3.2 contains the MINITAB dialog box that initi-
ates the analysis and the resulting ANOVA table.

The ANOVA table from the SAS® output for the analysis of Example 8.3.1 is
shown in Figure 8.3.3. Note that in this output the model SS is equal to the sum of SSB/
and SSTr.

Alternatives When the data available for analysis do not meet the assumptions
of the randomized complete block design as discussed here, the Friedman procedure
discussed in Chapter 13 may prove to be a suitable nonparametric alternative.

ROW Cc1l c2 C3
1 7 1 1
2 1 2
3 10 1 3
4 2 1
5 2 2
6 10 2 3
7 3 1
8 9 3 2
9 12 3 3

10 10 4 1
11 9 4 2
12 12 4 3
13 11 5 1
14 12 5 2
15 14 5 3

FIGURE 8.3.1 MINITAB worksheet for the data in Figure 8.3.2.
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Dialog box: Session command:

Stat » ANOVA » Twoway MTB > TWOWAY Cl C2 C3;
SUBC > MEANS C2 C3.

Type CI in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:
Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1

Source DF SS MS F p
Cc2 4 24.933 6.233 14.38 0.001
C3 2 18.533 9.267 21.38 0.001
Error 8 3.467 0.433

Total 14 46.933

Individual 95% CI

c2 Mean - R o 4

1 8.67 (--—-- x————= )

2 9.00 (--—-- x————= )

3 10.00 [ —— ————— )

4 10.33 [(C—— x————— )

5 12.33 [ r— fm——— )
———tm—— - tommm tomm - +--
9.00 10.50 12.00 13.50

Individual 95% CI

C3 Mean e —— e b o
1 9.00 (==—==- *————— )
2 9.60 [ —— *———— )
3 11.60 (m—— k=)
g o +——
9.00 10.00 11.00 12.00

FIGURE 8.3.2 MINITAB dialog box and output for two-way analysis of variance,
Example 8.3.1.

EXERCISES

For Exercises 8.3.1 to 8.3.5 perform the ten-step hypothesis testing procedure for analysis of variance.

8.3.1 The objective of a study by Brooks et al. (A-11) was to evaluate the efficacy of using a virtual
kitchen for vocational training of people with learning disabilities. Twenty-four students participated
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The SAS System
Analysis of Variance Procedure

Dependent Variable: DAYS

Source DF Sum of Squares Mean Square F Value Pr > F
Model 6 43.46666667 7.24444444 16.72 0.0004
Error 8 3.46666667 0.43333333
Corrected Total 14 46.93333333
R-Square C.V. Root MSE DAYS Mean
0.926136 6.539211 0.65828059 10.06666667
Source DF Anova SS Mean Square F Value Pr > F
GROUP 2 18.53333333 9.26666667 21.38 0.0006
AGE 4 24.93333333 6.23333333 14.38 0.0010

FIGURE 8.3.3 Partial SAS® output for analysis of Example 8.3.1.

in the study. Each participant performed four food preparation tasks and they were scored on the
quality of the preparation. Then each participant received regular vocational training in food prepa-
ration (real training), virtual training using a TV and computer screen of a typical kitchen, work-
book training with specialized reading materials, and no training (to serve as a control). After each
of these trainings, the subjects were tested on food preparation. Improvement scores for each of the
four training methods are shown in the following table.

Subject Real Virtual Workbook No
No. Training Training Training Training
1 2 10 2 —4
2 4 3 2 1
3 4 13 0 1
4 6 11 2 1
5 5 13 5 1
6 2 0 1 4
7 10 17 2 6
8 5 5 2 2
9 10 4 5 2
10 3 6 9 3
11 11 9 8 7
12 10 9 6 10
13 5 8 4 1

(Continued)
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Subject Real Virtual Workbook No
No. Training Training Training Training
14 8 11 1 1
15 4 8 5 2
16 11 8 10 2
17 6 11 1 3
18 2 5 1 2
19 3 1 0 -3
20 7 5 0 -6
21 7 10 4 4
22 8 7 -2 8
23 4 9 3 0
24 9 6 3 5

Source: B. M. Brooks, Ph.D. Used with permission.

After eliminating subject effects, can we conclude that the improvement scores differ among meth-
ods of training? Let a = .05.

8.3.2 McConville et al. (A-12) report the effects of chewing one piece of nicotine gum (containing 2 mg
nicotine) on tic frequency in patients whose Tourette’s disorder was inadequately controlled by
haloperidol. The following are the tic frequencies under four conditions:

Number of Tics During 30-Minute Period

After End of Chewing

Gum 0-30 30-60
Patient Baseline Chewing Minutes Minutes
1 249 108 93 59
2 1095 593 600 861
3 83 27 32 61
4 569 363 342 312
5 368 141 167 180
6 326 134 144 158
7 324 126 312 260
8 95 41 63 71
9 413 365 282 321
10 332 293 525 455

Source: Brian J. McConville, M. Harold Fogelson, Andrew B. Norman,
William M. Klykylo, Pat Z. Manderscheid, Karen W. Parker, and Paul R.
Sanberg. “Nicotine Potentiation of Haloperidol in Reducing Tic Frequency
in Tourette’s Disorder,” American Journal of Psychiatry, 148 (1991),
793-794. Copyright© 1991, American Psychiatric Association. Reprinted
by permission.

After eliminating patient effects, can we conclude that the mean number of tics differs among the
four conditions? Let a = .01.
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A remotivation team in a psychiatric hospital conducted an experiment to compare five methods for
remotivating patients. Patients were grouped according to level of initial motivation. Patients in each
group were randomly assigned to the five methods. At the end of the experimental period the patients
were evaluated by a team composed of a psychiatrist, a psychologist, a nurse, and a social worker,
none of whom was aware of the method to which patients had been assigned. The team assigned each
patient a composite score as a measure of his or her level of motivation. The results were as follows:

Level of Remotivation Method

Initial

Motivation A B C D E
Nil 58 68 60 68 64
Very low 62 70 65 80 69
Low 67 78 68 81 70
Average 70 81 70 89 74

Do these data provide sufficient evidence to indicate a difference in mean scores among methods?
Let a = .05.

The nursing supervisor in a local health department wished to study the influence of time of day
on length of home visits by the nursing staff. It was thought that individual differences among
nurses might be large, so the nurse was used as a blocking factor. The nursing supervisor collected
the following data:

Length of Home Visit by Time of Day

Early Late Early Late
Nurse Morning Morning Afternoon Afternoon
A 27 28 30 23
B 31 30 27 20
C 35 38 34 30
D 20 18 20 14

Do these data provide sufficient evidence to indicate a difference in length of home visit among
the different times of day? Let a = .05.

Four subjects participated in an experiment to compare three methods of relieving stress. Each
subject was placed in a stressful situation on three different occasions. Each time a different method
for reducing stress was used with the subject. The response variable is the amount of decrease in
stress level as measured before and after treatment application. The results were as follows:

Treatment
Subject A B C
1 16 26 22
2 16 20 23
3 17 21 22
4 28 29 36

Can we conclude from these data that the three methods differ in effectiveness? Let a = .05.
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8.3.6

8.3.7

In a study by Valencia et al. (A-13), the effects of environmental temperature and humidity on 24-
hour energy expenditure were measured using whole-body indirect calorimetry in eight normal-
weight young men who wore standardized light clothing and followed a controlled activity regi-
men. Temperature effects were assessed by measurements at 20, 23, 26, and 30 degrees Celsius
at ambient humidity and at 20 and 30 degrees Celsius with high humidity. What is the blocking
variable? The treatment variable? How many blocks are there? How many treatments? Construct
an ANOVA table in which you specify the sources of variability and the degrees of freedom for
each. What are the experimental units? What extraneous variables can you think of whose effects
would be included in the error term?

Hodgson et al. (A-14) conducted a study in which they induced gastric dilatation in six anes-
thetized dogs maintained with constant-dose isoflurane in oxygen. Cardiopulmonary measurements
prior to stomach distension (baseline) were compared with measurements taken during .1, .5, 1.0,
1.5, 2.5, and 3.5 hours of stomach distension by analyzing the change from baseline. After dis-
tending the stomach, cardiac index increased from 1.5 to 3.5 hours. Stroke volume did not change.
During inflation, increases were observed in systemic arterial, pulmonary arterial, and right atrial
pressure. Respiratory frequency was unchanged. Pao, tended to decrease during gastric dilatation.
What are the experimental units? The blocks? Treatment variable? Response variable(s)? Can you
think of any extraneous variable whose effect would contribute to the error term? Construct an
ANOVA table for this study in which you identify the sources of variability and specify the degrees
of freedom.

8.4 THE REPEATED MEASURES DESIGN

One of the most frequently used experimental designs in the health sciences field is the
repeated measures design.

DEFINITION

A repeated measures design is one in which measurements of the same
variable are made on each subject on two or more different occasions.

The different occasions during which measurements are taken may be either points
in time or different conditions such as different treatments.

When to Use Repeated Measures The usual motivation for using a
repeated measures design is a desire to control for variability among subjects. In such
a design each subject serves as its own control. When measurements are taken on only
two occasions, we have the paired comparisons design that we discussed in Chapter 7.
One of the most frequently encountered situations in which the repeated measures
design is used is the situation in which the investigator is concerned with responses over
time.

Advantages The major advantage of the repeated measures design is, as previ-
ously mentioned, its ability to control for extraneous variation among subjects. An addi-
tional advantage is the fact that fewer subjects are needed for the repeated measures
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design than for a design in which different subjects are used for each occasion on which
measurements are made. Suppose, for example, that we have four treatments (in the usual
sense) or four points in time on each of which we would like to have 10 measurements.
If a different sample of subjects is used for each of the four treatments or points in time,
40 subjects would be required. If we are able to take measurements on the same sub-
ject for each treatment or point in time—that is, if we can use a repeated measures
design—only 10 subjects would be required. This can be a very attractive advantage if
subjects are scarce or expensive to recruit.

Disadvantages A major potential problem to be on the alert for is what is known
as the carry-over effect. When two or more treatments are being evaluated, the investi-
gator should make sure that a subject’s response to one treatment does not reflect a resid-
ual effect from previous treatments. This problem can frequently be solved by allowing
a sufficient length of time between treatments.

Another possible problem is the position effect. A subject’s response to a treatment
experienced last in a sequence may be different from the response that would have
occurred if the treatment had been first in the sequence. In certain studies, such as those
involving physical participation on the part of the subjects, enthusiasm that is high at the
beginning of the study may give way to boredom toward the end. A way around this
problem is to randomize the sequence of treatments independently for each subject.

Single-Factor Repeated Measures Design The simplest repeated
measures design is the one in which, in addition to the treatment variable, one additional
variable is considered. The reason for introducing this additional variable is to measure
and isolate its contribution to the total variability among the observations. We refer to
this additional variable as a factor.

DEFINITION
The repeated measures design in which one additional factor

is introduced into the experiment is called a single-factor repeated
measures design.

We refer to the additional factor as subjects. In the single-factor repeated measures
design, each subject receives each of the treatments. The order in which the subjects are
exposed to the treatments, when possible, is random, and the randomization is carried
out independently for each subject.

Assumptions The following are the assumptions of the single-factor repeated
measures design that we consider in this text. A design in which these assumptions are
met is called a fixed-effects additive design.

1. The subjects under study constitute a simple random sample from a population of
similar subjects.

2. Each observation is an independent simple random sample of size 1 from each of
kn populations, where n is the number of subjects and k is the number of treat-
ments to which each subject is exposed.
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3. The kn populations have potentially different means, but they all have the same
variance.

4. The k treatments are fixed; that is, they are the only treatments about which we
have an interest in the current situation. We do not wish to make inferences to
some larger collection of treatments.

5. There is no interaction between treatments and subjects; that is, the treatment and
subject effects are additive.

Experimenters may find frequently that their data do not conform to the assumptions of
fixed treatments and/or additive treatment and subject effects. For such cases the refer-
ences at the end of this chapter may be consulted for guidance.

In addition to the assumptions just listed, it should be noted that in a repeated-
measures experiment there is a presumption that correlations should exist among the
repeated measures. That is, measurements at time 1 and 2 are likely correlated, as are
measurements at time 1 and 3, 2 and 3, and so on. This is expected because the meas-
urements are taken on the same individuals through time.

An underlying assumption of the repeated-measures ANOVA design is that all of
these correlations are the same, a condition referred to as compound symmetry. This
assumption, coupled with assumption 3 concerning equal variances, is referred to as
sphericity. Violations of the sphericity assumption can result in an inflated type I error.
Most computer programs provide a formal test for the sphericity assumption along with
alternative estimation methods if the sphericity assumption is violated.

The Model The model for the fixed-effects additive single-factor repeated meas-
ures design is

R
|

»]~—,L,L+Bi+7'j+6,-j 84.1)
i=1,2,...,n; j=12,...,k o
The reader will recognize this model as the model for the randomized complete block
design discussed in Section 8.3. The subjects are the blocks. Consequently, the notation,
data display, and hypothesis testing procedure are the same as for the randomized com-
plete block design as presented earlier. The following is an example of a repeated meas-
ures design.

EXAMPLE 8.4.1

Licciardone et al. (A-15) examined subjects with chronic, nonspecific low back pain.
In this study, 18 of the subjects completed a survey questionnaire assessing physi-
cal functioning at baseline, and after 1, 3, and 6 months. Table 8.4.1 shows the data
for these subjects who received a sham treatment that appeared to be genuine osteo-
pathic manipulation. Higher values indicate better physical functioning. The goal of
the experiment was to determine if subjects would report improvement over time
even though the treatment they received would provide minimal improvement. We
wish to know if there is a difference in the mean survey values among the four points
in time.
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TABLE 8.4.1 SF-36 Health Scores at Four Different
Points in Time

Subject Baseline Month 1 Month 3 Month 6

1 80 60 95 100
2 95 90 95 95
3 65 55 50 45
4 50 45 70 70
5 60 75 80 85
6 70 70 75 70
7 80 80 85 80
8 70 60 75 65
9 80 80 70 65
10 65 30 45 60
M 60 70 95 80
12 50 50 70 60
13 50 65 80 65
14 85 45 85 80
15 50 65 90 70
16 15 30 20 25
17 10 15 55 75
18 80 85 90 70

Source: John C. Licciardone. Used with permission.

Solution:
1. Data. See Table 8.4.1.

2. Assumptions. We assume that the assumptions for the fixed-effects,
additive single-factor repeated measures design are met.

3. Hypotheses.

Hy:pup = pan = Mz = Me
H,: not all u’s are equal

4. Test statistic. V.R. = treatment MS/error MS.

5. Distribution of test statistic. 7' with 4 — 1 = 3 numerator degrees of
freedom and 71 — 3 — 17 = 51 denominator degrees of freedom.

6. Decision rule. Let « = .05. The critical value of F is 2.80 (obtained
by interpolation). Reject H, if computed V.R. is equal to or greater
than 2.80.

7. Calculation of test statistic. We use MINITAB to perform the calcula-
tions. We first enter the measurements in Column 1, the row (subject)
codes in Column 2, the treatment (time period) codes in Column 3, and
proceed as shown in Figure 8.4.1.
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Dialog box: Session command:

Stat » ANOVA » Twoway MTB > TWOWAY Cl C2 C3;
SUBC> MEANS C2 C3.

Type CI in Response. Type C2 in Row factor and
Check Display means. Type C3 in Column factor and
Check Display means. Click OK.

Output:

Two-way ANOVA: C1 versus C2, C3

Analysis of Variance for C1

Source DF SS MS F p
Cc2 17 20238 1190 8.20 0.000
C3 3 2396 799 5.50 0.002
Error 51 7404 145

Total 71 30038

FIGURE 8.4.1 MINITAB procedure and output (ANOVA table) for Example 8.4.1.

8. Statistical decision. Since V.R. = 5.50 is greater than 2.80, we are able
to reject the null hypothesis.

9. Conclusion. We conclude that there is a difference in the four popula-
tion means.

10. p value. Since 5.50 is greater than 4.98, the F value for « = .005 and
df = 40, the p value is less than .005.

Figure 8.4.2. shows the SAS® output for the analysis of Example 8.4.1 and Figure 8.4.3
shows the SPSS output for the same example. Note that SPSS provides four potential
tests. The first test is used under an assumption of sphericity and matches the outputs in
Figures 8.4.1 and 8.4.2. The next three tests are modifications if the assumption of
sphericity is violated. Note that SPSS modifies the degrees of freedom for these three
tests, which changes the mean squares and the p values, but not the V. R. Note that the
assumption of sphericity was violated for these data, but that the decision rule did not
change, since all of the p values were less than o = .05. |

EXERCISES

For Exercises 8.4.1 to 8.4.3 perform the ten-step hypothesis testing procedure. Let = .05.

8.4.1 One of the purposes of a study by Liu et al. (A-16) was to determine the effects of MRZ 2/579
on neurological deficit in Sprague-Dawley rats. In this study, 10 rats were measured at four time
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The ANOVA Procedure

Dependent Variable: sf36

Source DF Sum of Squares Mean Square F Value Pr > F
Model 20 22633.33333 1131.66667 7.79 <.0001
Error 51 7404 .16667 145.17974
Corrected Total 71 30037.50000
R-Square Coeff Var Root MSE sf36 Mean
0.753503 18.18725 12.04906 66.25000
Source DF Anova SS Mean Square F Value Pr > F
subj 17 20237.50000 1190.44118 8.20 <.0001
time 3 2395.83333 798.61111 5.50 0.0024
FIGURE 8.4.2 SAS® output for analysis of Example 8.4.1.
Tests of Within-Subjects Effects
Measure: MEASURE_1
Type Il Sum Mean

Source of Squares df Square F Sig.
factor 1 Sphericity Assumed 2395.833 3 798.611 5.501 .002

Greenhouse-Geisser 2395.833 2.216 1080.998 | 5.501 .006

Huynh-Feldt 2395.833 2.563 934.701 5.501 .004

Lower-bound 2395.833 1.000 2395.833 | 5.501 .031
Error (factor 1)  Sphericity Assumed 7404.167 51 145.180

Greenhouse-Geisser 7404.167 37677 196.515

Huynh-Feldt 7404.167 43.575 169.919

Lower-bound 7404.167 17.000 435.539

FIGURE 8.4.3 SPSS output for the analysis of Example 8.4.1.

periods following occlusion of the middle carotid artery and subsequent treatment with the
uncompetitive N-methly-D-aspartate antagonist MRZ 2/579, which previous studies had sug-
gested provides neuroprotective activity. The outcome variable was a neurological function vari-
able measured on a scale of 0-12. A higher number indicates a higher degree of neurological

impairment.
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8.4.2

8.4.3

Rat 60 Minutes 24 Hours 48 Hours 72 Hours
1 11 9 8 4
2 11 7 5 3
3 11 10 8 6
4 11 4 3 2
5 11 10 9 9
6 11 6 5 5
7 11 6 6 6
8 11 7 6 5
9 11 7 5 5

10 11 9 7 7

Source: Ludmila Belayev, M.D. Used with permission.

Starch et al. (A-17) wanted to show the effectiveness of a central four-quadrant sleeve and screw
in anterior cruciate ligament reconstruction. The researchers performed a series of reconstructions
on eight cadaveric knees. The following table shows the loads (in newtons) required to achieve
different graft laxities (mm) for seven specimens (data not available for one specimen) using five
different load weights. Graft laxity is the separation (in mm) of the femur and the tibia at the
points of graft fixation. Is there sufficient evidence to conclude that different loads are required to
produce different levels of graft laxity? Let « = .05.

Graft Laxity (mm)

Loads
Specimen 1 2 3 4 5
1 297.1 297.1 297.1 297.1 297.1
2 264.4 304.6 336.4 358.2 379.3
3 188.8 188.8 188.8 188.8 188.8
4 159.3 194.7 2114 222.4 228.1
5 228.2 282.1 282.1 334.8 334.8
6 100.3 105.0 106.3 107.7 108.7
7 116.9 140.6 182.4 209.7 2154

Source: David W. Starch, Jerry W. Alexander, Philip C. Noble, Suraj Reddy, and David M.
Lintner, “Multistranded Hamstring Tendon Graft Fixation with a Central Four-Quadrant or a
Standard Tibial Interference Screw for Anterior Cruciate Ligament Reconstruction,” American
Journal of Sports Medicine, 31 (2003), 338-344.

Holben et al. (A-18) designed a study to evaluate selenium intake in young women in the years
of puberty. The researchers studied a cohort of 16 women for three consecutive summers. One of
the outcome variables was the selenium intake per day. The researchers examined dietary journals
of the subjects over the course of 2 weeks and then computed the average daily selenium intake.
The following table shows the average daily selenium intake values (in ug/d) for the 16 women
in years 1, 2, and 3 of the study.
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Subject Year 1 Year 2 Year 3 Subject Year 1 Year 2 Year 3
1 112.51 121.28 94.99 9 95.05 93.89 73.26
2 106.20 121.14 145.69 10 112.65 100.47 145.69
3 102.00 121.14 130.37 11 103.74 121.14 123.97
4 103.74 90.21 135.91 12 103.74 121.14 135.91
5 103.17 121.14 145.69 13 112.67 104.66 136.87
6 112.65 98.11 145.69 14 106.20 121.14 126.42
7 106.20 121.14 136.43 15 103.74 121.14 136.43
8 83.57 102.87 144.35 16 106.20 100.47 135.91

Source: David H. Holben, Ph.D. and John P. Holcomb, Ph.D. Used with permission.

8.4.4 Linke et al. (A-19) studied seven male mongrel dogs. They induced diabetes by injecting the ani-
mals with alloxan monohydrate. The researchers measured the arterial glucose (mg/gl), arterial
lactate (mmol/L), arterial free fatty acid concentration, and arterial 3-hydroxybutyric acid concen-
tration prior to the alloxan injection, and again in weeks 1, 2, 3, and 4 post-injection. What is the
response variable(s)? Comment on carryover effect and position effect as they may or may not be
of concern in this study. Construct an ANOVA table for this study in which you identify the sources
of variability and specify the degrees of freedom for each.

8.4.5 Werther et al. (A-20) examined the vascular endothelial growth factor (VEGF) concentration in
blood from colon cancer patients. Research suggests that inhibiting VEGF may disrupt tumor
growth. The researchers measured VEGF concentration (ng/L) for 10 subjects and found an
upward trend in VEGF concentrations during the clotting time measured at baseline, and hours
1 and 2. What is the response variable? What is the treatment variable? Construct an ANOVA
table for this study in which you identify the sources of variability and specify the degrees of
freedom for each.

8.5 THE FACTORIAL EXPERIMENT

In the experimental designs that we have considered up to this point, we have been
interested in the effects of only one variable—the treatments. Frequently, however, we
may be interested in studying, simultaneously, the effects of two or more variables.
We refer to the variables in which we are interested as factors. The experiment
in which two or more factors are investigated simultaneously is called a factorial
experiment.

The different designated categories of the factors are called levels. Suppose, for
example, that we are studying the effect on reaction time of three dosages of some drug.
The drug factor, then, is said to occur at three levels. Suppose the second factor of inter-
est in the study is age, and it is thought that two age groups, under 65 years and 65 years
and older, should be included. We then have two levels of the age factor. In general, we
say that factor A occurs at a levels and factor B occurs at b levels.

In a factorial experiment we may study not only the effects of individual factors
but also, if the experiment is properly conducted, the interaction between factors. To
illustrate the concept of interaction let us consider the following example.
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EXAMPLE 8.5.1

Suppose, in terms of effect on reaction time, that the true relationship between three dosage
levels of some drug and the age of human subjects taking the drug is known. Suppose fur-
ther that age occurs at two levels—"“young” (under 65) and “old” (65 and older). If the
true relationship between the two factors is known, we will know, for the three dosage lev-
els, the mean effect on reaction time of subjects in the two age groups. Let us assume that
effect is measured in terms of reduction in reaction time to some stimulus. Suppose these
means are as shown in Table 8.5.1.
The following important features of the data in Table 8.5.1 should be noted.

1. For both levels of factor A the difference between the means for any two levels of
factor B is the same. That is, for both levels of factor A, the difference between means
for levels 1 and 2 is 5, for levels 2 and 3 the difference is 10, and for levels 1 and 3
the difference is 15.

2. For all levels of factor B the difference between means for the two levels of factor A
is the same. In the present case the difference is 5 at all three levels of factor B.

3. A third characteristic is revealed when the data are plotted as in Figure 8.5.1. We note
that the curves corresponding to the different levels of a factor are all parallel.

When population data possess the three characteristics listed above, we say that there is
no interaction present.

The presence of interaction between two factors can affect the characteristics of
the data in a variety of ways depending on the nature of the interaction. We illustrate

TABLE 8.5.1 Mean Reduction in Reaction Time
(milliseconds) of Subjects in Two Age Groups at Three
Drug Dosage Levels

Factor B—Drug Dosage

Factor A—Age j=1 j=2 j=3

Young (i = 1) M1 =5 miz =10 iz = 20

Old (I = 2) M21 = 10 Mo2 = 15 Mo3 = 25

Q ()

€ 30 Age £ 30— Drug dosage

= B = B )

_E 25 ap .g 25 / 3

B8 20 ay S 20

o | o L

E o E . / bz

510 g0 /. by

k3] — B® 5

-g | | | % | |

o 0 o 0

o by by b3 e a az
Drug dosage Age

FIGURE 8.5.1 Age and drug effects, no interaction present.
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TABLE 8.5.2 Data of Table 8.5.1 Altered to Show the
Effect of One Type of Interaction

Factor B—Drug Dosage

Factor A—Age j=1 j=2 j=3
Young (i = 1) H11 =5 pi2 = 10 M3 = 20
Old (i = 2) H21 = 15 M2 = 10 H23 =5
() ()
g 30 § 30
A
§ 251 9 § 25
S 20|~ a, S 20|~ Drug dosage
(o) (o)
S 15 S 15 by
£ £
c 10 c 10 - by
2 2
8 5 ap B 5[ ]
3 0 | | | 3 0 | |
& by by b3 & a az
Drug dosage Age

FIGURE 8.5.2 Age and drug effects, interaction present.

the effect of one type of interaction by altering the data of Table 8.5.1 as shown in
Table 8.5.2.
The important characteristics of the data in Table 8.5.2 are as follows.

1. The difference between means for any two levels of factor B is not the same for
both levels of factor A. We note in Table 8.5.2, for example, that the difference
between levels 1 and 2 of factor B is —5 for the young age group and +5 for the
old age group.

2. The difference between means for both levels of factor A is not the same at all levels
of factor B. The differences between factor A means are —10, 0, and 15 for levels 1,
2, and 3, respectively, of factor B.

3. The factor level curves are not parallel, as shown in Figure 8.5.2.
When population data exhibit the characteristics illustrated in Table 8.5.2 and Fig-
ure 8.5.2, we say that there is interaction between the two factors. We emphasize that

the kind of interaction illustrated by the present example is only one of many types of
interaction that may occur between two factors. [ |

In summary, then, we can say that there is interaction between two factors if a
change in one of the factors produces a change in response at one level of the other fac-
tor different from that produced at other levels of this factor.

Advantages The advantages of the factorial experiment include the following.

1. The interaction of the factors may be studied.

2. There is a saving of time and effort.
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In the factorial experiment all the observations may be used to study the effects of each
of the factors under investigation. The alternative, when two factors are being investigated,
would be to conduct two different experiments, one to study each of the two factors. If this
were done, some of the observations would yield information only on one of the factors, and
the remainder would yield information only on the other factor. To achieve the level of accu-
racy of the factorial experiment, more experimental units would be needed if the factors were
studied through two experiments. It is seen, then, that 1 two-factor experiment is more eco-
nomical than 2 one-factor experiments.

3. Because the various factors are combined in one experiment, the results have a
wider range of application.

The Two-Factor Completely Randomized Design A factorial
arrangement may be studied with either of the designs that have been discussed. We illus-
trate the analysis of a factorial experiment by means of a two-factor completely random-
ized design.

1. Data. The results from a two-factor completely randomized design may be pre-
sented in tabular form as shown in Table 8.5.3.

Here we have a levels of factor A, b levels of factor B, and n observations for
each combination of levels. Each of the ab combinations of levels of factor A with
levels of factor B is a treatment. In addition to the totals and means shown in Table
8.5.3, we note that the total and mean of the ijth cell are

n
;. = ;xijk and Xx; = T,

TABLE 8.5.3 Table of Sample Data from a Two-Factor Completely
Randomized Experiment

Factor B
Factor A 1 2 e b Totals Means
1 X111 X121 X1b1
Ta.. X1
X11n X12n X1bn
2 X211 X221 T X2p1
T,.. Xa. .
X21n X22n T X2bn
a Xa11 Xa21 Xab1
N Ta. . 7(6
Xaln Xa2n Xabn
Totals Ta. T, e Th. T..
Means X . X e Xbp. X .
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respectively. The subscript i runs from 1 to @ and j runs from 1 to b. The total num-
ber of observations is nab.

To show that Table 8.5.3 represents data from a completely randomized
design, we consider that each combination of factor levels is a treatment and that
we have n observations for each treatment. An alternative arrangement of the
data would be obtained by listing the observations of each treatment in a sepa-
rate column. Table 8.5.3 may also be used to display data from a two-factor
randomized block design if we consider the first observation in each cell as
belonging to block 1, the second observation in each cell as belonging to block
2, and so on to the nth observation in each cell, which may be considered as
belonging to block n.

Note the similarity of the data display for the factorial experiment as shown
in Table 8.5.3 to the randomized complete block data display of Table 8.3.1. The
factorial experiment, in order that the experimenter may test for interaction, requires
at least two observations per cell, whereas the randomized complete block design
requires only one observation per cell. We use two-way analysis of variance to ana-
lyze the data from a factorial experiment of the type presented here.

2. Assumptions. We assume a fixed-effects model and a two-factor completely ran-
domized design. For a discussion of other designs, consult the references at the
end of this chapter.

The Model The fixed-effects model for the two-factor completely randomized design
may be written as

x,-ijM-l-ai-l-Bj-i— (a,B)U-i— Eijk

(8.5.1)
i=1,2,...,a; j=12,...,b; k=1,2,....n

where x ;. is a typical observation, u is a constant, a represents an effect due to factor A, 8
represents an effect due to factor B, (a8) represents an effect due to the interaction of fac-
tors A and B, and € represents the experimental error.

Assumptions of the Model

a. The observations in each of the ab cells constitute a random independent sam-
ple of size n drawn from the population defined by the particular combination
of the levels of the two factors.

b. Each of the ab populations is normally distributed.
c. The populations all have the same variance.
3. Hypotheses. The following hypotheses may be tested:

a. Hya; = 0 i=1,2,...,a
Hp:notall o, =0
b. Hy: B; =0 j=12,...,b
Hy:notall B; =0
c. Hy (aB); =0 i=1,2,...,a;j=1,2,...,b

Hy: not all (aB); =0
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Before collecting data, the researchers may decide to test only one of the possible
hypotheses. In this case they select the hypothesis they wish to test, choose a signifi-
cance level «, and proceed in the familiar, straightforward fashion. This procedure is free
of the complications that arise if the researchers wish to test all three hypotheses.

When all three hypotheses are tested, the situation is complicated by the fact that
the three tests are not independent in the probability sense. If we let « be the signifi-
cance level associated with the test as a whole, and a’, «”, and a” the significance lev-
els associated with hypotheses 1, 2, and 3, respectively, we find

a<l-—(1-a)(1—-a")(1—-a") (8.5.2)

Ifa' =a”" =a” = .05 thena <1 — (.95)3, or o < .143. This means that the
probability of rejecting one or more of the three hypotheses is something less than .143
when a significance level of .05 has been chosen for the hypotheses and all are true.
To demonstrate the hypothesis testing procedure for each case, we perform all three
tests. The reader, however, should be aware of the problem involved in interpreting the
results.

4. Test statistic. The test statistic for each hypothesis set is V.R.

5. Distribution of test statistic. When H,, is true and the assumptions are met, each
of the test statistics is distributed as F.

6. Decision rule. Reject H, if the computed value of the test statistic is equal to or
greater than the critical value of F.

7. Calculation of test statistic. By an adaptation of the procedure used in partition-
ing the total sum of squares for the completely randomized design, it can be shown
that the total sum of squares under the present model can be partitioned into two
parts as follows:

b a n a b n

> (e~ 7 2 2 (T~ 5P 33 D e — %)’

i=1 j=1 k=1 i= 1 k= i=1 j=1 k=1

5]

(8.5.3)

or

SST = SSTr + SSE (8.5.4)

The sum of squares for treatments can be partitioned into three parts as follows:

a b n a b n
22 5= XY Y (F. — X
i=1 j=I k=1 i=1 j=I k=1
a b n
22D, —xL) (8.5.5)
i=1;=1 k=1
a b n
2 2 2@y —EL — X+ EL)

Il
<

Il
>~

I
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TABLE 8.5.4 Analysis of Variance Table for a Two-Factor Completely Randomized
Experiment (Fixed-Effects Model)

Source SS d.f. MS V.R.
A SSA a—1 MSA = SSA/(a— 1) MSA/MSE
B SSB b-1 MSB = SSB/(b — 1) MSB/MSE
AB SSAB (a—1)(b—-1) MSAB = SSAB/(a — 1)(b — 1) MSAB/MSE
Treatments SSTr ab— 1
Residual SSE ab(n — 1) MSE = SSE/ab(n — 1)
Total SST abn — 1

or

SSTr = SSA + SSB + SSAB

The ANOVA Table The results of the calculations for the fixed-effects model for
a two-factor completely randomized experiment may, in general, be displayed as shown
in Table 8.5.4.

8. Statistical decision. If the assumptions stated earlier hold true, and if each
hypothesis is true, it can be shown that each of the variance ratios shown in Table
8.5.4 follows an F distribution with the indicated degrees of freedom. We reject
H, if the computed V.R. values are equal to or greater than the corresponding crit-
ical values as determined by the degrees of freedom and the chosen significance
levels.

9. Conclusion. If we reject H,, we conclude that H, is true. If we fail to reject H,,
we conclude that H, may be true.

10. p value.

EXAMPLE 8.5.2

In a study of length of time spent on individual home visits by public health nurses,
data were reported on length of home visit, in minutes, by a sample of 80 nurses. A
record was made also of each nurse’s age and the type of illness of each patient vis-
ited. The researchers wished to obtain from their investigation answers to the follow-
ing questions:
1. Does the mean length of home visit differ among different age groups of nurses?
2. Does the type of patient affect the mean length of home visit?

3. Is there interaction between nurse’s age and type of patient?

Solution:

1. Data. The data on length of home visit that were obtained during the
study are shown in Table 8.5.5.
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TABLE 8.5.5 Length of Home Visit in Minutes by Public Health Nurses by
Nurse’s Age Group and Type of Patient

Factor B (Nurse’s Age Group) Levels

Factor A
(Type of Patient) 1 2 3 4
Levels (20 to 29) (30 to 39) (40 to 49) (50 and Over)
1 (Cardiac) 20 25 24 28
25 30 28 31
22 29 24 26
27 28 25 29
21 30 30 32
2 (Cancer) 30 30 39 40
45 29 42 45
30 31 36 50
35 30 42 45
36 30 40 60
3 (C.V.A) 31 32 41 42
30 35 45 50
40 30 40 40
35 40 40 55
30 30 35 45
4 (Tuberculosis) 20 23 24 29
21 25 25 30
20 28 30 28
20 30 26 27
19 31 23 30

2. Assumptions. To analyze these data, we assume a fixed-effects model
and a two-factor completely randomized design.

For our illustrative example we may test the following hypotheses subject
to the conditions mentioned above.

a.Ho:a1=a2=a3=a4=O HA:nOtaHai:O

b. Hy:B1=B,=B3=B4=0 Hya: not all B; =0

c. Hy: all (aB); =0 Hy: not all (aB); =0
Let a = .05

3. Test statistic. The test statistic for each hypothesis set is V.R.

4. Distribution of test statistic. When H,, is true and the assumptions are
met, each of the test statistics is distributed as F
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5. Decision rule. Reject H, if the computed value of the test statistic is
equal to or greater than the critical value of F. The critical values of F
for testing the three hypotheses of our illustrative example are 2.76,
2.76, and 2.04, respectively. Since denominator degrees of freedom
equal to 64 are not shown in Appendix Table G, 60 was used as the
denominator degrees of freedom.

6. Calculation of test statistic. We use MINITAB to perform the calcu-
lations. We put the measurements in Column 1, the row (factor A) codes
in Column 2, and the column (factor B) codes in Column 3. The result-
ing column contents are shown in Table 8.5.6. The MINITAB output is
shown in Figure 8.5.3.

TABLE 8.5.6 Column Contents for MINITAB Calculations,
Example 8.5.2

Row C1 C2 C3 Row C1 C2 C3
1 20 1 1 41 31 3 1
2 25 1 1 42 30 3 1
3 22 1 1 43 40 3 1
4 27 1 1 44 35 3 1
5 21 1 1 45 30 3 1
6 25 1 2 46 32 3 2
7 30 1 2 47 35 3 2
8 29 1 2 48 30 3 2
9 28 1 2 49 40 3 2

10 30 1 2 50 30 3 2

1 24 1 3 51 41 3 3

12 28 1 3 52 45 3 3

13 24 1 3 53 40 3 3

14 25 1 3 54 40 3 3

15 30 1 3 55 35 3 3

16 28 1 4 56 42 3 4

17 31 1 4 57 50 3 4

18 26 1 4 58 40 3 4

19 29 1 4 59 55 3 4

20 32 1 4 60 45 3 4

21 30 2 1 61 20 4 1

22 45 2 1 62 21 4 1

23 30 2 1 63 20 4 1

24 35 2 1 64 20 4 1

25 36 2 1 65 19 4 1

26 30 2 2 66 23 4 2

27 29 2 2 67 25 4 2

28 31 2 2 68 28 4 2

29 30 2 2 69 30 4 2

(Continued)
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Row C1 C2 C3 Row C1 C2 C3
30 30 2 2 70 31 4 2
31 39 2 3 71 24 4 3
32 42 2 3 72 25 4 3
33 36 2 3 73 30 4 3
34 42 2 3 74 26 4 3
35 40 2 3 75 23 4 3
36 40 2 4 76 29 4 4
37 45 2 4 77 30 4 4
38 50 2 4 78 28 4 4
39 45 2 4 79 27 4 4
40 60 2 4 80 30 4 4

7. Statistical decision. The variance ratios are V.R.(A) = 997.5/

14.7 = 67.86, V.R.(B) = 400.4/14.7 = 27.24, and V.R.(AB) = 67.6/
14.7 = 4.60. Since the three computed values of V.R. are all greater
than the corresponding critical values, we reject all three null
hypotheses.

. Conclusion. When Hy: a; = a, = a3 = oy is rejected, we conclude

that there are differences among the levels of A, that is, differences in
the average amount of time spent in home visits with different types of
patients. Similarly, when Hy: B; = 8, = B3 = [, is rejected, we con-
clude that there are differences among the levels of B, or differences in
the average amount of time spent on home visits among the different
nurses when grouped by age. When H: (a3); = 0 is rejected, we con-
clude that factors A and B interact; that is, different combinations of lev-
els of the two factors produce different effects.

9. p value. Since 67.86, 27.24, and 4.60 are all greater than the criti-

cal values of F g5 for the appropriate degrees of freedom, the p value
for each of the tests is less than .005. When the hypothesis of no
interaction is rejected, interest in the levels of factors A and B usu-
ally become subordinate to interest in the interaction effects. In other
words, we are more interested in learning what combinations of lev-
els are significantly different.

Figure 8.5.4 shows the SAS® output for the analysis of Example 8.5.2. |

We have treated only the case where the number of observations in each cell is the same.
When the number of observations per cell is not the same for every cell, the analysis
becomes more complex.

In such cases the design is said to be unbalanced. To analyze these designs with

MINITAB we use the general linear (GLM) procedure. Other software packages such as
SAS® also will accommodate unequal cell sizes.
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Dialog box: Session command:
Stat » ANOVA » Twoway MTB > TWOWAY Cl C2 C3;

SUBC > MEANS C2 C3.

Type CI in Response. Type C2 in Row factor and
check Display means. Type C3 in Column factor and
check Display means. Click OK.

Output:

Two-Way ANOVA: C1 versus C2, C3

Analysis of Variance for C1

Source DF SS MS F p
C2 3 2992.4 997.483 67.94 0.000
Cc3 3 1201.1 400.350 27.27 0.000
Interaction 9 608.5 67.606 4.60 0.000
Error 64 939.6 14.681

Total 79 5741.5

Individual 95% CI

Cc2 Mean e Fmmm Fomm o +
1 26.70 (————%—-—-)
2 38.25 (m———%——=)
3 38.30 (m———%——=)
4 25.45 (——==x——-)
———— fo—m fomm = +o—m +
24.00 28.00 32.00 36.00 40.00

Individual 95% CI

C3 Mean = @—--==== Fomm - Fo—m e +-———-
1 27.85 (——=—=%---)
2 29.80 (——=—=%---)
3 32.95 (——=—=%x---)
4 38.10 (——=—=x---)
28.00 31.50 35.00 38 58

FIGURE 8.5.3 MINITAB procedure and ANOVA table for Example 8.5.2.
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The SAS System

Analysis of Variance Procedure

Dependent Variable: TIME
Source DF Sum of Sqguares Mean Square F Value Pr > F
Model 15 4801.95000000 320.13000000 21.81 0.0001
Error 64 939.60000000 14.68125000
Corrected Total 79 5741.55000000
R-Square C.V. Root MSE TIME Mean
0.836351 11.90866 3.83161193 32.17500000
Source DF Anova SS Mean Square F Value Pr > F
FACTORB 3 1201.05000000 400.35000000 27.27 0.0001
FACTORA 3 2992.45000000 997.48333333 67.94 0.0001
FACTORB*FACTORA 9 608.450000000 67.60555556 4.60 0.0001
FIGURE 8.5.4 SAS® output for analysis of Example 8.5.2.
EXERCISES
For Exercises 8.5.1 to 8.5.4, perform the analysis of variance, test appropriate hypotheses at the
.05 level of significance, and determine the p value associated with each test.
8.5.1 Uryu et al. (A-21) studied the effect of three different doses of troglitazone (wM) on neuro cell

death. Cell death caused by stroke partially results from the accumulation of high concentrations
of glutamate. The researchers wanted to determine if different doses of troglitazone (1.3, 4.5, and
13.5 uM) and different ion forms (— and +) of LY294002, a PI3-kinase inhibitor, would give dif-
ferent levels of neuroprotection. Four rats were studied at each dose and ion level, and the meas-
ured variable is the percent of cell death as compared to glutamate. Therefore, a higher value
implies less neuroprotection. The results are in the table below.

Percent Compared to Troglitazone

Glutamate —LY294002 vs +1.Y294002 Dose (uM)
73.61 Negative 1.3
130.69 Negative 1.3
118.01 Negative 1.3
140.20 Negative 1.3

(Continued)
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Percent Compared to Troglitazone

Glutamate —LY294002 vs +1.Y294002 Dose (uM)
97.11 Positive 1.3
114.26 Positive 1.3
120.26 Positive 1.3
92.39 Positive 1.3
26.95 Negative 4.5
53.23 Negative 4.5
59.57 Negative 4.5
53.23 Negative 4.5
28.51 Positive 4.5
30.65 Positive 4.5
44.37 Positive 4.5
36.23 Positive 4.5
—8.83 Negative 13.5
25.14 Negative 13.5
20.16 Negative 13.5
34.65 Negative 13.5
—35.80 Positive 13.5
—7.93 Positive 13.5
—19.08 Positive 13.5
5.36 Positive 13.5

Source: Shigeko Uryu. Used with permission.
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Researchers at a trauma center wished to develop a program to help brain-damaged trauma vic-
tims regain an acceptable level of independence. An experiment involving 72 subjects with the
same degree of brain damage was conducted. The objective was to compare different combi-
nations of psychiatric treatment and physical therapy. Each subject was assigned to one of 24
different combinations of four types of psychiatric treatment and six physical therapy programs.
There were three subjects in each combination. The response variable is the number of months
elapsing between initiation of therapy and time at which the patient was able to function inde-
pendently. The results were as follows:

Physical Psychiatric Treatment

Therapy

Program A B (o D
11.0 9.4 12.5 13.2

I 9.6 9.6 11.5 13.2
10.8 9.6 10.5 135
10.5 10.8 10.5 15.0

I 11.5 10.5 11.8 14.6
12.0 10.5 11.5 14.0
12.0 115 11.8 12.8

I 11.5 11.5 11.8 13.7
11.8 12.3 12.3 13.1

(Continued)
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853

Physical Psychiatric Treatment

Therapy

Program A B C D
11.5 9.4 13.7 14.0

v 11.8 9.1 13.5 15.0
10.5 10.8 12.5 14.0
11.0 11.2 14.4 13.0

\Y% 11.2 11.8 14.2 14.2
10.0 10.2 13.5 13.7
11.2 10.8 11.5 11.8

VI 10.8 11.5 10.2 12.8
11.8 10.2 11.5 12.0

Can one conclude on the basis of these data that the different psychiatric treatment programs have
different effects? Can one conclude that the physical therapy programs differ in effectiveness? Can
one conclude that there is interaction between psychiatric treatment programs and physical ther-
apy programs? Let a = .05 for each test.

Exercises 8.5.3 and 8.5.4 are optional since they have unequal cell sizes. It is recommended that
the data for these be analyzed using SAS® or some other software package that will accept unequal
cell sizes.

Main et al. (A-22) state, “Primary headache is a very common condition and one that nurses
encounter in many different care settings. Yet there is a lack of evidence as to whether advice
given to sufferers is effective and what improvements may be expected in the conditions.” The
researchers assessed frequency of headaches at the beginning and end of the study for 19 sub-
jects in an intervention group (treatment 1) and 25 subjects in a control group (treatment 2).
Subjects in the intervention group received health education from a nurse, while the control
group did not receive education. In the 6 months between pre- and post-evaluation, the sub-
jects kept a headache diary. The following table gives as the response variable the difference
(pre —post) in frequency of headaches over the 6 months for two factors: (1) treatment with two
levels (intervention and control), and (2) migraine status with two levels (migraine sufferer and
nonmigraine sufferer).

Change in Change in
Frequency of Migraine Sufferer Frequency of Migraine Sufferer
Headaches (1 = No, 2 = Yes) Treatment Headaches (1 = No, 2 = Yes) Treatment
-2 1 1 -3 2 2
2 2 1 -6 2 2
33 1 1 11 1 2
-6 2 1 64 1 2
6 2 1 65 1 2
98 1 1 14 1 2
2 2 1 8 1 2
6 2 1 6 2 2

(Continued)
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Change in Change in
Frequency of Migraine Sufferer Frequency of Migraine Sufferer
Headaches (1 = No, 2 = Yes) Treatment Headaches (1 = No, 2 = Yes) Treatment
33 1 1 14 1 2
=17 2 1 —11 2 2
-1 2 1 53 1 2
-12 2 1 26 2 2
12 1 1 3 1 2
64 1 1 15 1 2
36 2 1 3 1 2
6 2 1 41 1 2
4 2 1 16 1 2
11 2 1 —4 2 2
0 2 1 —6 2 2
9 1 2
9 2 2
-3 2 2
9 2 2
3 1 2
4 2 2

Source: A. Main, H. Abu-Saad, R. Salt, 1. Vlachonikolis, and A. Dowson, “Management by Nurses of Primary
Headache: A Pilot Study,” Current Medical Research Opinion, 18 (2002), 471-478. Used with Permission.

8.54

Can one conclude on the basis of these data that there is a difference in the reduction of headache
frequency between the control and treatment groups? Can one conclude that there is a difference
in the reduction of headache frequency between migraine and non-migraine sufferers? Can one
conclude that there is interaction between treatments and migraine status? Let « = .05 for each
test.

The purpose of a study by Porcellini et al. (A-23) was to study the difference in CD4 cell response
in patients taking highly active antiretroviral therapy (HAART, treatment 1) and patients taking
HAART plus intermittent interleukin (IL-2, treatment 2). Another factor of interest was the HIV-
RNA plasma count at baseline of study. Subjects were classified as having fewer than 50 copies/ml
(plasma 1) or having 50 or more copies/ml (plasma 2). The outcome variable is the percent change
in CD4 T cell count from baseline to 12 months of treatment. Can one conclude that there is a dif-
ference in the percent change in CD4 T cell count between the two treatments? The results are shown
in the following table. Can one conclude that there is a difference in the percent change in CD4 T
cell count between those who have fewer than 50/ml plasma copies of HIV-RNA and those who do
not? Can one conclude that there is interaction between treatments and plasma levels? Let a = .05
for each test.

Percent Change in CD4 T Cell Treatment Plasma

—12.60 1 1

—14.60 2 1
28.10 2 1

(Continued)
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8.5.5

8.5.6

Percent Change in CD4 T Cell Treatment Plasma

77.30
—0.44
50.20
48.60
86.20
205.80
100.00
34.30
82.40
118.30

O S e S T S T p—
RN NN e

Source: Simona Porcellini, Guiliana Vallanti, Silvia Nozza, Guido Poli,
Adriano Lazzarin, Guiseppe Tabussi, and Antonio Grassia, “Improved
Thymopoietic Potential in Aviremic HIV Infected Individuals with HAART
by Intermittent IL-2 Administration,” AIDS, 17 (2003), 1621-1630.

Used with permission.

A study by Goérecka et al. (A-24) assessed the manner in which among middle-aged smokers the
diagnosis of airflow limitation (AL) combined with advice to stop smoking influences the smok-
ing cessation rate. Their concerns were whether having AL, whether the subject successfully quit
smoking, and whether interaction between AL and smoking status were significant factors in regard
to baseline variables and lung capacity variables at the end of the study. Some of the variables of
interest were previous years of smoking (pack years), age at which subject first began smoking,
forced expiratory volume in one second (FEV,), and forced vital capacity (FVC). There were 368
subjects in the study. What are the factors in this study? At how many levels does each occur?
Who are the subjects? What is (are) the response variable(s)? Can you think of any extraneous
variables whose effects are included in the error term?

A study by Meltzer et al. (A-25) examined the response to 5 mg desloratadine, an H1-receptor
antagonist, in patients with seasonal allergies. During the fall allergy season, 172 subjects were
randomly assigned to receive treatments of desloratadine and 172 were randomly assigned to
receive a placebo. Subjects took the medication for 2 weeks after which changes in the nasal symp-
tom score were calculated. A significant reduction was noticed in the treatment group compared
to the placebo group, but gender was not a significant factor. What are the factors in the study?
At how many levels does each occur? What is the response variable?

8.6 SUMMARY

The purpose of this chapter is to introduce the student to the basic ideas and techniques
of analysis of variance. Two experimental designs, the completely randomized and the
randomized complete block, are discussed in considerable detail. In addition, the con-
cept of repeated measures designs and a factorial experiment as used with the completely
randomized design are introduced. Individuals who wish to pursue further any aspect of
analysis of variance will find the methodology references at the end of the chapter most
helpful.
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Formula

Number Name Formula

8.2.1 One-way ANOVA Xj=p+1t+eg;
model

8.2.2 Total sum-of-squares L

SST = D > (x; — x.)*
j=1i=1

8.2.3 Within-group k n .,
sum-of-squares SSW = 2 l(xu X.J)

j=li=

8.2.4 Among-group k )
sum-of-squares SSA = znj(x j X))

=

8.2.5 Within-group koo .
variance 21 l(x:/ X))

py

MSW ="
2 (n = 1)

=1

8.2.6 Argong-group o =n a%
variance |

8.2.7 Among-group L _
variance II "_2 (x,—x )?
(equal sample sizes) MSA = - -

(k—1)

8.2.8 Among-group koo .,
variance III (unequal 2 ni(x,; —x.)
sample sizes) MSA = !

(k—1)

8.2.9 Tukey’s HSD MSE
(equal sample sizes) HSD = qu Nk n

8.2.10 Tukey’s HSD MSE/ 1 1
(unequal sample HSD* = qupnsA|—\ — + —

. n n; nj
sizes)

8.3.1 Two-way ANOVA Xj=p+ B +7+e€
model

8.3.2 Sum-of-squares SST = SSBI1 + SSTr + SSE
representation

(Continued)
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8.3.3 Sum-of-squares total k n
SST = D> (x; —x.)°
j=1i=1
8.34 Sum-of-squares block k. n
SSBI = > > (%, — x.)*
j=1i=1
8.3.5 Sum-of-squares koo .,
treatments SSTr = 21 L(X i X )
j=1i=
8.3.6 Sum-of-squares error SSE = SST — SSB1 — SSTr
8.4.1 Fixed-effects, additive xj=p+ B +7+e€;
single-factor,
repeated-measures
ANOVA model
8.5.1 Two-factor completely | X = u + a; + B; + (aB); + €
randomized fixed-
effects factorial model
852 Probabilistic a<l—-(1-a)(l-a")(1—-a")
representation of «
853 Sum-of-squares a b n B a b on B
total I 2 (e —X..) = 2 (x4 — %)
i=1j=1k=1 i=1j=1k=1
a b n
+ > > > (e — Xy
i=1j=1k=1
8.54 Sum-of-squares SST = SSTr + SSE
total II
8.5.5 Sum-of-squares a b n a b n
- N2 = -2
treatment partition ) 2 (X —x.) = 2 (xXi.—x.)
i=1j=1k=1 i=1j=1k=1
a b n
DD, -
i=1j=1k=1
a b n
+ 2 D X, — X+ X))
i=1j=1k=1
Symbol Key * « = probability of type I error
* «; = treatment A effect
* B, = treatment B effect
e f3; = block effect
* (aB); = interaction effect
* €; = error term
e HSD = honestly significant difference
* k = number of treatments
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* u = mean of population (or the grand mean)
* n = number of blocks
* n, = sample size
+ ¢? = variance
e SSX = sum-of-squares (where X: A = among,
Bl = block, T = total, Tr = treatment, W = within)
e T1; = treatment effect
* X, = measurement
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Define analysis of variance.

Describe the completely randomized design.

Describe the randomized block design.

Describe the repeated measures design.

Describe the factorial experiment as used in the completely randomized design.
What is the purpose of Tukey’s HSD test?

What is an experimental unit?

What is the objective of the randomized complete block design?
What is interaction?

What is a mean square?

What is an ANOVA table?

For each of the following designs describe a situation in your particular field of interest where the
design would be an appropriate experimental design. Use real or realistic data and do the appro-
priate analysis of variance for each one:

(a) Completely randomized design

(b) Randomized complete block design

(¢) Completely randomized design with a factorial experiment

(d) Repeated measures designs

Werther et al. (A-26) examined the B-leucocyte count (X10%L) in 51 subjects with colorectal can-
cer and 19 healthy controls. The cancer patients were also classified into Dukes’s classification (A,
B, C) for colorectal cancer that gives doctors a guide to the risk, following surgery, of the cancer
coming back or spreading to other parts of the body. An additional category (D) identified patients
with disease that had not been completely resected. The results are displayed in the following table.
Perform an analysis of these data in which you identify the sources of variability and specify the
degrees of freedom for each. Do these data provide sufficient evidence to indicate that, on the aver-
age, leucocyte counts differ among the five categories? Let « = .01 and find the p value. Use
Tukey’s procedure to test for significant differences between individual pairs of sample means.
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14.

Healthy A B C D
6.0 7.7 104 8.0 9.5
6.3 7.8 5.6 6.7 7.8
5.1 6.1 7.0 9.3 5.7
6.2 9.6 8.2 6.6 8.0

10.4 55 9.0 9.3 9.6
44 5.8 8.4 72 13.7
7.4 4.0 8.1 52 6.3
7.0 5.4 8.0 9.8 7.3
5.6 6.5 6.2 6.2
53 9.1 10.1
2.6 11.0 9.3
6.3 10.9 9.4
6.1 10.6 6.5
53 52 5.4
5.4 7.9 7.6
52 7.6 9.2
43 5.8
49 7.0
7.3
49
6.9
4.3
5.6
5.1

Source: Kim Werther, M.D., Ph.D. Used with permission.

In Example 8.4.1, we examined data from a study by Licciardone et al. (A-15) on osteopathic manip-
ulation as a treatment for chronic back pain. At the beginning of that study, there were actually 91
subjects randomly assigned to one of three treatments: osteopathic manipulative treatment (OMT),
sham manipulation (SHAM), or non-intervention (CONTROL). One important outcome variable was
the rating of back pain at the beginning of the study. The researchers wanted to know if the treat-
ment had essentially the same mean pain level at the start of the trial. The results are displayed in
the following table. The researchers used a visual analog scale from O to 10 cm where 10 indi-
cated “worst pain possible.” Can we conclude, on the basis of these data, that, on the average, pain
levels differ in the three treatment groups? Let a = .05 and find the p value. If warranted, use
Tukey’s procedure to test for differences between individual pairs of sample means.

CONTROL SHAM OMT

2.6 5.8 7.8 35
5.6 1.3 4.1 34
33 24 1.7 1.1
4.6 1.0 33 0.5
8.4 32 43 5.1
0.0 0.4 6.5 1.9
2.5 54 5.4 2.0
5.0 4.5 4.0 2.8

(Continued)
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CONTROL SHAM OMT
1.7 1.5 4.1 3.7
3.8 0.0 2.6 1.6
24 0.6 32 0.0
1.1 0.0 2.8 0.2
0.7 7.6 34 7.3
24 35 6.7 1.7
33 39 73 7.5
6.6 7.0 2.1 1.6
0.4 7.4 3.7 3.0
0.4 6.5 23 6.5
0.9 1.6 44 3.0
6.0 1.3 2.8 33
6.6 0.4 7.3
6.3 0.7 4.6
7.0 7.9 4.8
1.3 49

Source: J. C. Licciardone, D.O. Used with permission.

The goal of a study conducted by Meshack and Norman (A-27) was to evaluate the effects of weights
on postural hand tremor related to self-feeding in subjects with Parkinson’s disease (PD). Each of the
16 subjects had the tremor amplitude measured (in mm) under three conditions: holding a built-up
spoon (108 grams), holding a weighted spoon (248 grams), and holding the built-up spoon while wear-
ing a weighted wrist cuff (470 grams). The data are displayed in the following table.

Tremor Amplitude (mm)

Subject Built-Up Spoon Weighted Spoon Built-Up Spoon + Wrist Cuff
1 77 1.63 1.02
2 .78 .88 1.11
3 17 .14 .14
4 .30 27 .26
5 29 27 28
6 1.60 1.49 1.73
7 .38 .39 .37
8 24 24 24
9 17 17 .16

10 .38 29 27

11 .93 1.21 .90

12 .63 52 .66

13 49 73 .76

14 42 .60 .29

15 .19 21 21

16 .19 .20 .16

Source: Rubia P. Meshack and Kathleen E. Norman, “A Randomized Controlled Trial of the Effects of
Weights on Amplitude and Frequency of Postural Hand Tremor in People with Parkinson’s Disease,”
Clinical Rehabilitation, 16 (2003), 481-492.
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16.

Can one conclude on the basis of these data that the three experimental conditions, on the aver-
age, have different effects on tremor amplitude? Let & = .05. Determine the p value.

In a study of pulmonary effects on guinea pigs, Lacroix et al. (A-28) exposed 18 ovalbumin-
sensitized guinea pigs and 18 nonsensitized guinea pigs to regular air, benzaldehyde, and
acetaldehyde. At the end of exposure, the guinea pigs were anesthetized and allergic responses
were assessed in bronchoalveolar lavage (BAL). The following table shows the alveolar cell
count (X10%) by treatment group for the ovalbumin-sensitized and nonsensitized guinea

pigs.

Ovalbumin-Sensitized Treatment Alveolar Count X 10°
no acetaldehyde 49.90
no acetaldehyde 50.60
no acetaldehyde 50.35
no acetaldehyde 44.10
no acetaldehyde 36.30
no acetaldehyde 39.15
no air 24.15
no air 24.60
no air 22.55
no air 25.10
no air 22.65
no air 26.85
no benzaldehyde 31.10
no benzaldehyde 18.30
no benzaldehyde 19.35
no benzaldehyde 15.40
no benzaldehyde 27.10
no benzaldehyde 21.90
yes acetaldehyde 90.30
yes acetaldehyde 72.95
yes acetaldehyde 138.60
yes acetaldehyde 80.05
yes acetaldehyde 69.25
yes acetaldehyde 31.70
yes air 40.20
yes air 63.20
yes air 59.10
yes air 79.60
yes air 102.45
yes air 64.60
yes benzaldehyde 22.15
yes benzaldehyde 22.75
yes benzaldehyde 22.15
yes benzaldehyde 37.85
yes benzaldehyde 19.35
yes benzaldehyde 66.70

Source: G. Lacroix, Docteur en Toxicologie. Used with permission.
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Test for differences (a) between ovalbumin-sensitized and nonsensitized outcomes, (b) among the three
different exposures, and (c) interaction. Let o = .05 for all tests.

Watanabe et al. (A-29) studied 52 healthy middle-aged male workers. The researchers used the
Masstricht Vital Exhaustion Questionnaire to assess vital exhaustion. Based on the resultant scores,
they assigned subjects into three groups: VE1, VE2, and VE3. VE1 indicates the fewest signs of
exhaustion, and VE3 indicates the most signs of exhaustion. The researchers also asked subjects
about their smoking habits. Smoking status was categorized as follows: SMOKEI1 are nonsmok-
ers, SMOKE2 are light smokers (20 cigarettes or fewer per day), SMOKE3 are heavy smokers
(more than 20 cigarettes per day). One of the outcome variables of interest was the amplitude of
the high-frequency spectral analysis of heart rate variability observed during an annual health
checkup. This variable, HF-amplitude, was used as an index of parasympathetic nervous function.
The data are summarized in the following table:

HF-Amplitude
Smoking Status
Vital Exhaustion
Group SMOKEI1 SMOKE2 SMOKE3
VE1 23.33 13.37 16.14 16.83
31.82 9.76 20.80 29.40
10.61 22.24 15.44 6.50
42.59 8.77 13.73 10.18
23.15 20.28 13.86
17.29
VE2 20.69 11.67 44.92 2791
16.21 30.17 36.89
28.49 29.20 16.80
25.67 8.73 17.08
15.29 9.08 18.77
7.51 22.53 18.33
22.03 17.19
10.27
VE3 9.44 17.59 5.57
19.16 18.90 13.51
14.46 17.37
10.63
13.83

Source: Takemasa Watanabe, M.D., Ph.D. Used with permission.

Perform an analysis of variance on these data and test the three possible hypotheses. Let
o' = a" = a” = .05. Determine the p values.
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18.

19.

The effects of thermal pollution on Corbicula fluminea (Asiatic clams) at three different geograph-
ical locations were analyzed by John Brooker (A-30). Sample data on clam shell length, width,
and height are displayed in the following table. Determine if there is a significant difference in
mean length, height, or width (measured in mm) of the clam shell at the three different locations
by performing three analyses. What inferences can be made from your results? What are the
assumptions underlying your inferences? What are the target populations?

Location 1 Location 2 Location 3
Length  Width  Height | Length  Width  Height | Length  Width  Height
7.20 6.10 4.45 7.25 6.25 4.65 5.95 4.75 3.20
7.50 5.90 4.65 7.23 5.99 4.20 7.60 6.45 4.56
6.89 5.45 4.00 6.85 5.61 4.01 6.15 5.05 3.50
6.95 5.76 4.02 7.07 5.91 4.31 7.00 5.80 4.30
6.73 5.36 3.90 6.55 5.30 3.95 6.81 5.61 4.22
7.25 5.84 4.40 7.43 6.10 4.60 7.10 5.75 4.10
7.20 5.83 4.19 7.30 5.95 4.29 6.85 5.55 3.89
6.85 5.75 3.95 6.90 5.80 4.33 6.68 5.50 3.90
7.52 6.27 4.60 7.10 5.81 4.26 5.51 4.52 2.70
7.01 5.65 4.20 6.95 5.65 4.31 6.85 5.53 4.00
6.65 5.55 4.10 7.39 6.04 4.50 7.10 5.80 4.45
7.55 6.25 4.72 6.54 5.89 3.65 6.81 5.45 3.51
7.14 5.65 4.26 6.39 5.00 3.72 7.30 6.00 4.31
7.45 6.05 4.85 6.08 4.80 3.51 7.05 6.25 4.71
7.24 5.73 4.29 6.30 5.05 3.69 6.75 5.65 4.00
7.75 6.35 4.85 6.35 5.10 3.73 6.75 5.57 4.06
6.85 6.05 4.50 7.34 6.45 4.55 7.35 6.21 4.29
6.50 5.30 3.73 6.70 5.51 3.89 6.22 5.11 3.35
6.64 5.36 3.99 7.08 5.81 4.34 6.80 5.81 4.50
7.19 5.85 4.05 7.09 5.95 4.39 6.29 4.95 3.69
7.15 6.30 4.55 7.40 6.25 4.85 7.55 5.93 4.55
7.21 6.12 4.37 6.00 4.75 3.37 7.45 6.19 4.70
7.15 6.20 4.36 6.94 5.63 4.09 6.70 5.55 4.00
7.30 6.15 4.65 7.51 6.20 4.74
6.35 5.25 3.75 6.95 5.69 4.29
7.50 6.20 4.65

Source: John Brooker, M.S. and the Wright State University Statistical Consulting Center. Used with
permission.

Eleftherios Kellis (A-31) conducted an experiment on 18 pubertal males. He recorded the elec-
tromyographic (EMG) activity at nine different angular positions of the biceps femoris muscle.
The EMG values are expressed as a percent (0—100 percent) of the maximal effort exerted with
the muscle and represent an average in a range of flexion angles. The nine positions correspond
to testing knee flexion angles of 1-10°, 11-20°, 21-30°, 31-40°, 41-50°, 51-60°, 61-70°,
71-80°, and 81-90°. The results are displayed in the following table. For subject 1, for exam-
ple, the value of 30.96 percent represents the average maximal percent of effort in angular posi-
tions from 1 to 10 degrees.
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Subject  1-10°  11-20°  21-30°  31-40°  41-50°  51-60°  61-70°  71-80°  81-90°
1 3096 11.32 434 5.99 8.43 10.50 4.49 10.93 33.26
2 3.61 1.47 3.50 10.25 3.30 3.62 10.14 11.05 8.78
3 8.46 2.94 1.83 5.80 11.59 15.17 13.04 10.57 8.22
4 0.69 1.06 1.39 1.08 0.96 252 2.90 327 5.52
5 4.40 3.02 3.74 3.83 3.73 10.16 9.31 12.70 1145
6 4.59 9.80 10.71 11.64 9.78 691 8.53 8.30 11.75
7 331 331 4.12 12.56 4.60 1.88 2.42 2.46 2.19
8 1.98 6.49 2.61 3.28 10.29 756 16.68 14.52 13.49
9 10.43 4.96 12.37 24.32 17.16 34.71 35.30 37.03 45.65

10 2091 2072 12.70 15.06 12.03 1131 28.47 26.81 25.08

11 5.59 3.13 2.83 431 6.37 13.95 13.48 11.15 30.97

12 8.67 432 2.29 6.20 13.01 19.30 9.33 12.30 12.20

13 2.11 1.59 2.40 2.56 2.83 2.55 5.84 5.23 8.84

14 3.82 5.04 6.81 10.74 10.10 13.14 19.39 13.31 12.02

15 3951 62.34 70.46 20.48 17.38 54.04 25.76 50.32 46.84

16 331 4.95 12.49 9.18 14.00 16.17 25.75 11.82 13.17

17 11.42 7.53 4.65 470 757 9.86 530 447 3.99

18 2.97 2.18 2.36 4.61 7.83 17.49 42.55 61.84 39.70

Source: Eleftherios Kellis, Ph.D. Used with permission.

20.

21.

Can we conclude on the basis of these data that the average EMG values differ among the nine
angular locations? Let a = .05.

In a study of Marfan syndrome, Pyeritz et al. (A-32) reported the following severity scores of
patients with no, mild, and marked dural ectasia. May we conclude, on the basis of these data,
that mean severity scores differ among the three populations represented in the study? Let a = .05
and find the p value. Use Tukey’s procedure to test for significant differences among individual
pairs of sample means.

No dural ectasia: 18, 18, 20, 21, 23, 23, 24, 26, 26, 27, 28, 29, 29, 29, 30, 30, 30,
30, 32, 34, 34, 38

Mild dural ectasia: 10, 16, 22, 22, 23, 26, 28, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33,
38, 39, 40, 47

Marked dural ectasia: 17, 24, 26, 27, 29, 30, 30, 33, 34, 35, 35, 36, 39

Source: Reed E. Pyeritz, M.D., Ph.D. Used with permission.

The following table shows the arterial plasma epinephrine concentrations (nanograms per milli-
liter) found in 10 laboratory animals during three types of anesthesia:

Animal
Anesthesia 1 2 3 4 5 6 7 8 9 10
A 28 .50 .68 27 31 .99 .26 .35 .38 .34
B .20 .38 .50 29 .38 .62 42 .87 37 43
C 1.23 1.34 .55 1.06 48 .68 1.12 1.52 27 35

Can we conclude from these data that the three types of anesthesia, on the average, have differ-
ent effects? Let o = .05.
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22. The aim of a study by Hartman-Maeir et al. (A-33) was to evaluate the awareness of deficit profiles
among stroke patients undergoing rehabilitation. She studied 35 patients with a stroke lesion in the
right hemisphere and 19 patients with a lesion on the left hemisphere. She also grouped lesion size as

23.

One of the outcome variables was a measure of each patient’s total unawareness of their own limi-

2 =1-3cm,3 = 3-5cm, and 4 = 5 cm or greater.

tations. Scores ranged from 8 to 24, with higher scores indicating more unawareness.

Unawareness Score

Lesion Size Left

Group Hemisphere Right Hemisphere
2 11 10 8
13 11 10
10 13 9
11 10 9
9 13 9

10 10

9 10

8 9

10 8
3 13 11 10
8 10 11
10 10 12
10 14 11

10 8
4 11 10 11
13 13 9
14 10 19
13 10 10
14 15 9
8 10

Source: Adina Hartman-Maeir, Ph.D.,
O.T.R. Used with permission.

Test for a difference in lesion size, hemisphere, and interaction. Let @ = .05 for all tests.

A random sample of the records of single births was selected from each of four populations. The

weights (grams) of the babies at birth were as follows:

Sample
A B C D
2946 3186 2300 2286
2913 2857 2903 2938
2280 3099 2572 2952
3685 2761 2584 2348
2310 3290 2675 2691

(Continued)
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Sample
A B C D
2582 2937 2571 2858
3002 3347 2414
2408 2008
2850
2762
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Do these data provide sufficient evidence to indicate, at the .05 level of significance, that the four
populations differ with respect to mean birth weight? Test for a significant difference between all
possible pairs of means.

The following table shows the aggression scores of 30 laboratory animals reared under three dif-
ferent conditions. One animal from each of 10 litters was randomly assigned to each of the three

rearing conditions.

Rearing Condition

Extremely Moderately Not
Litter Crowded Crowded Crowded
1 30 20 10
2 30 10 20
3 30 20 10
4 25 15 10
5 35 25 20
6 30 20 10
7 20 20 10
8 30 30 10
9 25 25 10
10 30 20 20

Do these data provide sufficient evidence to indicate that level of crowding has an effect on aggres-

sion? Let a = .05.

The following table shows the vital capacity measurements of 60 adult males classified by occu-
pation and age group:

Occupation

Age

Group A B C D

1 431 4.68 4.17 5.75
4.89 6.18 3.77 5.70
4.05 4.48 5.20 5.53
4.44 4.23 5.28 5.97
4.59 5.92 4.44 5.52

(Continued)
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Occupation
Age
Group A B C D
2 4.13 341 3.89 4.58
4.61 3.64 3.64 5.21
391 3.32 4.18 5.50
4.52 3.51 4.48 5.18
4.43 3.75 4.27 4.15
3 3.79 4.63 5.81 6.89

4.17 4.59 5.20 6.18
4.47 4.90 5.34 6.21
4.35 5.31 5.94 7.56
3.59 4.81 5.56 6.73

Test for differences among occupations, for differences among age groups, and for interaction. Let
a = .05 for all tests.

26. Complete the following ANOVA table and state which design was used.

Source SS df. MS V.R. p
Treatments 1549199 4

Error

Total 200.4773 39

27. Complete the following ANOVA table and state which design was used.

Source SS df. MS V.R. )4
Treatments 3

Blocks 183.5 3

Error 26.0

Total 709.0 15

28. Consider the following ANOVA table.

Source SS df. MS V.R. p

A 12.3152 2 6.15759 29.4021 <.005
B 19.7844 3 6.59481 31.4898 <.005
AB 8.94165 6 1.49027 7.11596 <.005
Treatments 41.0413 11

Error 10.0525 48 0.209427

Total 51.0938 59
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(a) What sort of analysis was employed?
(b) What can one conclude from the analysis? Let a = .05.

Consider the following ANOVA table.

Source SS d.f. MS V.R.
Treatments 5.05835 2 2.52917 1.0438
Error 65.42090 27 2.4230

(a) What design was employed?

(b) How many treatments were compared?

(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that there is a difference among treatments?
Why?

Consider the following ANOVA table.

Source SS df. MS V.R.
Treatments 231.5054 2 115.7527 2.824
Blocks 98.5000 7 14.0714
Error 573.7500 14 40.9821

(a) What design was employed?
(b) How many treatments were compared?
(c) How many observations were analyzed?

(d) At the .05 level of significance, can one conclude that the treatments have different effects?
Why?

In a study of the relationship between smoking and serum concentrations of high-density lipopro-
tein cholesterol (HDL-C), the following data (coded for ease of calculation) were collected from
samples of adult males who were nonsmokers, light smokers, moderate smokers, and heavy
smokers. We wish to know if these data provide sufficient evidence to indicate that the four pop-
ulations differ with respect to mean serum concentration of HDL-C. Let the probability of com-
mitting a type I error be .05. If an overall significant difference is found, determine which pairs
of individual sample means are significantly different.

Smoking Status

Nonsmokers Light Moderate Heavy

12 9 5 3
10 8 4 2
11 5 7 1
13 9 9 5
9 9 5 4
9 10 7 6
12 8 6 2
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32. Polyzogopoulou et al. (A-34) report the effects of bariatric surgery on fasting glucose levels
(mmol/L) on 12 obese subjects with type 2 diabetes at four points in time: pre-operation, at 3
months, 6 months, and 12 months. Can we conclude, after eliminating subject effects, that fasting
glucose levels differ over time after surgery? Let o = .05.

Subject No. Pre-op 3 Months 6 Months 12 Months
1 108.0 200.0 94.3 92.0
2 96.7 119.0 84.0 93.0
3 77.0 130.0 76.0 74.0
4 92.0 181.0 82.5 80.5
5 97.0 134.0 81.0 76.0
6 94.0 163.0 96.0 71.0
7 76.0 125.0 74.0 75.5
8 100.0 189.0 97.0 88.5
9 82.0 282.0 91.0 93.0

10 103.5 226.0 86.0 80.5

11 85.5 145.0 83.5 83.0

12 74.5 156.0 71.0 87.0

Source: Theodore K. Alexandrides, M.D. Used with permission.

33. Refer to Review Exercise 32. In addition to studying the 12 type 2 diabetes subjects (group 1),
Polyzogopoulou et al. (A-34) studied five subjects with impaired glucose tolerance (group 2), and
eight subjects with normal glucose tolerance (group 3). The following data are the 12-month post-
surgery fasting glucose levels for the three groups.

Group

1.0 92.0
1.0 93.0
1.0 74.0
1.0 80.5
1.0 76.0
1.0 71.0
1.0 75.5
1.0 88.5
1.0 93.0
1.0 80.5
1.0 83.0
1.0 87.0
2.0 79.0
2.0 78.0
2.0 100.0
2.0 76.5
2.0 68.0
3.0 81.5
3.0 75.0
3.0 76.5

(Continued)
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38.
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Group

3.0 70.5
3.0 69.0
3.0 73.8
3.0 74.0
3.0 80.0

Source: Theodore K. Alexandrides,
M.D. Used with permission.

Can we conclude that there is a difference among the means of the three groups? If so, which
pairs of means differ? Let « = .05 for all tests.

For exercises 34 to 38 do the following:

(a) Indicate which technique studied in this chapter (the completely randomized design, the ran-
domized block design, the repeated measures design, or the factorial experiment) is appropriate.

(b) Identify the response variable and treatment variables.

(c) As appropriate, identify the factors and the number of levels of each, the blocking variables,
and the subjects.

(d) List any extraneous variables whose effects you think might be included in the error term.
(e) As appropriate, comment on carry-over and position effects.

(f) Construct an ANOVA table in which you indicate the sources of variability and the number
of degrees of freedom for each.

Johnston and Bowling (A-35) studied the ascorbic acid content (vitamin C) in several orange juice
products. One of the products examined was ready-to-drink juice packaged in a re-sealable, screw-
top container. One analysis analyzed the juice for reduced and oxidized vitamin C content at time
of purchase and reanalyzed three times weekly for 4 to 5 weeks.

A study by Pittini et al. (A-36) assessed the effectiveness of a simulator-based curriculum on 30
trainees learning the basic practice of amniocentesis. Pre- and post-training performance were eval-
uated with the same instrument. The outcome variable was the post-training score —pretraining
score. Trainees were grouped by years of postgraduate experience: PGY 0-2, PGY 3-5, Fellows,
and Faculty.

Anim-Nyame et al. (A-37) studied three sets of women in an effort to understand factors related
to pre-eclampsia. Enrolled in the study were 18 women with pre-eclampsia, 18 normal pregnant
women, and 18 nonpregnant female matched controls. Blood samples were obtained to measure
plasma levels of vascular endothelial growth factor, leptin, TNF-a plasma protein concentrations,
and full blood count.

In a study by Iwamoto et al. (A-38) 26 women were randomly assigned to the medication alfacal-
cidol for treatment of lumbar bone mineral density (BMD). BMD of the lumbar spine was meas-
ured at baseline and every year for 5 years.

Inoue et al. (A-39) studied donor cell type and genotype on the efficiency of mouse somatic cell
cloning. They performed a factorial experiment with two donor cell types (Sertoli cells or cumu-
lus) and six genotypes. Outcome variables were the cleavage rate and the birth rate of pups in each
treatment combination.



384 CHAPTER 8 ANALYSIS OF VARIANCE

For the studies described in Exercises 39 through 66, do the following:

(a) Perform a statistical analysis of the data (including hypothesis testing and confidence inter-
val construction) that you think would yield useful information for the researchers.

(b) Determine p values for each computed test statistic.
(c) State all assumptions that are necessary to validate your analysis.

(d) Describe the population(s) about which you think inferences based on your analysis would be
applicable.

39. Shirakami et al. (A-40) investigated the clinical significance of endothelin (ET), natriuretic peptides,
and the renin-angiotensin-aldosterone system in pediatric liver transplantation. Subjects were chil-
dren ages 6 months to 12 years undergoing living-related liver transplantation due to congenital
biliary atresia and severe liver cirrhosis. Among the data collected were the following serum total
bilirubin (mg/dl) levels after transplantation (h-hours, d—days):

Time After Reperfusion of Donor Liver
Liver Anhepatic
Preoperative Transection Phase 1h 2h 4h 8h 1d 2d 3d
6.2 1.2 0.9 0.8 1.1 1.5 2 14 1.6 1.3
17.6 11.9 9.3 35 3 6.1 9 6.3 6.4 6.2
13.2 10.2 7.9 53 4.9 33 3.6 2.8 1.9 1.9
3.9 33 3 29 2.3 1.4 1.2 0.8 0.8 0.9
20.8 19.4 * 9.4 8.4 6.8 7.1 3.7 3.8 32
1.8 1.8 1.6 1.4 1.4 1.1 1.9 0.7 0.8 0.7
8.6 6.5 4.8 3.1 2.1 1 1.3 1.5 1.6 32
134 12 10.1 5.8 5.6 4.5 4.1 3 3.1 3.6
16.8 13.9 8.3 3.7 3.7 22 2.1 1.9 3.1 4.1
204 17.8 17 10.8 9.3 8.9 7 2.8 3.8 4.8
25 21.5 13.8 7.6 7 5 11.5 12.3 10.1 114
9.2 6.3 6.8 53 4.8 0.2 4 4.2 3.7 35
8 6.5 6.4 4.1 3.8 3.8 35 3.1 2.9 2.8
2.9 3 4.1 34 34 3.7 4.2 33 2 1.9
21.3 17.3 13.6 9.2 7.9 7.9 9.8 8.6 4.7 55
25 25 24 20.1 19.3 18.6 23.6 25 144 20.6
233 237 15.7 13.2 11 9.6 9.3 7.2 6.3 6.3
17.5 16.2 144 12.6 12.7 11.5 10 7.8 55 49

*Missing observation.
Source: Dr. Gotaro Shirakami. Used with permission.

Note that there is a missing observation in the data set. You may handle this problem in at least
three ways.

(a) Omit the subject whose datum is missing, and analyze the data of the remaining 17 subjects.
(b) Use a computer package that automatically deals with missing data.

(¢) Analyze the data using a missing data procedure. For such a procedure, see Jerome L. Myers
and Arnold D. Well, Research Design and Statistical Analysis, Erlbaum Associates, Hillsdale, NJ,
1995, pp. 256-258.
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The purpose of a study by Sakakibara and Hayano (A-41) was to examine the effect of volun-
tarily slowed respiration on the cardiac parasympathetic response to a threat (the anticipation
of an electric shock). Subjects were 30 healthy college students whose mean age was 23 years
with a standard deviation of 1.5 years. An equal number of subjects were randomly assigned
to slow (six males, four females), fast (seven males, three females), and nonpaced (five males,
five females) breathing groups. Subjects in the slow- and fast-paced breathing groups regulated
their breathing rate to 8 and 30 cpm, respectively. The nonpaced group breathed spontaneously.
The following are the subjects’ scores on the State Anxiety Score of State-Trait Anxiety Inven-
tory after baseline and period of threat:

Slow Paced Fast Paced Nonpaced
Baseline Threat Baseline Threat Baseline Threat
39 59 37 49 36 51
44 47 40 42 34 71
48 51 39 48 50 37
50 61 47 57 49 53
34 48 45 49 38 52
54 69 43 44 39 56
34 43 32 45 66 67
38 52 27 54 39 49
44 48 44 44 45 65 Source: Dr. Masahito
39 65 41 61 42 57 Sakakibara. Used

with permission.

Takahashi et al. (A-42) investigated the correlation of magnetic resonance signal intensity with
spinal cord evoked potentials and spinal cord morphology after 5 hours of spinal cord compres-
sion in cats. Twenty-four adult cats were divided into four groups on the basis of a measure of
spinal cord function plus a control group that did not undergo spinal compression. Among the data
collected were the following compression ratio [(sagittal diameter/transverse diameter) X 100] val-
ues after 5 hours of compression:

Control 80.542986 Group III 36.923077

79.111111 31.304348
70.535714 53.333333
87.323944 55.276382
80.000000 40.725806
82.222222
Group IV 66.666667
Group [ 83.928571 29.565217
84.183673 12.096774
48.181818 34.274194
98.461538 24.000000
Group II 30.263158
34.865900
43.775100
82.439024 Source: Dr. Toshiaki Takahashi.

Used with permission.
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42,

43.

The objective of a study by Yamashita et al. (A-43) was to investigate whether pentoxifylline admin-
istered in the flush solution or during reperfusion would reduce ischemia-reperfusion lung injury in
preserved canine lung allografts. Three groups of animals were studied. Pentoxifylline was not admin-
istered to animals in group 1 (C), was administered only during the reperfusion period (P) to animals
in group 2, and was administered only in the flush solution to animals in group 3 (F). A total of 14
left lung allotransplantations were performed. The following are the aortic pressure readings for each

animal during the 6-hour assessment period:

0 60 120 180 240 300 360
Group min min min min min min min
C 85.0 100.0 120.0 80.0 72.0 75.0 *
C 85.0 82.0 80.0 80.0 85.0 80.0 80.0
C 100.0 75.0 85.0 98.0 85.0 80.0 82.0
C 57.0 57.0 57.0 30.0 * * *
C 57.0 75.0 52.0 56.0 65.0 95.0 75.0
P 112.0 67.0 73.0 90.0 71.0 70.0 66.0
P 92.0 70.0 90.0 80.0 75.0 80.0 *
P 105.0 62.0 73.0 75.0 70.0 55.0 50.0
P 80.0 73.0 50.0 35.0 * * *
F 70.0 95.0 105.0 115.0 110.0 105.0 100.0
F 60.0 63.0 140.0 135.0 125.0 130.0 120.0
F 67.0 65.0 75.0 75.0 80.0 80.0 80.0
F 115.0 107.0 90.0 103.0 110.0 112.0 95.0
F 90.0 99.0 102.0 110.0 117.0 118.0 103.0

*Missing observation.

Source: Dr. Motohiro Yamashita. Used with permission.

In a study investigating the relative bioavailability of beta-carotene (BC) and alpha-carotene (AC)
from different sources of carrots, Zhou et al. (A-44) used ferrets as experimental animals. Among
the data collected were the following concentrations of BC, AC, and AC/BC molar ratios in the
sera of 24 ferrets provided with different sources of carotenoids for 3 days in their drinking water:

BC AC AC/BC
(pmol/g)  (uwmol/z)  (mol/mol)

Unheated Juice

0.637 0.506 0.795
0.354 0.297 0.840
0.287 0.249 0.869
0.533 0.433 0.813
0.228 0.190 0.833
0.632 0.484 0.767

Heated Juice

0.303 0.266 0.878
0.194 0.180 0.927
(Continued)
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BC AC AC/BC
(umol/g)  (uwmol/z)  (mol/mol)

Heated Juice

0.293 0.253 0.864
0.276 0.238 0.859
0.226 0.207 0.915
0.395 0.333 0.843

Unheated Chromoplast

0.994 0.775 0.780
0.890 0.729 0.819
0.809 0.661 0.817
0.321 0.283 0.882
0.712 0.544 0.763
0.949 0.668 0.704

Heated Chromoplast

0.933 0.789 0.845
0.280 0.289 1.031
0.336 0.307 0916
0.678 0.568 0.837
0.714 0.676 0.947
0.757 0.653 0.862 Source: Dr. Jin-R. Zhou.

Used with permission.

44. Potteiger et al. (A-45) wished to determine if sodium citrate ingestion would improve cycling per-
formance and facilitate favorable metabolic conditions during the cycling ride. Subjects were eight
trained male competitive cyclists whose mean age was 25.4 years with a standard deviation of 6.5.
Each participant completed a 30-km cycling time trial under two conditions, following ingestion
of sodium citrate and following ingestion of a placebo. Blood samples were collected prior to treat-
ment ingestion (PRE-ING); prior to exercising (PRE-EX); during the cycling ride at completion
of 10, 20, and 30 km; and 15 minutes after cessation of exercise (POST-EX). The following are
the values of partial pressures of oxygen (P0,) and carbon dioxide (Pco,) for each subject, under
each condition, at each measurement time:

Po, (mm Hg)

Measurement Times

Subject Treatment® PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX

1 1 42.00 20.00 53.00 51.00 56.00 41.00
1 2 43.00 29.00 58.00 49.00 55.00 56.00
2 1 44.00 38.00 66.00 66.00 76.00 58.00
2 2 40.00 26.00 57.00 47.00 46.00 45.00

(Continued)
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Po, (mm Hg)

Measurement Times

Subject Treatment® PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX
3 1 37.00 22.00 59.00 58.00 56.00 52.00
3 2 36.00 30.00 52.00 65.00 65.00 36.00
4 1 34.00 21.00 65.00 62.00 62.00 59.00
4 2 46.00 36.00 65.00 72.00 72.00 66.00
5 1 36.00 24.00 41.00 43.00 50.00 46.00
5 2 41.00 25.00 52.00 60.00 67.00 54.00
6 1 28.00 31.00 52.00 60.00 53.00 46.00
6 2 34.00 21.00 57.00 58.00 57.00 41.00
7 1 39.00 28.00 72.00 69.00 65.00 72.00
7 2 40.00 27.00 64.00 61.00 57.00 60.00
8 1 49.00 27.00 67.00 61.00 51.00 49.00
8 2 27.00 22.00 56.00 64.00 49.00 34.00
Pco, (mm Hg)
Measurement Times
Subject Treatment® PRE-ING PRE-EX 10-km 20-km 30-km 15-POST-EX
1 1 31.70 30.20 28.20 29.80 28.20 30.10
1 2 24.60 24.40 34.40 35.20 30.90 34.00
2 1 27.10 35.90 31.30 35.40 34.10 42.00
2 2 21.70 37.90 31.90 39.90 45.10 48.00
3 1 37.40 49.60 39.90 39.70 39.80 42.80
3 2 38.40 42.10 40.90 37.70 37.70 45.60
4 1 36.60 45.50 34.80 33.90 34.00 40.50
4 2 39.20 40.20 31.90 32.30 33.70 45.90
5 1 33.70 39.50 32.90 30.50 28.50 37.20
5 2 31.50 37.30 32.40 31.90 30.20 31.70
6 1 35.00 41.00 38.70 37.10 35.80 40.00
6 2 27.20 36.10 34.70 36.30 34.10 40.60
7 1 28.00 36.50 30.70 34.60 34.30 38.60
7 2 28.40 31.30 48.10 43.70 35.10 34.70
8 1 22.90 28.40 25.70 28.20 32.30 34.80
8 2 41.40 41.80 29.50 29.90 31.30 39.00

%1 = Sodium citrate; 2 = placebe.

Source: Dr. Jeffrey A. Potteiger. Used with permission.

45.

Teitge et al. (A-46) describe a radiographic method to demonstrate patellar instability. The 90
subjects ranged in age from 13 to 52 years and were divided into the following four groups on
the basis of clinical findings regarding the nature of instability of the knee: normal (no symp-
toms or signs related to the knee), lateral, medial, and multidirectional instability. Among the
data collected were the following radiographic measurements of the congruence angle

(degrees):



46.

REVIEW QUESTIONS AND EXERCISES 389

Normal Lateral Medial Multidirectional
-8 4 12 -16 10 15
-16 18 -8 -25 -5 —-26
—-22 5 -8 20 -10 -8
—26 -6 —-20 -8 —-12 —12
-8 32 -5 8 —14 —40
12 30 —-10 —14 -20
-8 -10 —18 —16
12 28 —4 —34
—-20 6 —20 —14
-20 9 -20 -6
=5 10 —-20 —-35
10 20 —-22 —24
—4 -9 -15 -25
-2 —-10 —-10 10
-6 12 -5 —16
-7 0 -5 —30
0 35 -6 -30
-2 -1 -15
—15 5 -25
-5 22 —-10
22 —20

Source: Dr. Robert A. Teitge. Used with permission.

A study by Ikeda et al. (A-47) was designed to determine the dose of ipratropium bromide aerosol
that improves exercise performance using progressive cycle ergometry in patients with stable
chronic obstructive pulmonary disease. The mean age of the 20 male subjects was 69.2 years with
a standard deviation of 4.6 years. Among the data collected were the following maximum venti-
lation (VE,,,, L/min) values at maximum achieved exercise for different ipratropium bromide
dosage levels (ug):

Placebo 40 80 160 240

26 24 23 25 28
38 39 43 43 37
49 46 54 57 52
37 39 39 38 38
34 33 37 37 41
42 38 44 44 42
23 26 28 27 22
38 41 44 37 40
37 37 36 38 39
33 35 34 38 36
40 37 40 46 40
52 58 48 58 63
45 48 47 51 38

(Continued)
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47.

48.

Placebo 40 80 160 240

24 30 23 27 30
41 37 39 46 42
56 54 51 58 58
35 51 49 51 46
28 41 37 33 38
28 34 34 35 35
38 40 43 39 45

Source: Dr. Akihiko Ikeda. Used with
permission.

Pertovaara et al. (A-48) compared the effect of skin temperature on the critical threshold temper-
ature eliciting heat pain with the effect of skin temperature on the response latency to the first heat
pain sensation. Subjects were healthy adults between the ages of 23 and 54 years. Among the data
collected were the following latencies (seconds) to the first pain response induced by radiant heat
stimulation at three different skin temperatures:

Subject 25°C 30°C 35°C

1 6.4 4.5 3.6
2 8.1 5.7 6.3
3 9.4 6.8 32
4 6.75 4.6 39
5 10 6.2 6.2
6 4.5 4.2 34

Source: Dr. Antti Pertovaara. Used with
permission.

A study for the development and validation of a sensitive and specific method for quantifying total
activin-A concentrations has been reported on by Knight et al. (A-49). As part of the study they
collected the following peripheral serum concentrations of activin-A in human subjects of differ-
ing reproductive status: normal follicular phase (FP), normal luteal phase (LP), pregnant (PREG),
ovarian hyperstimulated for in vivo fertilization (HYP), postmenopausal (PM), and normal adult
males. Hint: Convert responses to logarithms before performing analysis.

FP LP PREG HYP PM Male

134.5 78.0 2674.0 253.1 793.1 196.7
159.2 130.4 945.6 294.3 385.1 190.6
133.2 128.3 5507.6 170.2 270.9 185.3
225.0 166.4 7796.5 219.8 640.3 335.4
146.4 115.2 5077.5 165.8 459.8 214.6
180.5 148.9 4541.9 159.0

Source: Dr. Philip G. Knight. Used with permission.
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The purpose of a study by Maheux et al. (A-50) was to evaluate the effect of labor on glucose
production and glucose utilization. Subjects were six normal pregnant women. Among the data
collected were the following glucose concentrations during four stages of labor: latent (A1) and
active (A2) phases of cervical dilatation, fetal expulsion (B), and placental expulsion (C).

Al A2 B C

3.60 4.40 5.30 6.20
353 3.70 4.10 3.80
4.02 4.80 5.40 5.27
4.90 5.33 6.30 6.20
4.06 4.65 6.10 6.90
3.97 5.20 4.90 4.60

Source: Dr. Pierre C. Maheux.
Used with permission.

Trachtman et al. (A-51) conducted studies (1) to assess the effect of recombinant human (rh) IGF-I on
chronic puromycin aminonucleoside (PAN) nephropathy and (2) to compare the results of thIGF-I ver-
sus thGH treatment in a model of focal segmental glomerulosclerosis. As part of the studies, male
Sprague-Dawley rats were divided into four groups: PAN (IA), PAN + rhIGF-I (IB), normal (IIA),
and normal + rhIGF-I (IIB). The animals yielded the following data on creatinine levels before (pre)
and after 4, 8, and 12 weeks of treatment:

Group
1A 1B IIA 1IB
Pre

44 44 44 35
44 44 44 44
44 44 44 44
53 44 44 35
44 44
44 53

4 Weeks
97 44 53 44
88 35 44 53
62 44 44 53
53 35 53 44
62 62
53 53

8 Weeks
53 53 62 44
53 53 53 62

(Continued)
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Group
1A 1B A 1B
8 Weeks

44 53 62 44

53 44 53 44

62 53

70 62

12 Weeks

88 79 53 53

70 79 62 62

53 79 53 53

70 62 62 53

88 79

88 70

Source: Dr. Howard Trachtman. Used with

permission.

51. Twelve healthy men, ages 22 through 35 years, yielded the following serum T; (nmol/L) levels at

0800 hours after 8 (day 1), 32 (day 2), and 56 (day 3) hours of fasting, respectively. Subjects were

participants in a study of fasting-induced alterations in pulsatile glycoprotein secretion conducted

by Samuels and Kramer (A-52).
Subject T; Day Subject T; Day Subject Ts Day Subject T; Day
1 88 1 2 115 1 3 119 1 4 164 1
1 73 2 2 77 2 3 93 4 120 2
1 59 3 2 75 3 3 65 3 4 86 3
Subject T; Day Subject T; Day Subject T; Day Subject T; Day
5 93 1 6 119 1 7 152 1 8 121 1
5 91 2 6 57 2 7 70 8 107 2
5 113 3 6 44 3 7 74 3 8 133 3
Subject T; Day Subject T; Day Subject T; Day Subject T; Day
9 108 1 10 124 1 11 102 1 12 131 1
9 93 2 10 97 2 11 56 12 83 2
9 75 3 10 74 3 11 58 3 12 66 3

Source: Dr. Mary H. Samuels. Used with permission.

52.

To determine the nature and extent to which neurobehavioral changes occur in association with the
toxicity resulting from exposure to excess dietary iron (Fe), Sobotka et al. (A-53) used weanling
male Sprague-Dawley rats as experimental subjects. The researchers randomly assigned the animals,
according to ranked body weights, to one of five diet groups differentiated on the basis of amount
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of Fe present: Control—35 (1), 350 (2), 3500 (3), 4 (iron deficient) (4), and 20,000 (5) ppm, respec-
tively. The following are the body weights of the animals (grams) at the end of 10 weeks.

Diet Weight Diet Weight Diet Weight
1 396 1 335 1 373
2 368 2 349 4 292
3 319 3 302 5 116
4 241 4 220 4 291
5 138 5 118 5 154
1 331 1 394 4 281
2 325 2 300 5 118
3 331 3 285 4 250
4 232 4 237 5 119
5 116 5 113 4 242
1 349 1 377 5 118
2 364 2 366 4 277
3 392 3 269 5 104
4 310 4 344 5 120
5 131 5 Dead 5 102
1 341 1 336

2 399 2 379

3 274 3 195

4 319 4 277

5 131 5 148

1 419 1 301

2 373 2 368

3 Dead 3 308

4 220 4 299

5 146 5 Dead

Source: Dr. Thomas J. Sobotka. Used with permission.

Hansen (A-54) notes that brain bilirubin concentrations are increased by hyperosmolality and
hypercarbia, and that previous studies have not addressed the question of whether increased brain
bilirubin under different conditions is due to effects on the entry into or clearance of bilirubin from
brain. In a study, he hypothesized that the kinetics of increased brain bilirubin concentration would
differ in respiratory acidosis (hypercarbia) and hyperosmolality. Forty-four young adult male
Sprague-Dawley rats were sacrificed at various time periods following infusion with bilirubin. The
following are the blood bilirubin levels (umol/L) of 11 animals just prior to sacrifice 60 minutes
after the start of bilirubin infusion:

Controls Hypercarbia Hyperosmolality
30 48 102

94 20 118

78 58 74

52 74

Source: Dr. Thor Willy Ruud Hansen. Used with permission.
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54. Johansson et al. (A-55) compared the effects of short-term treatments with growth hormone (GH)
and insulin-like growth factor I (IGF-I) on biochemical markers of bone metabolism in men with
idiopathic osteoporosis. Subjects ranged in age from 32 to 57 years. Among the data collected were
the following serum concentrations of IGF binding protein-3 at 0 and 7 days after first injection and
1, 4, 8, and 12 weeks after last injection with GH and IGF-1.

Patient 0 7 1 4 8 12
No. Treatment Day Days Week Weeks Weeks Weeks
1 GH 4507 4072 3036 2484 3540 3480
1 IGF-1 3480 3515 4003 3667 4263 4797
2 GH 2055 4095 2315 1840 2483 2354
2 IGF-1 2354 3570 3630 3666 2700 2782
3 GH 3178 3574 3196 2365 4136 3088
3 IGF-1 3088 3405 3309 3444 2357 3831
4 IGF-1 2905 2888 2797 3083 3376 3464
4 GH 3464 5874 2929 3903 3367 2938
5 GH 4142 4465 3967 4213 4321 4990
5 IGF-1 4990 4590 2989 4081 4806 4435
6 IGF-1 3504 3529 4093 4114 4445 3622
6 GH 3622 6800 6185 4247 4450 4199
7 IGF-1 5130 4784 4093 4852 4943 5390
7 GH 5390 5188 4788 4602 4926 5793
8 IGF-1 3074 2691 2614 3003 3145 3161
8 GH 3161 4942 3222 2699 3514 2963
9 GH 3228 5995 3315 2919 3235 4379
9 IGF-1 4379 3548 3339 2379 2783 3000
10 IGF-1 5838 5025 4137 5777 5659 5628
10 GH 5628 6152 4415 5251 3334 3910
11 GH 2304 4721 3700 3228 2440 2698
11 IGF-1 2698 2621 3072 2383 3075 2822

Source: Dr. Anna G. Johansson. Used with permission.

55. The objective of a study by Strijbos et al. (A-56) was to compare the results of a 12-week
hospital-based outpatient rehabilitation program (group 1) with those of a 12-week home-care reha-
bilitation program (group 2) in chronic obstructive pulmonary disease with moderate to severe air-
flow limitation. A control group (group 3) did not receive rehabilitation therapy. Among the data
collected were the following breathing frequency scores of subjects 18 months after rehabilitation:

Group Group
1 2 3 1 2 3
12 16 24 12 16 24
16 14 16 12 12 14
16 12 18 14 12 15
14 12 18 16 12 16

(Continued)
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Group Group
1 2 3 1 2 3
12 18 24 12 12 16
12 12 24 12 15 18
12 10 18 20 16

Source: Dr. Jaap H. Strijbos. Used with permission.
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Seven healthy males (mean age 27.4 years with a standard deviation of 4.4) participated in a study
by Lambert et al. (A-57), who measured intestinal absorption following oral ingestion and intestinal
perfusion of a fluid. As part of the study the researchers recorded the following percent changes
in plasma volume at six points during 85 minutes of cycle exercise in the drinking and infusion

experiments:
Subject 1 2 3
1 —8.4151514 —7.4902674 —8.02277330
2 —12.1966790 —5.1496679 —10.46486300
Drinking 3 —9.7418719 —5.9062747 —7.06516950
4 —15.0291920 —14.4165470 —16.61268200
5 —5.8845683 —5.8845683 —3.57781750
6 —9.7100000 —7.5700000 —3.52995560
7 —6.9787024 —6.5752716 —5.07020210
8 —13.5391010 —11.7186910 —10.77312900
9 —8.8259516 —8.9029745 —6.38160030
10 —4.2410016 —1.3448910 —2.49740390
Infusion 11 —10.7192870 —9.7651132 —11.12140900
12 —6.9487760 —2.9830660 1.77828157
13 —7.1160660 —5.4111706 —7.07086340
14 —7.0497788 —5.7725485 —5.18045500
Subject 4 5 6
1 —7.35202650 —7.89172340 —7.84726700
2 —8.40517240 —9.02789810 5.13333985
3 —4.19974130 —3.33795970 —5.65380700
Drinking 4 —15.36239700 —17.63314100 —14.43982000
5 —5.50433470 —5.12242600 —6.26313790
6 —4.22938570 —7.86923080 —7.51168220
7 —5.94416340 —5.21535350 —6.34285620

(Continued)
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57.

Subject 4 5 6

8 —11.64145400 —12.40814000 —8.26411320

9 —5.69396590 —6.38160030 —7.37350920

10 —1.01234570 —5.58572150 —2.81811090

Infusion 11 —12.13053100 —15.98360700 —12.64667500
12 2.28844839 2.59034233 1.56622058

13 —8.35430040 —10.60663700 —9.45689580

14 —7.92841880 —8.38462720 —8.44542770

Source: Dr. C. V. Gisolfi. Used with permission.

Roemer et al. (A-58) developed a self-report measure of generalized anxiety disorder (GAD) for
use with undergraduate populations. In reliability studies the undergraduate subjects completed the
GAD questionnaire (GAD-Q) as well as the Penn State Worry Questionnaire (PSWQ). The fol-
lowing are the PSWQ scores made by four groups of subjects determined by their GAD status:
GAD by questionnaire, Study II (group 1); non-GAD by questionnaire, Study II (group 2); GAD
by questionnaire, Study I (group 3); and clinical GAD (group 4).

Group
1 2 3 4
59.0 50.0 46.0 65.0 65.0
51.0 28.0 77.0 62.0 66.0
58.0 43.0 80.0 76.0 69.0
61.0 36.0 60.0 66.0 73.0
64.0 36.0 59.0 78.0 67.0
68.0 30.0 56.0 76.0 78.0
64.0 24.0 44.0 74.0 76.0
67.0 39.0 71.0 73.0 66.0
56.0 29.0 54.0 61.0 55.0
78.0 48.0 64.0 63.0 59.0
48.0 36.0 66.0 75.0 44.0
62.0 38.0 59.0 63.0 68.0
77.0 42.0 68.0 55.0 64.0
72.0 26.0 59.0 67.5 41.0
59.0 35.0 61.0 70.0 54.0
32.0 78.0 70.0 72.0
43.0 70.0 55.0 74.0
55.0 74.0 73.0 59.0
42.0 73.0 80.0 63.0
37.0 79.0 51.0
36.0 79.0 72.0
41.0 61.0 63.0
36.0 61.0 58.0
34.0 72.0 71.0

(Continued)
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Group
1 2 3

42.0 67.0
35.0 74.0
51.0 65.0
37.0 68.0
50.0 72.0
39.0 75.0

56.0

Source: Dr. T. D. Borkovec. Used with permission.

Noting that non-Hodgkin’s lymphomas (NHL) represent a heterogeneous group of diseases in
which prognosis is difficult to predict, Christiansen et al. (A-59) report on the prognostic aspects
of soluble intercellular adhesion molecule-1 (sSICAM-1) in NHL. Among the data collected were
the following serum sSICAM-1 (ng/ml) levels in four groups of subjects: healthy controls (C), high-
grade NHL (hNHL), low-grade NHL (INHL), and patients with hairy cell leukemia (HCL).

309
329
314
254
304
335
381
456
294
450
422
528
461
286
309
226
388
3717
310
261
350
405
319
289
310
227

hNHL
460 844 824
222 503 496
663 764 656
1235 1088 1038
500 470 1050
739 806 446
1847 482 1218
477 734 511
818 616 317
585 836 334
1837 1187 1026
362 581 534
671 381 292
375 699 782
543 1854 1136
352 769 476
443 510
359 571
383 1248
587 784
648 514
782 678
472 1264
506 618
663 1123
873 912

961
1097
1099

625

473

654

508

454

889

805

541

655

654
1859

619
1837

534

424

571

420

408

391

493
1162

460
1113

581
601
572
439
1135
590
404
382
692
484
438
787
71
478
602
802
568
665

HCL

382
975
663
429
1902
1842
314
430
645
637
712
581
860
448
735

(Continued)
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C hNHL INHL HCL
206 987 520 572
226 859 1867 653
309 1193 485 1340
382 1836 287 656
325 691 455
522

Source: Dr. Ilse Christiansen. Used with permission.

59. Cossette et al. (A-60) examined gender and kinship with regard to caregivers’ use of informal and
formal support and to two models of support. Among the data collected were the following ages
of three groups of caregivers of a demented relative living at home: husbands, wives, and adult

daughters.
Husband Wife Daughter

64 66 73 59 67 40 50
70 58 71 66 67 47 58
55 81 70 80 57 46 46
67 77 71 76 53 45 47
79 76 56 68 50 69 50
67 64 68 53 70 48 53
77 82 76 78 70 53 57
68 85 67 75 50 65
72 63 66 74 47 50
67 72 67 86 62 43
77 77 72 63 55 59
70 79 72 52 49 44
65 63 70 55 43 45
65 80 66 71 44 41
74 70 73 67 47 50
86 85 78 78 57 58
72 76 64 70 49 35
71 67 78 68 50
78 72 59 78 59
71 60 71 59 45
88 74 70 72 50
77 65 67 73 48
75 53 78 75 51
66 70 67 54 46
80 72 55 65 62
76 74 64 67 55
67 79 69 83 50
65 63 59 70 43
62 77 55 72 39
82 78 75 71 50

(Continued)
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Husband Wife Daughter
75 69 68 76 50
80 65 74 43
74 81 68 28
70 79 69
75 72

Source: Sylvie Cossette, M.Sc., R.N. Used with permission.

Tasaka et al. (A-61) note that Corynebacterium parvum (CP) increases susceptibility to endo-
toxin, which is associated with increased production of tumor necrosis factor (TNF). They inves-
tigated the effect of CP-priming on the pathogenesis of acute lung injury caused by intratracheal
Escherichia coli endotoxin (lipopolysaccharide [LPS]). Experimental animals consisted of
female guinea pigs divided into four groups. Animals in two groups received a 4-mg/kg treat-
ment of CP 7 days before the study. Subsequently, nonpretreated animals received either saline
alone (Control) or endotoxin (LPS-alone). The pretreated groups received either saline (CP-
alone) or LPS (CP + LPS). Among the data collected were the following values of lung tissue-
to-plasma ratio of radio-iodized serum albumin assay:

Control CP-alone LPS-alone CP + LPS
0.12503532 0.18191647 0.17669093 0.3651166

0.10862729 0.30887462 0.25344761 0.64062964
0.10552931 0.25011885 0.17372285 0.39208734
0.15587316 0.23858085 0.1786867 0.49942059
0.13672624 0.26558231 0.22209666 0.85718475
0.11290446 0.32298454 0.27064831 0.93030465

Source: Dr. Sadatomo Tasaka. Used with permission.

According to Takahashi et al. (A-62) research indicates that there is an association between alter-
ations in calcium metabolism and various bone diseases in patients with other disabilities. Using
subjects with severe mental retardation (mean age 16 years) who had been living in institutions
for most of their lives, Takahashi et al. examined the relationship between bone change and other
variables. Subjects were divided into groups on the basis of severity of bone change. Among the
data collected were the following serum alkaline phosphatase (IU/L) values:

Grade I: 109, 86, 79, 103, 47, 105, 188, 96, 249
Grade II: 86, 106, 164, 146, 111, 263, 162, 111

Grade III: 283, 201, 208, 301, 135, 192, 135, 83, 193, 175, 174, 193, 224,
192, 233

Source: Dr. Mitsugi Takahashi. Used with permission.

Research indicates that dietary copper deficiency reduces growth rate in rats. In a related study,
Allen (A-63) assigned weanling male Sprague-Dawley rats to one of three food groups: cop-
per-deficient (CuD), copper-adequate (CuA), and pair-fed (PF). Rats in the PF group were ini-
tially weight-matched to rats of the CuD group and then fed the same weight of the CuA diet
as that consumed by their CuD counterparts. After 20 weeks, the rats were anesthetized, blood
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samples were drawn, and organs were harvested. As part of the study the following data were

collected:
Body Heart Liver Kidney Spleen
Weight Weight Weight Weight Weight
Rat Diet BW)(g) (HW)(g) (LW)(g) (KW)(g) (SW)(@)
1 253.66 0.89 2.82 1.49 0.41
2 400.93 1.41 3.98 2.15 0.76
3 CuD 355.89 1.24 5.15 2.27 0.69
4 404.70 2.18 4.77 2.99 0.76
6 397.28 0.99 2.34 1.84 0.50
7 421.88 1.20 3.26 232 0.79
8 PF 386.87 0.88 3.05 1.86 0.84
9 401.74 1.02 2.80 2.06 0.76
10 437.56 1.22 3.94 2.25 0.75
11 490.56 1.21 4.51 2.30 0.78
12 528.51 1.34 4.38 2.75 0.76
13 CuA 485.51 1.36 4.40 2.46 0.82
14 509.50 1.27 4.67 2.50 0.79
15 489.62 1.31 5.83 2.74 0.81
HW/BW LW/BW KW/BW SW/BW Ceruloplasmin
Rat Diet (g/100 g) (g/100 g) (g/100 g) (g/100 g) (mg/dl)
1 0.00351 0.01112 0.00587 0.00162 nd
2 0.00352 0.00993 0.00536 0.00190 5.27
3 CuD 0.00348 0.01447 0.00638 0.00194 4.80
4 0.00539 0.01179 0.00739 0.00188 4.97
6 0.00249 0.00589 0.00463 0.00126 35.30
7 0.00284 0.00773 0.00550 0.00187 39.00
8 PF 0.00227 0.00788 0.00481 0.00217 28.00
9 0.00254 0.00697 0.00513 0.00189 34.20
10 0.00279 0.00900 0.00514 0.00171 45.20
11 0.00247 0.00919 0.00469 0.00159 34.60
12 0.00254 0.00829 0.00520 0.00144 39.00
13 CuA 0.00280 0.00906 0.00507 0.00169 37.10
14 0.00249 0.00917 0.00491 0.00155 33.40
15 0.00268 0.01191 0.00560 0.00165 37.30
nd, no data.

Source: Corrie B. Allen. Used with permission.

63. Hughes et al. (A-64) point out that systemic complications in acute pancreatitis are largely respon-
sible for mortality associated with the disease. They note further that proinflammatory cytokines, par-
ticularly TNFe, may play a central role in acute pancreatitis by mediating the systemic sequelae. In
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their research they used a bile-infusion model of acute pancreatitis to show amelioration of disease
severity as well as an improvement in overall survival by TNFa inhibition. Experimental material
consisted of adult male Sprague-Dawley rats weighing between 250 and 300 grams divided into three
groups: untreated (bile solution infused without treatment); treated (bile solution infused preceded by
treatment with polyclonal anti-TNFa antibody); and sham (saline infused). Among the data collected
were the following hematocrit (%) values for animals surviving more than 48 hours:

Sham Untreated Treated

38 56 40
40 60 42
32 50 38
36 50 46
40 50 36
40 35
38 40
40 40
38 55
40 35
36
40
40
35
45

Source: Dr. A. Osama Gaber. Used
with permission.

A study by Smdrason et al. (A-65) was motivated by the observations of other researchers that sera
from pre-eclamptic women damaged cultured human endothelial cells. Subjects for the present study
were women with pre-eclampsia, matched control women with normal pregnancies, and nonpreg-
nant women of childbearing age. Among the data collected were the following observations on a
relevant variable measured on subjects in the three groups.

Pre-Eclampsia  Pregnant Controls Nonpregnant Controls
113.5 91.4 94.5
106.6 95.6 115.9
39.1 113.1 107.2
95.5 100.8 103.2
435 88.2 104.7
49.2 92.2 94.9
99.5 78.6 93.0
102.9 96.9 100.4
101.2 91.6 107.1
104.9 108.6 105.5
75.4 77.3 119.3
71.1 100.0 88.2
73.9 61.7 82.2

(Continued)
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Pre-Eclampsia  Pregnant Controls Nonpregnant Controls
76.0 83.3 125.0
81.3 103.6 126.1
72.7 92.3 129.1
75.3 98.6 106.9
55.2 85.0 110.0
90.5 128.2 127.3
55.8 88.3 128.6

Source: Dr. Alexander Smarason. Used with permission.

The objective of a study by LeRoith et al. (A-66) was to evaluate the effect of a 7-week adminis-
tration of recombinant human GH (thGH) and recombinant human insulin-like growth factor
(rhIGF-I) separately and in combination on immune function in elderly female rhesus monkeys. The
assay for the in vivo function of the immune system relied on the response to an immunization with
tetanus toxoid. The following are the responses for the three treatment groups and a control group:

Saline rhIGF-I rhGH rhIGF-1 + rhGH

11.2 12.2 12.15 11.5

9.0 9.4 11.20 12.4

10.8 10.7 10.60 10.8

10.0 10.8 11.30 11.9
9.1 11.00 11.0
12.6

Source: Dr. Jack A. Yanowski. Used with permission.

Hampl et al. (A-67) note that inhaled nitric oxide (NO) is a selective pulmonary vasodilator. They
hypothesized that a nebulized diethylenetriamine/NO (DETA/NO) would stay in the lower air-
ways and continuously supply sufficient NO to achieve sustained vasodilation in chronic pulmonary
hypertension. Experimental material consisted of adult, male, specific pathogen-free Sprague-
Dawley rats randomly divided into four groups: untreated, pulmonary normotensive controls;
monocrotaline-injected (to induce hypertension) with no treatment (MCT); monocrotaline-injected
treated with either a 5-umol dose or a 50-umol dose of DETA/NO. Nineteen days after inducing
pulmonary hypertension in the two groups of rats, the researchers began the treatment procedure,
which lasted for 4 days. They collected, among other data, the following measurements on car-
diac output for the animals in the four groups:

MCT + DETA/NO

Control MCT 5 pmol 50 pmol
71.8 42.8 72.5 47.1
66.1 53.2 62.9 86.6
67.6 56.1 58.9 56.0
66.4 56.5 69.3

Source: Dr. Stephen L. Archer. Used with permission.
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Exercises for Use with Large Data Sets Available on the Following Website:
www.wiley.com/college/daniel

In Kreiter et al. (A-68) medical school exams were delivered via computer format. Because there
were not enough computer stations to test the entire class simultaneously, the exams were admin-
istered over 2 days. Both students and faculty wondered if students testing on day 2 might have
an advantage due to extra study time or a breach in test security. Thus, the researchers examined
a large medical class (n = 193) tested over 2 days with three 2-hour 80-item multiple-choice
exams. Students were assigned testing days via pseudorandom assignment. Of interest was whether
taking a particular exam on day 1 or day 2 had a significant impact on scores. Use the data set
MEDSCORES to determine if test, day, or interaction has significant impact on test scores. Let
a = .05.

Refer to the serum lipid-bound sialic acid data on 1400 subjects (LSADATA). We wish to con-
duct a study to determine if the measurement of serum lipid-bound sialic acid (LSA) might be
of use in the detection of breast cancer. The LSA measurements (mg/dl) are for four populations
of subjects: normal controls, A; patients with benign breast disease, B; patients with primary
breast cancer, C; and patients with recurrent metastatic breast cancer, D. Select a simple random
sample of size 10 from each population and perform an appropriate analysis to determine if we
may conclude that the four population means are different. Let @« = .05 and determine the p value.
Test all possible pairs of sample means for significance. What conclusions can one draw from
the analysis? Prepare a verbal report of the findings. Compare your results with those of your
classmates.

Refer to the serum angiotensin-converting enzyme data on 1600 subjects (SACEDATA). Sarcoido-
sis, found throughout the world, is a systemic granulomatous disease of unknown cause. The assay
of serum angiotensin-converting enzyme (SACE) is helpful in the diagnosis of active sarcoidosis.
The activity of SACE is usually increased in patients with the disease, while normal levels occur
in subjects who have not had the disease, those who have recovered, and patients with other gran-
ulomatous disorders. The data are the SACE values for four populations of subjects classified
according to status regarding sarcoidosis: never had, A; active, B; stable, C; recovered, D. Select
a simple random sample of 15 subjects from each population and perform an analysis to deter-
mine if you can conclude that the population means are different. Let @ = .05. Use Tukey’s test
to test for significant differences among individual pairs of means. Prepare a written report on your
findings. Compare your results with those of your classmates.

Refer to the urinary colony-stimulating factor data on 1500 subjects (CSFDATA). The data are the
urinary colony-stimulating factor (CSF) levels in five populations: normal subjects and subjects
with four different diseases. Each observation represents the mean colony count of four plates from
a single urine specimen from a given subject. Select a simple random sample of size 15 from each
of the five populations and perform an analysis of variance to determine if one may conclude that
the population means are different. Let @« = .05. Use Tukey’s HSD statistic to test for significant
differences among all possible pairs of sample means. Prepare a narrative report on the results of
your analysis. Compare your results with those of your classmates.

Refer to the red blood cell data on 1050 subjects (RBCDATA). Suppose that you are a statistical
consultant to a medical researcher who is interested in learning something about the relationship
between blood folate concentrations in adult females and the quality of their diet. The researcher
has available three populations of subjects: those whose diet quality is rated as good, those whose
diets are fair, and those with poor diets. For each subject there is also available her red blood cell
(RBC) folate value (in wg/liter of red cells). Draw a simple random sample of size 10 from each
population and determine whether the researcher can conclude that the three populations differ
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with respect to mean RBC folate value. Use Tukey’s test to make all possible comparisons. Let
a = .05 and find the p value for each test. Compare your results with those of your classmates.

Refer to the serum cholesterol data on 350 subjects under three diet regimens (SERUMCHO).
Three-hundred-fifty adult males between the ages of 30 and 65 participated in a study to inves-
tigate the relationship between the consumption of meat and serum cholesterol levels. Each sub-
ject ate beef as his only meat for a period of 20 weeks, pork as his only meat for another period
of 20 weeks, and chicken or fish as his only meat for another 20-week period. At the end of
each period serum cholesterol determinations (mg/100 ml) were made on each subject. Select
a simple random sample of 10 subjects from the population of 350. Use two-way analysis of
variance to determine whether one should conclude that there is a difference in population mean
serum cholesterol levels among the three diets. Let &« = .05. Compare your results with those
of your classmates.
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