

TYPES OF POLYMERASE CHAIN REACTION

Department of Zoology, Lahore College for Women University

What is PCR

- History
- Introduction
- Components
- Applications

How it works

Polymerase chain reaction - PCR

2 Annealing at ~68°C

3 Elongation at ca. 72 °C

Different types of PCR

- Quantitative PCR
- Multiplex PCR
- Nested-semi nested PCR
- Standard PCR
- RT-PCR
- Hot start PCR
- Asymmetric PCR
- Touchdown PCR
- Colony PCR
- COLD PCR
- Suicide PCR

Quantitative PCR

Fluorescent dye-based

- Real-Time PCR
- PCR with few improvements
- Types of qPCR
- Applications

DNA probe-based real-time PCR

Fluorescent based and probe based qPCR

Multiplex PCR

 More than one target sequence can be amplified

Types of Multiplex PCR

- Single template PCR
- Multiple Template PCR

Traditional versus Multiplex PCR

Primer design parameters

- Primer length
- Melting temperature
- Specificity
- Avoidance of primer-dimer formation

Advantages

- Internal controls
- Efficiency
- Indication of template quality
- Indication of template quantity

Application

Nested-semi nested PCR

- To reduce contamination in products
- Use of two sets of primers
- First set is an amplified sequence
- Second set is complementary to the first set

Standard PCR

- Simple efficient and sensitive technique
- Use of one pair of primers
- Helps in early diagnosis of Brucella
- Used to determine no of leukocytes
 DNA/heamo compounds

RT-PCR

- Measures RNA
 expression level
- Production
 of complementary
 DNA
- Use of Reverse transcriptase
- Applications

RT-PCR

Hot Start PCR

- Allows reaction setup at room temperature
- Without non-specific amplification and dimer formation

Method

- Physical separation
- DNA polymerase inactivation
- dNTP modifications

Comparison of conventional and Hot start PCR

Asymmetric PCR

- Amplifies one strand of target DNA
- Thermocycling with limiting amount or leaving out primer

Touchdown PCR

- Annealing temperature is decreased in later cycles
- In early cycles 3-5 degree above the standard Tm
- Later cycles **3-5 degree below** Tm
- Initial higher T leads to greater specificity for primer binding
- Lower T permit more efficient amplification at the end of reaction

(A) Normal PCR program:

Figure legends:

- A: Denaturation temperature.
- B: PCR cycle.
- C: Final extension.
- D: Holding temperature.

TD loop: Touch down loop cycle.

(B) PCR program with "touch-down loop":

Normal versus Touchdown PCR

Colony PCR

- Bacterial colonies are screened directly
- Colonies are separated with sterile pipette tip
- Cells are transferred into a PCR mix

To release DNA from cells PCR is started either by:

- Extended time at 95 degree
- Shortened denaturation step at 100 degree
- Special chimeric DNA

Colony PCR

COLD-PCR

 It is a modified protocol that enriches variant alleles from a mixture of wildtype and mutation-containing DNA.

Full COLD and Fast COLD PCR

Inverse PCR

