30-85 ENERGY STORAGE IM

nr- .

L G Gz - .

s I | Cin——=
c .

(2) -l— (b) {c) o

Fiure 30-9. Sample Problem 30-5. (a) A tombination of
three capacitors. (b) The parallel combination of C, and C; has
been replaced by its equivalent, C,,. (c) The series combination of
(Cyyand C, has been replaced by its equivalent, Cy.

Cy = 5.3 uF, and Cy = 4.5 uF. (b) A potential difference AV =
125V is applied to the terminals in Fig. 30-9a. What is the
| charge on C,? .
| Solution (a) Capacitors C, and C, are in parallel. From Egq. 30-
16, their equivalent capacitance is

€y =C, + Cy =120 uF + 53 uF = 17.34F.

In Fig. 30-9b, C, and C; have been replaced by their parallel

combination, Cj;. As the figure shows, Ci; and C; are in series.
From Eq. 30-21, the final equivalent combination (see Fig. 30-9¢)
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(b) We treat Lthe equivalent capacitors Cy; and C,y, exactly as we
would real capacitors having that capacitance. The charge on Cyyy
in Fig. 30-9¢ is then
@iy = Gy AV = (3.57 uFN12.5 V) = 44.6 uC. v
: a
This’same charge exists on each capacitor in the series combina- f
tion of Fig. 30-2b. The potential difference across Cy; in that fig- i
ure is then L
12 44.6 uC '
=l e =258V,
AV, Co " VI3aF 258 s
This same potential difference appears across C, in Fig. 309a.50 ¢
that
@ = C, AV, = (12 uF)2.58 V) = 3| pC. :
. - t-
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30-5 ENERGY STORAGE c
IN AN ELECTRIC FIELD :
An important use of capacitors is to store electrostatic en- F
ergy in applications ranging from flash lamps to laser sys- t
tems (see Fig. 30-10), both of which depend for their opera- v
tion on the charging and discharging of capacitors. 5

In Section 28-2 we showed that any charge configura-
tion has a certain electric potential energy U, equal to the f
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! ! ! = I + I
17.3 uF 4.5 uF

= 0.280 uF "',

|
Cn= O—Z'W = 3.57 uF.
(b) We treat the equivalent capacitors C); and Cy, exactly as we
would real capacitors having that capacitance. The charge on C)3y
in Fig. 30-9¢ is then

qn = Cu] Av = (3.57 pFXI125V) =446 j.l.c.

This'same charge exists on each capacitor in the series combina-
tion of Fig. 30-95. The potential difference across Cy, in that fig-
ure is then

q’! “.6 #C
Vs e = o Vv
Avi Ca 173puF 238

This same potential difference Ippem across C, in Fig. 30-9g, so
that

@ = G, AV, = (12 uF)2.58 V) = 3| uC,

-

30-5 ENERGY STORAGE
IN AN ELECTRIC FIELD

An imporant use of capacitors is to store clectrostatic en-
ergy in applications ranging from flash lamps to laser sys-
tems (see Fig. 30-10), both of which depend for their opera-
tion on the charging and discharging of capacitors.

_ In Section 28-2 we showed that any charge configura-
tion has a certain electric potential energy U, equal 10 the

FIGURE 30-10. This bank of 10,000 capacitors al the
Lawrence Livermore National Laboratory stores 60 MJ of electric
energy and releases it in 1 ms 1o flashlamps that drive a system of
lasers. The installation is part of the Nova project, which is at- -
templing to produce sustained nuclear fusion reactions.

work W (which may be positive or negative) that is done by
an external agent that assembles the charge configuration
from its individual components, originally assumed to be
infinitely far apart and at rest. This potential energy is simi-
lar 1o that of mechanical systems, such as a compressed

spring or the Earth—Moon system.

For a simple example, work is done when two equal and
opposite charges are separated. This energy is stored as
electric potential energy in the system, and it can be recov-
ered as kinetic energy if the charges are allowed to come
logether again. Similarly, a charged capacitor has stored in
it an electrical potential energy U equal to the work W done
by the external agent as the capacitor is charged. This en-
ergy can be recovered if the capacitor is allowed 1o dis-
charge. Alternatively, we can visualize the work of charging
by imagining that an external agent pulls electrons from the
positive plate and pushes them onto the negative plste,
thereby bringing about the charge separation. Normally, the
work of charging is done by a battery, at the expense of its
store of chemical energy, &

Suwoseli'utuuimeudmp " has already been trans-
ferred ﬁunmplmmﬂnodn.qmw difference
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AV’ between the plates at that moment is AV* = ¢'/C. If an
increment of charge dg’ is now transferred, the resulting
small change dU in the electric potential ehergy is, accord-
ing to Eq. 28-9 (AV = AUlg,),

dU = AV'dg' = “—dg'.
. -
If this process is continued until a total charge ¢ has been
transferred, the total potential energy is

q L
- = | 44
U= J’dU -[I = dq

O £
v Tk

(30-23)

or

110-24)

From the relationg = C AV we can also write this as
U = 1Ay

Where does this enetgy reside? Equations 30-24 and
30-25 do not give us a dircet answer, but we can determine
the location of the stored energy by reasoning as follows.
Suppose we have an isolated parallel-plate capacitor (that
is, nol connected to a battery) that carries a charge g. With-
out changing ¢. we pull the plates apart until their separa-
non is twice as large as 1t was initally. According to Eg.
30-5, if the plate separation d becomes twice as large, the
capacitance becomes only hall as large. Equation 30-24
shows that if C becomes hall as large, the stored energy
doubles. Now in pulling the plates apat we have not
changed the capacitor plates, so it would not be reasonable
to conclude that the extra energy 18 stored there. What we
have done 15 to double the volume of the space between the
plates, and since the energy has also doubled it seems rea-
sonable to conclude that this electne potential enerpy re-
sides in the volume between the plates. More specifically,
the energy is stored in the electric field that is present in
this region.

In a parallel-plate capacitor, neglecting tnng.ng, the
electric field has the same value for all points beiween the
plates. Based on our conclusion that the energy resiles ini
the field. it follows that the energy density u, which 1s the
stored energy per unil volume, should alse txe the same
everywhere between the plaies i given by the stored v

(30-25

ergy U divided by the volume Ad, or "
, U L CLAV)
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Substituting the relation C = e Ald (L 30-5) leads .-

e, [ AV )z
= — =] 0-27
“T 2 ( d (A=)
However, 3V/d 1~ the electnic field E, so that
= }guf- _ (30-28)

Although we derived this equation for the special case ofa
parallel-plate capacitor, it is true in general. If an electric
field E exists at any point in empty space (a vacuum), we
can think of that paint as the site of stored energy in
amount, per unit volume, of ,eoE

In general, E varies with location, so « is a function ol'
the coordinates. For the special case of the parallel-plate ca- |
pacitor, E and u do not vary with location in the region be-
tween the plates.

SAMPLE PROBLEM 30-6. A 3.55%uF capacitor ) s
charged to a potential difference AV, = 6.30 V, using a bauery. |
The charging battery is then removed, and the capacitor 1s con:
nected as in Fig. 30-11 10 an uncharged 8.95- uF capacitor C,. Al
ter the switch S is closed, charge flows from C, o C, unul an
equilibrium is established, with both capacitors at the same poten- |
tial d:fference AV, (@) What is this common potential difference?
(b) What is the energy stored in the electric ficld before and afier |
the switch S in Fig. 30-11 is closed?

Solution (a) Electric charge must be conserved, so the nn;un.l
charge g, 1s shared by two capacitors, or

) G=q + q
Applying the relation g = C AV to each term yields
C| AVo - C. AV + Cz AV.

C, (6.30 VX3.55 uF)
AV = AV, = =MV,
20 C 4 € 3SSuF 4+ 895 uF
If we know the battery voltage AV, and the value of C,, we can
Jetermine an unknown capacitance C, by measuring the value of
AV 1n an arrangement similar to that of Fig. 30-11.
() The nitial stored energy is

= 1C,(AVy)! = §(3.55 X 10°*F)6.30 VY :
=708 % 107%) =705 .

The hinal energy 18 .
Uy = \C(AWV? + 1CAV) = (G, + CXAVY :
= {(3.55 X 10°*F + 895 x 10"*Fx1.79 V)!
= 200 x 10°%) = 20.0 wl.
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FIGURE 30-11. Sample Problem 30 6. Capacitor C, has pre-
viously been charged to a potential differen.c AV, by a battery
that has been removed. When the switch S 13 «lused, the insual
charge g, on L, is shared with
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SAMPLE PROBLEM 30-7. An isolated conducting sphere
whose radius R is 6.B5 cm camies a charge ¢ = 1.25 nC. (¢) How
much energy is stored in the electric field of this charged conduc-
lor? (b) What is the energy density at the surface of the sphere?
(¢} What is the radius R, of an imaginary spherical surface such
that one-half of the stored potential energy lies within it?

Solution (a) From Eqgs. 30-24 and 30-12 we have
q’ q° (1.25 x 10°°C)?

IC  BmeR  (BrkB.85 X 10- 7 FimN0.0685 m)
= 1.03 % 10°7) = (03 n).

(b) To find the energy density. we must fint find E at the surface
of the sphere. This is given by

9.
T Ame, R

b
The encrgy density is then, usink Eg 30-28,
L]

a (1.25 % 10°°Cy?
(323 )8.85 X 10" C'N-m*X0.0685 m)*

254 X 107 Jim' = 25.4 wdim’.

() The energy that lies in a spherical shell beiweer radii » and
r+dris '

dU = (uldwri)dr),

where (4472 )(dr) is the volume of the spherical shell. Using the
result of pant (») for the encrpy density evaluated at a radius r, we
oblain
1 k]
q q* dr
dU = de’ d

The condition given for this problem is

dU=—| dU
[ 2 In

or, using the result obtained above for dU and canceling constant

factors from both sides,
“ar L[ dr
Il l"l 2 I f’ '

which becomes -~
1 !
“Re X
Solving for R, yields
Ro = 2R = (2X685¢cm) = 13.7cm.

*Some slight amount of encrgy is also radiated away. For a critical discus
sion, see “Two-Capacitor Problem: A More Realistic View.” by R. A. Pow
ell, American Journal of Physics. May 1979, p. 460.

30-6 CAPACITOR WITH
DIELECTRIC

In Section 29-6 we discussed the effect of applying an elec-
tric field to an insulating matenal (a dielectric), We showed
that the effect of the diclectric is to reduce the strength of
the electnic field in its interior from its initial value E, in
vacuum to £ = Ey/x, inside the dielectric. The parameter
K. the dielectric constant, has values greater than | for all
materials, so that the electnc field in the dielectric is
smaller than the field in vacuum.

In this section, we consider the effect of filling the inte-
rior of a capacitor with a dielectric material, This effect was
first investigated in 1837 by Michael Faraday. Faraday con-
structed two identical capacitors, filling one with a dielec:
tric material and leaving the other with air between its
plates. When both capacitors were connected to batlenies
with the same potential difference, Faraday found that the
charge on the capacitor filled with the Jielectric was greater
than the charge on the capacitor with air between its plates.
That is, the presence of the dielectric enables the capacitor
to store more charge. Since storage of charge for later dis-
charge is one of the purposes for which we use capacitors,
the presen « of a diclectric can enhance the performance of
a capacitor

. The effect of filling a capacitor with dielectric depends
on whiether we do so with the battery connected (as in Fara-
day’s expeniment) or disconnected. First we consider the
situation as in Faraday's experiment (Fig. 30-12). A capaci-
tor with capacitance C is connected to a battery of potential
difference AV and allowed to become fully charged, such
that the plates carry a charge g, as in Fig. 30-12a. With the
batlery remaining connected, we then fill the interior of the
capacitor with a matenal of dielectric constant x,, as in
Fig. 30-12b. The battery maintains the same potential dif-
ference AV across the plates.

Equation 30-2 shows thay, if the potential differences in
Figs. 30-12a and 30-12b are the same, then the electric
fields inside the capacitor must be the same. However, we

—
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av q av e X4

FiGURE 30-12. (a) An empty capacitor is charged by con-
necting it to & battery that establishes a potential difference AV.
b) The battery remains connected as the capacitor is filled with a
ielectric. In this case, the potential difference AV remains con-
stant, but g increases.
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