

## ALKANES



Learning outcomes Students should be able to:

1.Describe a homologous series and its general characteristics;

2.Describe the alkanes as a homologous series of saturated hydrocarbons with the general formula  $C_nH_{2n+2}$ ;

3.Draw the structures of branched and unbranched alkanes, C1 to C4 and name the unbranched alkanes C1 to C4;

4. Define isomerism and identify the isomers;

5.Describe the properties of alkanes;



#### HOMOLOGOUS SERIES

- There are millions of different organic compounds and chemists have devised a method of classifying them into families with similar formulae and properties.
- Each family of organic compounds is called a homologous series.
- A homologous series is a family of compounds with the same general formula, same functional group and similar chemical properties.



#### HOMOLOGOUS SERIES

















#### HOMOLOGOUS SERIES

• The alkanes and alkenes are **hydrocarbons** (containing hydrogen and carbon **only**).



• The alcohols and carboxylic acids contain carbon, hydrogen and **oxygen**.



## HOMOLOGOUS SERIES CHARACTERISTICS

- Organic compounds in the same homologous series have the following characteristics:
- <u>Same</u> general formula
- <u>Same</u> functional group
- <u>Similar</u> chemical properties but varying in reactivity
- Physical properties <u>vary</u> gradually along the series



## FUNCTIONAL GROUPS AND GENERAL FORMULA

- A functional group is an atom or group of atoms that gives a compound its characteristic chemical properties.
- Organic compounds in the <u>same homologous</u> <u>series</u> have <u>similar chemical properties</u> due to the <u>same functional group</u>.
- Each member of the series differs from the next by a –CH<sub>2</sub>- unit.



#### GENERAL FORMULA OF ALKANES?



| Homologous<br>series | Example                                                  | Functional<br>group                   | General formula                                                           |
|----------------------|----------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|
| Alkanes              | H H $H - H$ $H - C - C - H$ $H H$ $H H$ $E thane$        | Nil                                   | $C_n H_{2n+2}$<br>where $n = 1, 2, 3$                                     |
| Alkenes              | H H H $C = C H$ $H$ $H$ Ethene                           | C = C<br>Carbon-carbon<br>double bond | $C_n H_{2n}$<br>where $n = 2, 3, 4$                                       |
| Alcohols             | H H $H - H$ $H - C - C - O - H$ $H H$ $H H$ $E thanol$   | – O – H<br>Hydroxyl group             | $C_n H_{2n+1} OH$<br>(or $C_n H_{2n+2} O$ )<br>where $n = 1, 2, 3$        |
| Carboxylic<br>acids  | H O<br>I II<br>H - C - C - OH<br>I<br>H<br>Ethanoic acid | O<br>"<br>– C – OH<br>Carboxyl group  | $C_n H_{2n+1} COOH$<br>(or $C_n H_{2n+2} O_2$ )<br>where $n = 0, 1, 2, 3$ |

#### NAMING ORGANIC COMPOUNDS

- The name of an organic compound is divided into two parts.
- The first part (prefix) tells us the number of carbon atoms in each molecule.

| First part in the name              | meth- | eth- | prop- | but- |
|-------------------------------------|-------|------|-------|------|
| Number of carbon atoms per molecule | one   | two  | three | four |

 The second part (suffix) tells is which homologous series the compound belongs to

| Second part in the name | -ane   | -ene   | -ol     | -oic acid       |
|-------------------------|--------|--------|---------|-----------------|
| Homologous series       | alkane | alkene | alcohol | carboxylic acid |

| Name    | Molecular Formula               |
|---------|---------------------------------|
| methane | CH <sub>4</sub>                 |
| ethane  | C <sub>2</sub> H <sub>6</sub>   |
| propane | C <sub>3</sub> H <sub>8</sub>   |
| butane  | C <sub>4</sub> H <sub>10</sub>  |
| pentane | C <sub>5</sub> H <sub>12</sub>  |
| hexane  | C <sub>6</sub> H <sub>14</sub>  |
| heptane | C <sub>7</sub> H <sub>16</sub>  |
| octane  | C <sub>8</sub> H <sub>18</sub>  |
| nonane  | C <sub>9</sub> H <sub>20</sub>  |
| decane  | C <sub>10</sub> H <sub>22</sub> |



| No. of C<br>atoms | Name of<br>alkene | Molecular<br>formula          |  |
|-------------------|-------------------|-------------------------------|--|
| 2                 | Ethene            | $C_2H_4$                      |  |
| 3                 | Propene           | C <sub>3</sub> H <sub>6</sub> |  |
| 4                 | Butene            | C <sub>4</sub> H <sub>8</sub> |  |

| C <sub>n</sub> H <sub>2n</sub> |               |
|--------------------------------|---------------|
| 10 20                          | Marks & Stars |

| Alkane                                          | Alcohol                                            | Carboxylic acid                                   |
|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| CH <sub>4</sub>                                 | CH <sub>3</sub> OH                                 | HCO <sub>2</sub> H                                |
| methane                                         | methanol                                           | methanoic acid                                    |
| CH <sub>3</sub> CH <sub>3</sub>                 | CH <sub>3</sub> CH <sub>2</sub> OH                 | CH <sub>3</sub> CO <sub>2</sub> H                 |
| ethane                                          | ethanol                                            | ethanoic acid                                     |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> H |
| propane                                         | propanol                                           | propanoic acid                                    |
| methane                                         | methanol                                           | methanoic acid                                    |











#### WHAT ARE ALKANES?

- Alkanes are a homologous series of saturated hydrocarbons that contain only carboncarbon single covalent bonds.
- In an alkane molecule, all the outer electrons of each carbon are used in forming single covalent bonds with four other atoms, hence, alkanes are said to be saturated.
- Alkanes have the general formula  $C_nH_{2n+2}$ (where  $n \ge 1$ )



## HOW ARE ALKANES REPRESENTED?

| No. of C atoms | Name    | Molecular formula              | Full structural formula                                 | Structural formula                                              |
|----------------|---------|--------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|
| 1              | methane | CH4                            | н<br> <br>н-С-н<br> <br>н                               | CH <sub>4</sub>                                                 |
| 2              | ethane  | C <sub>2</sub> H <sub>6</sub>  | Н Н<br>   <br>H — C — C — H<br>   <br>H H               | CH <sub>3</sub> CH <sub>3</sub>                                 |
| 3              | propane | C <sub>3</sub> H <sub>8</sub>  | Н Н Н<br>     <br>H — C — C — C — H<br>     <br>H Н Н   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
| 4              | butane  | C <sub>4</sub> H <sub>10</sub> | Н Н Н Н<br>       <br>H-C-C-C-C-H<br>       <br>H Н Н Н | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> |



• Find the **longest** carbon chain in the compound. This gives the parent name of the compound.



 Number each carbon atom in the longest chain, starting from the end nearest to the branch. This means that the number appearing in the name is a smaller number.

5 4 3 2 1  

$$CH_3 - CH_2 - CH_2 - CH - CH_3$$
  
 $CH_3$  BRANCH



 Name the group joined to the chain and state the number of the carbon atom to which it is joined.





 If the chain has 2 more identical groups joined to it. Prefixes like di-, tri-, tetra- are used to indicate the number of groups present.





• If a chain has 2 or more different groups joined to it, the groups are written in alphabetical order i.e. ethyl before methyl.

# Name this Alkane CH<sub>3</sub> $CH_3 - C - CH_3$ CH<sub>3</sub>

2,2-Dimethypropane



• Physical states





 As the number of carbon atoms in the molecules increases, the melting and boiling points increase.





- Generally, alkanes have low melting and boiling points. This is due to the weak intermolecular forces of attraction (van der Waals' forces) which can be overcome by a small amount of heat energy.
- As the alkane molecules become larger (increase in the number of carbon atoms in the molecules, the intermolecular forces of attraction become stronger. More heat energy is needed to overcome the intermolecular forces of attraction to separate the molecules and the melting and boiling points increase.

- As the number of carbon atoms in the molecules increases, they become less viscous (flow less easily).
- This is due to the stronger intermolecular forces of attraction and
- Larger molecules get tangled together easily.



 As the number of carbon atoms in the molecules increases, their densities also increase. Liquid alkanes have densities less than 1g/cm<sup>3</sup> and they float on water.





 As the number of carbon atoms in the molecules increases, they become less flammable (more difficult to burn).

- The larger alkane molecules contain a higher percentage of carbon and this makes it more difficult to burn.
- The larger alkanes also tend to produce a smokier flame due to incomplete combustion of the alkane molecules.

 Alkanes are insoluble in water but soluble in organic solvents such as CCl<sub>4</sub>.



• Alkanes are **generally unreactive**.



 This is because alkane molecules contain single carbon-carbon covalent bonds (C-C) and single carbon-hydrogen covalent bonds (C-H) which are strong and require a lot of energy to break.



- Combustion
- Alkane + oxygen → carbon dioxide + water
   vapour
- $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) \Delta H$ = -890kJ/mol
- The reaction is highly exothermic and a large amount of heat energy is released. This is why alkanes make good fuels.



• Substitution Reactions

 A substitution reaction is one in which an atom or group of atoms replace other atoms in a molecule.

 It is usually a slow reaction that is difficult to control and a mixture of products is usually obtained.



 Reaction is initiated by ultra-violet light which provides the energy to break the covalent bond in the chlorine molecule to produce chlorine atoms.

$$Cl - Cl \xrightarrow{UV \text{ light}} 2Cl$$
chlorine molecule chlorine atoms



• For instance, methane reacts with chlorine as follows:



 This is a substitution reaction because the hydrogen atom in methane has been replaced by a chlorine atom.

- More hydrogen atoms can be replaced with chlorine atoms to produce a mixture of four organic compounds as follows:
- $CH_3CI + CI_2 \rightarrow CH_2CI_2 + HCI$
- $CH_2Cl_2 + Cl_2 \rightarrow CHCl_3 + HCl$
- $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$



#### ISOMERISM

- Isomers are compounds with the same molecular formula but different structural formulae.
- Isomers have different melting and boiling points.
- Isomers may or may not belong to the same homologous series.





Figure 18.3 Structural isomers of C5H12.



#### Quiz



Which compound is an isomer of MTBE?

(N2006/P1/Q37)







)

#### Summary

