

Gene Expression in Prokaryotes Presented by: Dr. Asma

Introduction

- Genetic expression is the process by which inheritable information from a gene, such as the DNA sequence, is made into a functional gene product, such as protein or RNA
- Non-protein coding genes (e.g. rRNA genes, tRNA genes) are transcribed, but not translated into protein

Prokaryotes

- Group of organisms lacking a cell nucleus or any other membrane-bound organelles.
- Differ from the eukaryotes, which have a cell nucleus
- Mode of division is binary fission
- Prokaryotes exhibit efficient genetic mechanisms to respond to environmental conditions

Rod-Shaped Bacterium, hemorrhagic *E. coli*, strain

Types of regulation in Gene Expression

Positive

- More gene product (Induction)
- Effect of activator/inducer

Negative

- Less gene product (Repression)
- Effect of repressor

Double Negative

- More gene product (Derepression)
- Effect of inhibitor upon repressor

Types of genes in Gene Expression

- Inducible gene
 - Regulated by inducer/activator
- Constitutive gene
 - Not subjected to regulation

Regulation of Prokaryotic Gene Expression

- Control at the level of transcription
- Induction the production of a specific enzyme/s in response to the presence of a substrate
- Repression the cessation of production of a specific enzyme/s in response to an increased level of a substrate

Operon Models

- An operon model is a self-regulating series of genes found on DNA that work in concert
- It includes a special segment of genes that are regulators of the protein synthesis, but do not code for protein, called the promoter and operator regions
- Lactose (Lac), Tryptophan (Trp), L-Arabinose (Ara)

Lac Operon Model

- Inducible system
- Three genes part of an operon that code for three separate enzymes
- Needed for the breakdown of lactose, a simple sugar

Components of Lac Operon

Lac Operon Gene	Gene function
Laci	Constitutive gene synthesizing repressor constantly
Lac Z	Gene for β-galactosidase subunit
LacY	Gene for Permease subunit
LacA	Gene for Thiogalactoside transacetylase subunit
Promoter or P	RNA polymerase binding & initiator of transcription
Operator or O	Repressor binding site

Trp Operon Gene	Gene function
P/O	Promoter; operator sequence is found in the promoter
Trp L	Leader sequence; attenuator (A) sequence is found in the leader
Trp E	Gene for anthranilate synthetase subunit
Trp D	Gene for anthranilate synthetase subunit
TrpC	Gene for glycerol-phosphate synthetase
Trp B	Gene for tryptophan synthetase subunit
TrpA	Gene for tryptophan synthetase subunit

Attenuation of Trp Operon Model

Copyright © 2008 Pearson Education, Inc.

Ara Operon Model

